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When operated at off-design conditions, supersonic jets produce BroadBand Shock-Associated Noise (BBSAN).

The noise is generated by the interaction of the quasi-periodic shock-cell structure with the large scale turbulence.

BBSAN radiation is characterized by multiple frequency humps dominating the jet mixing noise in the forward

quadrant. A semi-analytical prediction method is presented in this paper. BBSAN sources are formally derived

from the Linearized Euler Equations (LEE) and then numerically computed using a CFD calculation of the mean

flow. A ray-tracing method is used to account for potential refraction effects, the outline of which is presented.

The acoustic results are compared with experimental data to assess the model capabilities.

1 Introduction
During cruise-phase, engines of civil aircrafts are oper-

ated at high Nozzle Pressure Ratios (NPR), especially for

the secondary stream. This results in a supersonic jet flow

exiting from the aft of the secondary nozzle and producing

supersonic jet noise.

Supersonic jet noise is created by the combination of three

phenomena: mixing noise, screech tones and BroadBand Shock-

Associated Noise (BBSAN). The latter phenomenon is the

subject of this paper. It may be a strong source of distur-

bances at specific operating conditions. BBSAN was exten-

sively studied experimentally by Norum and Seiner [9, 10]

and more recently by André et al. [1, 2]. Numerically, De

Cacqueray et al. [4] have used LES calculations for direct

predictions. This valuable approach is time-consuming and

not yet suitable for industrial needs.

The objective of this work is to develop a semi-analytical

model, applicable to industrial geometries with reasonable

computation time. The flight effect due to the flow surround-

ing the engine in real flight conditions is also taken into ac-

count.

The paper is organized as follows: first, the analytical

derivation of the model is presented. The numerical imple-

mentation of the model is detailed in §3. Refraction effects

are discussed in §4. Results are presented in §5.

2 BBSAN prediction
BBSAN is produced by the interaction of large-scale tur-

bulent eddies and the quasi-periodic shock-cell structure of

a shocked jet. Prediction methods rely on this physical prin-

ciple, as proposed by Harper Bourne & Fisher [5] and Tam

[15, 12]. They are suited for single-stream geometry but do

not take the nozzle geometry into account. A more general

approach is the following: compute the stationary turbulent

flow field exiting from the nozzle, then extract the BBSAN

sources from the aerodynamic field and eventually propagate

the sound in the far-field. Morris & Miller used this tech-

nique [8, 6, 7]. The present work shares a common basis

with Morris & Miller’s model but bears some differences,

outlined later on.

The Linearized Euler Equations (LEE) are written in terms

of a dimensionless pressure variable π = 1
γ

ln(p/p∞), where

γ is the specific heat ratio, p is the static pressure and p∞
is the ambient pressure. The pressure and velocity field are

split up into four components. For the pressure variable

π = π + πs + πt + π
′ (1)

The overline denotes the average field, the subscripts s and

t the shock and turbulent perturbations, the superscript ′ the

acoustic perturbation generated by the interaction of shock-

cells and turbulence. Keeping only the first-order interaction

terms between shock and turbulence leads to

∂π′

∂t
+ v̄ j
∂π′

∂x j
+
∂v′i
∂xi
= 0 (2)

∂v′i
∂t
+ v̄ j
∂v′i
∂x j
+ v′j
∂v̄i

∂x j
+ c2
∞
∂π′

∂xi
= fi (3)

where c∞ is the ambient sound speed, vi (1 ≤ i ≤ 3) is the

velocity field and fi (1 ≤ i ≤ 3) is the BBSAN source term,

explicitly defined as

fi = −vs j
∂vti

∂x j
− vt j
∂vsi

∂x j
(4)

The other source terms, such as turbulent mixing noise, are

not considered here. The system being linear, it will be solved

using the Green function technique. Computing the Green’s

functions associated with (3) is cumbersome as shown by

Morris & Miller [7]. The medium is assumed at rest (v j =

0) and refraction effects will be introduced later on. The

Green’s functions {Πn,Vni} (0 ≤ n ≤ 4) satisfy

∂Πn

∂t
+
∂Vni

∂xi
= δ(x − y)δ(t − t1)δ0n, 1 ≤ i ≤ 3 (5)

∂Vni

∂t
+ c2
∞
∂Πn

∂xi
= δ(x − y)δ(t − t1)δin (6)

It is then straightforward to determine π′

π′(x, t) =
∫ +∞

−∞

∫ +∞

−∞
Πn(x, y, t − t1) fn(y, t1)dydt1 (7)

The solution to (5)-(6) writes

Πn(x, y, ω) � −e−iω|x−y|/c∞

4πc3∞

iωxn

|x|2 (8)

in the far-field. The Power Spectrum Density is the Fourier

transform of the correlation function, given by

S pp(x, ω) =2π(ρ∞c2
∞)2

∫
...

