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We present here a new hybrid method for the computation of the sound emitted by subsonic flows with temperature
and density inhomogeneities. This method consists in splitting the flow field into a hydrodynamic part and an
acoustic one thanks to a low Mach number approximation of the Navier-Stokes equations. We therefore consider
the hydrodynamic part to be quasi incompressible. The acoustic quantities are obtained by a perturbation of
the compressible Navier-Stokes equations from which hydrodynamic quantities are subtracted. These become a
source term based on the convective derivative of the hydrodynamic pressure. The method has been successfully
applied to isothermal and anisothermal excited mixing layers. The validity of the proposed method is assessed by
comparison to a compressible direct numerical simulation on the one hand and to LEE computations with different
source terms on the other hand.

1 Introduction
Aerodynamically generated noise prediction has become

a major issue in transport industry. Numerical aeroacoustic
computations have established themselves as powerful tools
to predict noise radiated by many types of flows.

Two classes of methods are available. The first class
of methods consists in performing a direct noise prediction,
e.g with a compressible Direct Numerical Simulation (DNS).
The compressible Navier-Stokes equations are calculated
both in the aerodynamic source region and in the acoustic
far field [1, 2, 3]. The connection between the dynamic flow
and the sound produced by it is done naturally and requires
no model for the sound source. This method requires large
computational resources and is inefficient in the low Mach
number range. This has motivated the second class of meth-
ods, known as hybrid methods [4]. For Mach number less
than about 0.3, these methods can lead to a speed-up fac-
tor of up to 30 over the DNS [5]. They consist in splitting
the full computation into a dynamic flow computation and
a sound propagation computation, using a source model in
between. The flow computation is typically incompressible
[4, 5], but density and temperature inhomogeneities can also
be taken into account [6, 7]. The noise computation can be
done using some kind of perturbed equations, such as the
linearized Euler equations (LEE) [2, 6, 8]. One well known
problem with the LEE is that they can sustain unstable vorti-
cal modes that can spoil the noise computation. One strategy
to avoid this mode is to modify the equations so that they
do not support the mode anymore [2, 8, 9]. But a detrimen-
tal effect of this is to neglect some sound/flow interactions.
Furthermore, density fluctuations are often neglected in the
development of the source terms for the LEE [2] whereas
these can significantly affect the radiated sound. The ques-
tion of how density fluctuations contribute to the sound field
is still a subject of controversy [10, 11]. It appears crucial
to develop a method that can take into account efficiently
this phenomena for a better understanding of the processes
involved. The Low-Order Low Mach Number Approxima-
tion (LO-LMNA) flow solver is presented in section 2. The
acoustic solver based on a perturbation of the compressible
Navier-Stokes equations, the Perturbed Low Mach Number
Approximation (PLMNA) and its vorticity-filtered version
PLMNA? are presented in section 3. In section 4, the LEE
are retrieved from the PLMNA with a source term different
from the ones classically used. The shear layer configuration
and comparisons of the radiated noise obtained with the dif-
ferent strategies are presented in section 5. Conclusions are
provided in section 6.

2 The Low Mach Number
Approximation

The first part of the hybrid approach consists in calcu-
lating the flow. Here, a low Mach approximation is used
[12, 13, 7, 6] so as to retain temperature and density inhomo-
geneities, which is necessary for dealing with anisothermal
flows. These equations are obtained from the full normalized
Navier-Stokes equations that read:

∂ρ

∂t
+
∂ρu j

∂x j
= 0 (1)

∂ρui

∂t
+
∂ρuiu j

∂x j
= −

∂p
∂xi

+
1
Re

∂τi j

∂x j
(2)

∂ρe
∂t

+
∂(ρe + p)u j

∂x j
=
τi j

Re

∂ui

∂x j
+

(γ − 1)−1

M2RePr

∂

∂x j

(
µ
∂T
∂x j

)
(3)

p =
ρT
γM2 (4)

where ρ, ui, j, p, T are the density, velocity, pressure and tem-
perature respectively. Re, M and Pr stand respectively for the
Reynolds, Mach and Prandtl number, γ is the ratio of specific
heats at constant pressure and volume. The internal energy
per volume unit ρe and the viscid stress tensor τ write as fol-
lows:

ρe =
p

γ − 1
, τi j = µ

(
∂ui

∂x j
+
∂u j

∂xi
−

2
3
∂uk

∂xk
δi j

)
. (5)

Normalization is done using a length scale L∗re fh
, a veloc-

ity scale U∗re fh
, a time scale t∗re fh

= U∗re fh
/L∗re fh

, a density
scale ρ∗re fh

, a pressure scale p∗re fh
= ρ∗re fh

U∗2re fh
, and a tem-

perature scale T ∗re fh
. Then it comes Re = ρ∗re fh

U∗re fh
L∗re fh

/µ,

M = U∗re fh
/
√
γrT ∗re fh

and Pr = µcp/k. A small parameter

ε = γM2 is introduced in the following expansions:

ρ = ρ0 + ερ1 + · · · , ui = ui0 + εui1 + · · ·

T = T0 + εT1 + · · · , p =
p0

ε
+ p1 + · · · .

(6)

Introducing this expansion into Eq. (1)-(4), an asympotic
expansion of the Navier-Stokes equations is obtained.
Keeping the lowest order terms in ε provides our set of LO-
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LMNA equations:

∂ρ0

∂t
+
∂ρ0 ui0

∂xi
= 0 (7)

∂ρ0 ui0

∂t
+
∂ρ0 ui0 u j0

∂x j
= −

∂p1

∂xi
+

1
Re

∂τi j0

∂x j
(8)

ρ0

∂ui0

∂xi
=

1
RePrT0

∂

∂x j

(
µ
∂T0

∂x j

)
(9)

p0 = ρ0 T0 . (10)

Density inhomogeneities are not acoustic and the CFL num-
ber is doesn’t depend on the sound velocity as would be the
case for a compressible solver. Thus, the LO-LMNA solver
is as efficient as an incompressible solver.

3 The Perturbed Low Mach Number
Approximation

The equations (1)-(4) are perturbed using the decomposi-
tion

ρ = ρ0 + ρ′
h
, ui = ui0 + u′ih ,

T = T0 + T ′
h
, p = ε−1 p0 + p1 + p′

h
.

(11)

The primed quantities ρ′
h
, u′ih , T ′

h
and p′

h
contain acoustic

fields. As a matter of fact, identifying Eq. (11) with Eq. (6)
reveals that these are the sum of all the fluctuations of order
at least ε:

ρ′
h

= ερ1 + ε2ρ2 + · · · , u′ih = εui1 + ε2ui2 + · · · ,

T ′
h

= εT1 + ε2T2 + · · · , p′
h

= εp2 + ε2 p3 + · · · .
(12)

The continuity equation Eq. (1) becomes:

∂ρ′
h

∂t
+

∂

∂x j

(
ρ0 u′jh + ρ′

h
u j0

)
=
∂ρ0

∂t
+
∂ρ0 u j0

∂x j︸           ︷︷           ︸
=0 (7)

. (13)

We proceed in the same way for the momentum equation
Eq. (2)

∂ρ0 u′ih
∂t

+
∂ρ′

h
ui0

∂t
+

∂

∂x j

(
ρ0 ui0 u′jh + ρ0 u′ih u j0 + ρ′

h
ui0 u j0

)
+
∂p′

h

∂xi
=

1
Re

∂τ′i jh

∂x j

−

(
ε−1 ∂p0

∂xi︸  ︷︷  ︸
=0 (10)

+
∂ρ0 ui0

∂t
+
∂ρ0 ui0 u j0

∂x j
+
∂p1

∂xi
−

1
Re

∂τi j0

∂x j︸                                          ︷︷                                          ︸
=0 (8)

) (14)

and the energy equation Eq. (3)

∂p′
h

∂t
+ u j0

∂p′
h

∂x j
+ u′jh

∂

∂x j

(
ε−1 p0 + p1

)
+ γp′

h

∂u j0

∂x j

+γ
(
ε−1 p0 + p1

) ∂u′jh
∂x j

= Fv −

[
∂p1

∂t
+ u j0

∂p1

∂x j
+ γp1

∂u j0

∂x j

]
−

[
∂ε−1 p0

∂t
+ u j0

∂ε−1 p0

∂x j︸                    ︷︷                    ︸
=0 (10)

+ γε−1 p0

∂u j0

∂x j
−
γε−1

RePr

∂

∂x j

(
µ
∂T0

∂x j

)
︸                                    ︷︷                                    ︸

=0 (9)

]

(15)

where

Fv =
(γ − 1)

Re

(
τi j0 + τ′i jh

) ∂(ui0 + u′ih )

∂x j
+
γε−1

RePr

∂

∂x j

(
µ
∂T ′

h

∂x j

)
.