∫
Πn(x, y1,−ω) × ...

Π∗m(x, y1 + η,−ω)Rnm(y1, η, τ)e−iωτdy1dηdτ
(9)

where Rnm(y1, η, τ) =< fn(y1, t1) fm(y1+η, t1+τ) > is the cor-

relation between source terms and < > is the ensemble aver-

age. The same assumptions as in Morris & Miller is made for

the derivation of the source terms: the fn(y1, t) (1 ≤ n ≤ 3)

terms are isotropic and using dimensional considerations

fn(y1, t) = f (y1, t) =
ps(y1)vt(y1, t)
ρ∞c∞l(y1)

(10)

where vt(y1, t) is the characteristic turbulent velocity fluctu-

ation and l(y1) is the characteristic turbulent length scale in

the streamwise direction. Recasting this expression into the

correlation term, it yields

Rnm(y1, η, τ) =
ps(y1)ps(y1 + η)

ρ2∞c2∞l(y1)2
Rv(y1, η, τ) (11)

Proceedings of the Acoustics 2012 Nantes Conference23-27 April 2012, Nantes, France

2342



where Rv(y1, η, τ) is the correlation of turbulent velocity fluc-

tuations. Following Tam’s assumption [14], Rv(y1, η, τ) is

then modeled as

Rv(y1, η, τ) = kt exp[−|τ|/τs] exp[−(ξ − ucτ)
2/l2] × ...

exp[−(η2 + ζ2)/l2⊥]
(12)

kt is the turbulent kinetic energy, uc is the eddy convection

velocity, l⊥ is the characteristic turbulent length scale in the

cross-stream direction, τs is the turbulent time scale and η =
(ξ, γ, ζ). The last element required for the evaluation of S pp

is the Green’s function Π∗m(x, y1 + η,−ω). In the geometric

far-field, for |x| >> |y|

Π∗m(x, y1 + η,−ω) = Π∗m(x, y1,−ω) exp

[
i
ω

c∞
x.η
|x − y1|

]
(13)

The final expression for the PSD writes

S pp(x, ω) =
ω2

8πc4∞

1

R2

∫
...

∫
K(y)

l(y)2
ps(y)ps(y + η) × ...

exp

[
−|τ|
τs
− (ξ − ucτ)

2

l2
− γ

2 + ζ2

l2⊥

]
× ...

exp

[
iω

(
1

c∞
x.η
R
− τ

)]
dτdηdy

(14)

where R = |x|.

3 Numerical implementation
All the variables in (14) must be determined from a Reynolds-

Averaged Navier-Stokes (RANS) solution. The perturbation

due to shock-cells is evaluated by ps = p − pa where p is the

computed static pressure and pa is the ambient pressure. The

length scales are estimated by l = clK3/2/ε, l⊥ = c⊥l, while

the time scale is assessed by τs = cτK/ε. The constants cτ,
cl and c⊥ are comparable to those in Tam’s model and are set

to cτ = 0.49, cl = 0.678, c⊥ = 0.17.

For the computation of the PSD, Morris & Miller intro-

duce the spatial Fourier transform of the pressure field in the

axial direction, computed on a regular grid mesh. For aca-

demic geometries, this results in an easier numerical imple-

mentation of the model. Computing the Fourier transform

may however be complex on industrial designs: the mesh

used for the CFD computation is usually multi-block and the

mesh lines are not always parallel to the x-axis, especially

for nozzles with a plug in the primary stream, which is very

common for dual-stream engines.

For these reasons, (14) is directly evaluated. Spatial inte-

gration along y and η should be carried out over the sources

region only. Then, the specific implementation makes it pos-

sible to exclude useless blocks from the computation. Sound

sources are expected to be located in regions of high turbu-

lence intensity. All the cells that do not match this criterium

are excluded from the integral. Correlation between sources

remains significant over a limited distance, that is why a filter

operates while integrating on η = (ξ, γ, ζ): if (ζ2+γ2)/l2⊥ > 5,

then the current iteration is skipped.

For a given observer location and frequency, the compu-

tation basically consists in the evaluation of 7 nested loops.

The integration over τ is the inner-most one. It is also the

most difficult to compute. One has to evaluate

I(ω) =

∫ +∞

−∞
g(τ) exp(−iωτ)dτ (15)

where g(τ) = exp
[
− |τ|
τs
− (ξ−ucτ)

2

l2

]
, which boils down to com-

pute the Fourier transform of g. g(τ) has a Gaussian shape

with fast decay around its peak. The peak location is a func-

tion of ξ, uc, τs, l and hence depends on the location in the

flow. Calling τp the peak location of g, one has to distinguish

among four cases

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

τp =
1
uc

(
ξ − l2

2ucτs

)
for ξ > 0 and 2ucξτs − l2 > 0

τp = 0 for ξ > 0 and 2ucξτs − l2 < 0

τp = 0 for ξ < 0 and 2ucξτs + l2 > 0

τp =
1
uc

(
ξ − l2

2ucτs

)
for ξ < 0 and 2ucξτs + l2 < 0

(16)

Then g(τ) is sampled with about 200 points between [τp −
5l/uc, τp +5l/uc]. To achieve sufficient frequency resolution,

zero-padding is used before applying the FFT algorithm to

the sampled signal.

4 Refraction effects
In the derivation of the model, the free-field Green’s func-

tions have been used, hence neglecting the possible refraction

effects due to the mean flow. When comparing the model

results to experiments, potential refraction effects should be

considered.

On a single-stream jet, typical of an academic design, the

sources of BBSAN are located in the shear-layer between

the jet and the ambient (quiescent) medium. These sources

will directly radiate into the free-field, therefore neglecting

refraction is a reasonable assumption.

On a civil aircraft operating at cruise conditions, the pri-

mary flow is subsonic while the secondary flow is a super-

sonic shock-containing flow. There are two locations for the

BBSAN sources: the shear-layer between the primary and

secondary streams and the shear-layer between the secondary

stream and the external flow. The waves originating from

the former source are refracted when crossing the secondary

shocked-stream and then the external shear-layer. The waves

created in the outer shear-layer may be refracted by the ex-

ternal flow. In this case, neglecting refraction will lead to a

mismatch in directivity estimation.

In the present work, a ray-tracing method is used to get an

estimate of refraction effects. The ray-tracing basics are re-

called and then the coupling process with the BBSAN model

is presented.

4.1 The ray-tracing method
The ray-tracing approach provides a high-frequency solu-

tion to the LEE. It is similar to a multiple scale resolution of

the LEE. Physically, the acoustic waves are locally described

as plane waves. Ray paths are tangent to the group veloc-

ity and describe the propagation of acoustic energy. The ray

paths are obtained by solving the eikonal equations

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

dxi

dt
= c0

ki

k
+ u0i ≡ gi(x, k), 1 ≤ i ≤ 3

dki

dt
= −k

∂c0

∂xi
− k j
∂u0 j

∂xi
≡ hi(x, k)

(17)

where x is the ray trajectory, k is the wave vector and u0 is

the local velocity vector. The initial conditions are the source

location and the shooting angles (θ0, α0) as defined in Figure

1. The acoustic flux is conserved in a ray tube
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Figure 1: Coordinate system used for ray-tracing. x1 is the

jet axis.

∫
S

Evg.ndS = 0 (18)

where E is acoustic energy density (J.m−3), dS is the ele-

mentary surface of the ray tube cross-section, n is the normal

vector to dS and vg is the group velocity vector. The local

interpretation of (18) is

Evg · ndS = I · ndS = K1 (19)

where I is the acoustic intensity vector and K1 is a constant

equal to the acoustic power injected by the source in the ray

tube. In the specific case of an isotropically radiating source

K1 =
dΩ
4π

Wa (20)

where dΩ is the solid angle associated with the ray tube and

Wa is the source power. I being colinear to the ray paths

I =
K1

dS
(21)

To track the evolution of dS along the ray paths, Candel [3]

introduced the geodesic elements

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Rθ =
(
∂x
∂θ0

)
t,α0

Rα =
(
∂x
∂α0

)
t,θ0

Qθ =
(
∂k
∂θ0

)
t,α0

Qα =
(
∂k
∂α0

)
t,θ0

(22)

Rθ quantifies the change in the ray path when slightly chang-

ing the shooting angle θ0, the other variables being equal.

The evolution of the geodesic elements is linked to the ray

trajectory and wave vector by

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

dR
dt
=
∂g
∂x
.R +

∂g
∂k
.Q

dQ
dt
=
∂h
∂x
.R +

∂h
∂k
.Q

(23)

After solving (23), the divergence or convergence of the rays

is easily evaluated by

dS = |(dθ0Rθ) × (dα0Rα) cos(k, vg)| (24)

and I is now fully determined by (21).