(16)

For sufficiently high Reynolds numbers, viscous term are
small enough to be neglected. The Perturbed Low Mach
Number Approximation system (PLMNA) is finally:

∂ρ′

∂t
a

+
∂

∂x j

(
ρ0a

u′j + ρ′u j0a

)
= 0 (17)

∂ρ0a
u′i

∂t
a

+ ρ′
∂ui0a

∂t
a

+
(
ρ0a

u′j + ρ′u j0a

) ∂ui0a

∂x j

+
∂

∂x j

(
ρ0a

u′iu j0a

)
+
∂p′

∂xi
= 0

(18)

∂p′

∂t
a

+ (γ − 1)
(
p′
∂u j0a

∂x j
− u′j

∂p0a

∂x j

)
+
∂

∂x j

(
p′u j0a

+ γp0a
u′j

)
= S 4

(19)

S 4 = −

(
Dp1a

Dt
a

+ γp1a

∂u j0a

∂x j

)
(20)

where D /D t
a

= ∂/∂t
a

+ u j0∂/∂x j is the convective deriva-
tive. The PLMNA equations (17)-(20) are normalized with
respect to the acoustic reference quantities ρ∗re fa

, c∗re fa
and

p∗re fa
where c∗re fa

is the sound velocity and t∗re fa
= c∗re fa

/L∗re fa
.

That leads to the following relations:

ui0a
= ui0 M , p0a

=

(
p0

γ
+ p1 M2

) ρ∗re fd

ρ∗re fa

,

ρ0a
= ρ0

ρ∗re fd

ρ∗re fa

, p1a
= p1 M2

ρ∗re fd

ρ∗re fa

,

t
a

= tM−1 , L∗re fa = L∗re fd

(21)

with the M = U∗re fd
/c∗re fa

the Mach number of the hybrid cal-
culation. This solver is very similar to the Perturbed Com-
pressible Equations (PCE) developed by Seo and Moon [8].
They proposed to filter the momentum equation Eq. (18)
since it can strongly create perturbed vorticity. Indeed, tak-
ing the curl of Eq. (18), they derived a transport equation for
the perturbed vorticity close to

∂ω′

∂t
a

+ (u · ∇)ω′ =
[(

Ω0a
· ∇

)
u′ +

(
ω′ · ∇

)
u0a

]︸                             ︷︷                             ︸
I

−
[(

u′ · ∇
)
Ω0a

+ Ω0a

(
∇ · u′

)]︸                             ︷︷                             ︸
II

−ω′
(
∇ · u0a

)︸       ︷︷       ︸
III

+
1
ρ2

0a

(
∇ρ0a

∧ ∇p′
)

︸               ︷︷               ︸
IV

−∇ ∧

(
ρ′

ρ0a

D u0a

D t
a

)
︸             ︷︷             ︸

V

(22)

where Ω0a
= ∇ ∧ u0 and ω′ = ∇ ∧ u′ are the hydrodynamic

and perturbed vorticity respectively. The term II is the main
source of perturbed vorticity but doesn’t contribute much to
the radiated sound field [8]. The term I is zero for a two-
dimensional case. The terms IV − V only cause diffusion of
ω′. The term is absent in Seo and Moon’s analysis since they
consider a solenoidal flow. We reasonably neglect the right
hand-side of Eq. (22) and obtain the perturbed vorticity free
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or vorticity filtered system PLMNA?:

∂ρ′

∂t
a

+
∂

∂x j

(
ρ0a

u′j + ρ′u j0a

)
= 0

∂ρ0a
u′i

∂t
a

+
∂

∂x j

(
ρ0a

u′ju j0a

)
+ ρ0a

u′i
∂u j0a

∂x j
+
∂p′

∂xi
= 0

∂p′

∂t
a

+ (γ − 1)
(
p′
∂u j0a

∂x j
− u′j

∂p0a

∂x j

)
+
∂

∂x j

(
p′u j0a

+ γp0a
u′j

)
= S 4

S 4 = −

(
Dp1a

Dt
a

+ γp1a

∂u j0a

∂x j

)
.

(23)

4 From PLMNA to the Linearized Eu-
ler Equations

Let us consider the hydrodynamic quantities issued from
the LO-LMNA solver as the sum of fluctuations x′′ about
mean temporal averages values x like:

ui0a
= ui0a

+ u′′i0a
, p0a

= p0a
+ p′′i0a

, ρ0a
= ρ0a

+ ρ′′
0a
. (24)

If we now substitute (24) in the PLMNA equations (17)-(20),
we find:
∂ρ′

∂t
a

+
∂

∂x j

(
ρ0a

u′j + ρ′u j0a
+ ρ′′

0a
u′j + ρ′u′′j0a

)
= 0 (25)

∂ρ0a
u′i

∂t
a

+
∂ρ′′

0a
u′i

∂t
a

+ ρ′
∂u′′i0a

∂t
a

+
∂

∂x j

(
ρ0a

u′iu j0a
+ ρ0a

u′iu
′′
j0a

)
+

∂

∂x j

(
ρ0a

u′iu j0a
+ ρ′′

0a
u′iu
′′
j0a

)
+

(
ρ0a

u′j + ρ′u j0a

) ∂ (
ui0a

+ u′′i0a

)
∂x j

+
(
ρ′′

0a
u′j + ρ′u′′j0a

) ∂ (
ui0a

+ u′′i0a

)
∂x j

+
∂p′

∂xi
= 0

(26)
∂p′

∂t
a

+
∂

∂x j

(
p′u j0a

+ γp0a
u′j + p′u′′j0a

+ γp′′
0a

u′j
)

+ (γ − 1)
p′

∂u j0a

∂x j
+ p′

∂u′′j0a

∂x j
− u′j

∂p0a

∂x j
− u′j

∂p′′
0a

∂x j

 = S 4

(27)

In the same manner as done by Béchara et al. [14], we will
neglect each term involving products of hydrodynamic x′′

and acoustic fluctuations x′. We retrieve then the LEE with
a source terme SE = (0, 0, 0, S 4)T in the energy equation :

∂ρ′

∂t
a

+
∂

∂x j

(
ρu′j + ρ′u j

)
= 0

∂ρu′i
∂t

a

+
∂

∂x j

(
ρu′iu j

)
+ (ρu′j + ρ′u j)

∂ui

∂x j
+
∂p′

∂xi
= 0

∂p′

∂t
a

+
∂

∂x j

(
p′u j + γpu′j

)
+ (γ − 1)

(
p′
∂u j

∂x j
− u′j

∂p
∂x j

)
= S 4

S 4 = −

(
Dp1a

Dt
a

+ γp1a

∂u j0a

∂x j

)
(28)

where the mean hydrodynamic flow fields are

ui = ui0a
= ui0 M , ρ = ρ0a

= ρ0

ρ∗re fd

ρ∗re fa

,

p = p0a
=

(
p0

γ
+ p1 M2

)ρ∗re fd

ρ∗re fa

.

(29)

The LEE are numerically solved using the same matrix for-
mulation as the one employed by [2, 6] :

∂U
∂t

a

+
∂E
∂x

+
∂F
∂y

+ H = S (30)

where S is the source term used to form the analogy. In
our new method,

S = SE = (0, 0, 0, S 4) . (31)

4.1 Classical formulation of the source terms
Bogey et al. [2] developed a different source term by

deriving Lilley’s wave equation from the LEE and conse-
quently making the hypothesis of a strictly parallel mean flow
with u = u(y) and v = 0. They also considered the mean
pressure p constant and the mean density and sound velocity
only as function of the transverse coordinate y, ρ = ρ(y) and
c = c(y). The source term is given by

S = (0, S 2 − S 2, S 3 − S 3, 0) (32)

where

S 2 = −
∂ρu′′i u′′j
∂xi

, S 3 = −
∂ρu′′i u′′j
∂x j

(33)

and S 2, S 3 are time averaged quantities. This expression of
the source term was successfully used by [15, 2] to calculate
noise radiated by mixing layers arisen from DNS and LES
computations however, Bogey et al.neglected fluctutations of
density, arguing that the triple product of flutuations ρ′′u′′i u′′j
would be very small. Furthermore, they needed to nullify the
term H to cancel instabilities.