4.2 Coupling with the BBSAN model
The coupling technique between the BBSAN model and

the ray-tracing method is presently under development. Con-

sidering acoustic sources distributed over volume V radiating

into free-field, the acoustic pressure at location x and time t
is given by

p′(x, t) =
1

4π

∫
V

S
(
y1, t − R1

c∞

)
dy1

R1

(25)

where R1 = |x − y1| is the source-observer distance. Further-

more, the PSD of these sources is given by

S pp(x, t) =
1

16π2

�
< S

(
y1, t − R1

c∞

)
× ...

S
(
y2, t + τ − R2

c∞

)
>

1

R1R2

e−iωτdy1dy2dτ
(26)

Figure 2 shows two elementary sources of sound located at y1
and y2. In a quiescent medium, the observer is located at x.

Radiation to the observer follows the straight lines (acoustic

rays). The amplitude decays like 1/R1R2 and the phase factor

is τ − (R2 − R1)/c∞.

In the presence of a mean flow, the ray shot from y1 to x
is bent backwards and reaches x′ instead, and so does the ray

shot from y2. This results in a change in both phase and am-

plitude factors which can be evaluated with the ray-tracing

method: the phase factor is obtained using the ray (bent) tra-

jectories and the amplitude decay factor is provided by (21).

Indeed, (21) relates the acoustic intensity anywhere on the

ray to the power injected by the source in the tube. The trans-

mission ratio between the source at y1 and the observer at x′
is introduced

T L(y1, x′) = 10 log10

(
I(x′)
K1

)
(27)

It remains to correctly link this ratio to account for refraction

effects. The idea is here to consider each cell of the mesh as

an acoustic source, the power of which will be damped by

this transmission ratio before integration.

Figure 2: Illustration of the refraction effect on the ray

paths. The dotted lines represent the refracted rays.

5 Results
Validation tests have been run on the ray-tracing algo-

rithm. They include a dipole source with and without mean

flow as well as a monopole source into an analytic jet veloc-

ity field.

The prediction capabilities of the BBSAN model have

been assessed using experimental data by André and Caste-

lain on both single-stream and dual-stream nozzles [1, 2].

The case of a convergent nozzle is described hereafter.
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The jet isentropic Mach number is Mj = 1.35. The mean

flow is computed using the elsA aerodynamic solver [11]. A

Roe numerical scheme is coupled to a k−ω−S S T turbulence

model. The velocity field is shown in Figure 3. The shock-

cell structure is clearly outlined as well as the shear-layer.

The ray-tracing algorithm is tested on this simple case by

placing a monopole source inside the jet. The ray trajecto-

ries are shown in black lines in Figure 3. Rays are shot over

the range 50◦ − 150◦ (downstream reference). The rays do

not propagate in the upstream supersonic regions, this con-

firms that acoustic perturbations cannot sail the supersonic

flow up. The rays are bent towards the lower velocity region

as expected.

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

x/D

y/
D

Figure 3: Ray-tracing algorithm for a source located in a

shocked jet, Mj = 1.35. The velocity field is shown, the

color scale ranges for levels from 0 to 400 m/s, from white

to gray. The ray paths are shown in straight lines.

The results presented in Figure 4 show the PSDs for a

convergent jet at an isentropic Mach Mj = 1.35. Differ-

ent angles are presented using a downstream reference. The

typical features of the BBSAN are correctly captured by the

model: the humps of the BBSAN are well located for the

different angles. The peak frequency increases from the for-

ward to the backward direction as expected. On the measured

data, strong screech peaks spring and should not be consid-

ered when evaluating the BBSAN prediction capabilities of

the model. The model overestimates the sound levels at high

frequency. Interpretations and inclusion of refraction effects

are currently under investigation.
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Figure 4: PSDs for a convergent jet at Mj = 1.35 at different

angles (downstream reference). : measurements by B.

André and T. Castelain [1]. : calculations.

6 Conclusion
The model presented in this paper is aimed at predict-

ing BBSAN including propagation effects. It uses a RANS

solution of the jet flow field and a ray-tracing algorithm to

account for refraction effects.

For time being, results are only available for single-stream

jets, without refraction effects. The example given on a Mj =

1.35 jet showed very encouraging results. Dual-stream cal-

culations have been made and the model will be tested on

these more realistic geometries soon.

The ray-tracing algorithm is functional, provides consis-

tent results for simple test cases and its coupling with the

BBSAN model is being examined. Assessment of refraction

effects through this approach should be available soon.

When the coupling is done, extensive comparisons with

measurements will be performed. This includes dual-stream

jets at different Mach numbers, in static and flight conditions.

Possible improvements include running an optimization

step to determine the best constants in the correlation func-

tion. The use of an adjoint approach (see [13]) for the ray-

tracing problem is also under examination. It could lead to

great savings in computation times.
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