Comparing the expression of the source term Eq.(33)
with Eq. (8) leads to

−
∂ρ0a

u′′i0a
u′′j0a

∂x j
=
∂p′′

1a

∂xi
−

1
Re

∂τ′′i j0a

∂x j
+
∂ρ0a

u′′i0a

∂t
a

. (34)

We approximate mean velocity, pressure and dilatation
fields of the LEE as temporal averages of the ones given
by the LO-LMNA system of equations Eq. (7)-(10). The
viscous term can be neglected, providing that the Reynolds
number is sufficiently high. The source terms become:

−
∂ρ0a

u′′i0a
u′′j0a

∂x j
=
∂p′′

1a

∂xi
+
∂ρ0a

u′′i0a

∂t
a

. (35)

For isothermal cases, we expect the last term of the RHS
of Eq. (35) not to radiate as stated by [16] since it is diver-
gence free. Instead of acting on H, we can use a simplified
form of the source term SP and compare the results with clas-
sical SL terms where SP and SL are:

SP =
∂p′′

1a

∂xi
, SL = −

∂ρ0a
u′′i0a

u′′j0a

∂x j
. (36)

5 Application to a shear layer
with density gradient

5.1 Flow configuration
We consider the spatial development of a bidimensional

mixing layer between two streams of velocity, temperature
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and density (Uu,Tu,ρu) and (Ud,Td,ρd) respectively. The ini-
tial mean velocity field is given by hyperbolic-tangent profile

U(y) =
Uu + Ud

2
+

Uu − Ud

2
tanh

(
2y
δω0

)
(37)

where δω0 is the initial vorticity thickness. The temperature
profile is defined by the Crocco-Buseman relation

T (y) =
1

2Cp

[
U(y)(Uu + Ud) − UuUd − U2(y)

]
+ (Tu − Td)

U(y)
Uu − Ud

+
TdUu − TuUd

Uu − Ud
.

(38)

Ud

Uu

δω

Tu, ρu

Td, ρd

0 Lx

Ly

Figure 1: Flow configuration

This mean flow is forced with two subharmonics f0/2 and
f0/4 where f0 is the frequency of the most unstable mode as
found by [17] . From now on, velocity and length are scaled
with respect to the sound velocity c0 and the initial vorticity
thickness δω0 . Compressible DNS calculation schemes used
for comparison with the hybrid method are extensively ex-
plicited in [3]. The LO-LMNA solver is detailed in [6].

a)
-20

0
20

0 200 400 600y/
δ ω

0

-0.5

0

-20
0

20

0 200 400 600y/
δ ω

0

0.5

1

b)
-20

0
20

0 200 400 600y/
δ ω

0

-0.5

0

-20
0

20

0 200 400 600y/
δ ω

0

x/δω0

0.5

1

Figure 2: Up vorticity plot, down density plot:
a) compressible DNS, b) LO-LMNA

Initially, the upper and lower velocity Uu and Ud (Fig-
ure 1) are set to 0.50 and 0.25 respectively with a Reynolds
number Re = 400. In the following, two setups are used: an
isothermal configuration (case1) with Tu = Td and ρu = ρd

and an anisothermal one (case2) with Tu = 2Td and ρu =

0.5ρd . Figure 2 shows a good agreement between compress-
ible DNS and LO-LMNA calculations for the anisothermal
case. The computational domain extends to Lx = 600, Ly =

180 with 1001×601 points for the case1 and Lx = 600, Ly =

40 with 1537×289 points for the case2. The x-direction is
stretched from x/δω0 = 350 where a buffer zone is also ap-
plied. Because of the gradient of density, the case2 needs to
be more refined in the y-direction compared to case1. The
acoustic computational domain is for both cases Lx = 600
and Ly = 800. Hydrodynamic fields are mapped on the
acoustic grid and interpolated in time using a cubic spline
scheme to match with the acoustic time t

a
.

5.2 Results
For the case1, Figure 3, the reference compressible DNS

solution a) is computed using 1035×431 grid points. Source
terms are damped in the x-direction for the PLMNA b), the
PLMNA? c) and the LEE with the source term in the en-
ergy equation LEE+SE d). Only a very small buffer zone
amounting to 1% of the calculated quantities was necessary
to dissipate high frequency fluctuations. Pressure field b), c)
and d) show a good agreement with the reference solution a).
The filtering applied on the PLMNA is very efficient since
the fluctuations appearing downstream of the pairing process
on b) disappeared on c). For the LEE with the SL and SP
terms respectively e) and f), damping in the x-direction isn’t
possible anymore since it creates additional radiation. The
buffer zone needs to be more efficient and amount to 10% of
the calculated quantities. This treatment also creates addi-
tional radiation that can change the directivity pattern. It is
noticeable on e).

Case1

-400

-200

0

200

400

0 200 400 600

y/
δ ω

0

x/δω0

-400

-200

0

200

400

0 200 400 600
x/δω0

a) b)

-400

-200

0

200

400

0 200 400 600

y/
δ ω

0

x/δω0

-400

-200

0

200

400

0 200 400 600
x/δω0

c) d)

-400

-200

0

200

400

0 200 400 600

y/
δ ω

0

x/δω0

-400

-200

0

200

400

0 200 400 600
x/δω0

e) f)
Figure 3: Pressure: a) compressible DNS, b) PLMNA, c)

PLMNA?, d) LEE+SE, e) LEE+SL, f) LEE+SP,
levels from −5.10−5 to 5.10−5.

In the anisothermal flow of the case2 on Figure 4, the
LEE+SL and LEE+SP were not able to predict a pressure
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field similar to the reference solution a). The latter is com-
puted using 2071×785 grid points. The PLMNA, PLMNA?,
gave similar results respectively b) and c) . The directivity
pattern is in great agreement with a). Therefore, the am-
plitude of pressure fluctuations is smaller by a factor about
4. That may be due to the size of the hydrdodynamic do-
main in the y-direction that could be to small. Indeed, for the
LEE+SE on d), a greater hydrodynamic domain was used
with Ly = 80 and the factor is only about 2.

Case2
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Figure 4: Pressure: a) compressible DNS, b) PLMNA, c)
PLMNA?, d) LEE+SE, levels from −2.10−5 to 2.10−5.

6 Conclusion
In this study, a hybrid method based on a low Mach num-

ber approximation and a perturbation of the Navier-Stokes
equation was successfully used to compute the acoustic field
caused by fluctuations of anisothermal flows. Source terms
for the classical linearized Euler equations were staightfully
developped from the perturbation equations giving a single
term in the energy equation. The main advantage of the pro-
posed method is the absence of any hypothesis on the shape
of the background hydrodynamic flow field.
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[3] E. Lamballais, V. Fortuné, and S. Laizet. Straightfor-
ward high-order numerical dissipation via the viscous
term for direct and large eddy simulation. J. Comp.
Phys., 230:3270–3275, 2011.

[4] J.C. Hardin and D.S. Pope. An acoustic/viscous split-
ting technique for computational aeroacoustics. Theo-
ret. Comput. Fluid Dynamics, 6:323–340, 1994.

[5] J.-H. Seo and Y. J. Moon. Perturbed compressible
equations for aeroacoustic noise prediction at low Mach
numbers. AIAA Journal, 43:1716–1724, 2005.

[6] C. Prax, F. Golanski, and L. Nadal. Control of the vor-
ticity mode in the linearized euler equations for hybrid
aeroacoustic prediction. J. Comp. Phys., 227:6044–
6057, 2008.

[7] C.-D. Munz, M. Dumbser, and S. Roller. Linearized
acoustic perturbation equations for low Mach number
flow with variable density and temperature. J. Comp.
Phys., 224:352–364, 2007.

[8] J.-H. Seo and Y. J. Moon. Linearized perturbed com-
pressible equations for low Mach numbers aeroacous-
tics. J. Comp. Phys., 218:702–719, 2006.

[9] R. Ewert and W. Schröder. Acoustic perturbation equa-
tions based on flow decomposition via source filtering.
J. Comp. Phys., 188:365–398, 2003.

[10] K. Viswanathan. Jet aeroacoustic testing: Issues and
implications. AIAA Journal, 41(9):1674–1689, 2003.

[11] K. Viswanathan. Aeroacoustic of hot jets. J. Fluid
Mech., 516:39–82, 2004.

[12] P. A. McMurtry, W.-H. Jou, J. J. Riley, and R. W. Met-
calfe. Direct numerical simulations of a reacting mix-
ing layer with chemical heat release. AIAA Journal,
24(6):962–970, 1986.

[13] R. B. Pember, L . H. Howell, J. B. Bell, P. Colella, C. Y.
Crutchfield, W. A. Fiveland, and J.P. Jessee. An adap-
tative projection method for unsteady, low Mach num-
ber combustion. Combustion Science and Technology,
1998.
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