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The use of time-frequency distributions for diffused signals analysis, which takes into account the non-stationarity

of these signals, may be vital for structural health monitoring applications. Although this type of analysis may

bring new information into the signals analysis, the interpretation of a time-frequency distribution may not be

simple. In addition, the large number of available tools for time-frequency analysis with different assumptions

about the signal features (i.e. assumptions about linearity, stationarity, etc.), may cause a problem when selecting

the most appropriate technique for signal analysis, and then may affect the interpretation of results. In this paper,

induced circular hole in a Glass Fiber Reinforced Polymer (GFRP) composite plate, considered as damages, are

visualized on different time-frequency representations. In particular, representations obtained from traditional

Fourier based analysis methods like spectrogram are compared to that provided by the Hilbert-Huang transform,

recently developed. Such a comparison of these techniques can be very useful to justify the accuracy of the HHT

and for guiding the choice of the appropriate monitoring strategy of a given process.

1 Introduction
Glass fiber reinforced polymer (GFRP) composite mate-

rials has been extensively used due to their attractive me-

chanical behavior, such as strength, stiffness, low weight,

corrosion resistance, etc. These materials, as many other

man-made structures, needs a better understanding of their

damage mechanisms. Damages occurring in GFRP materi-

als may be introduced in the manufacturing process or may

be caused by environmental conditions or mechanical solic-

itations during the life-service of these structure. A key part

of the analysis aims to identify the occurrence of a damage

in GFRP materials for in situ health monitoring applications.

Diffused ultrasonic waves, formed after multiple reflec-

tions of an impulsive excitation from the structure bound-

aries, provides various advantages for damage monitoring.

These waves propagate throughout the entire structure. In

that way, a large material volume can be interrogated with a

sparse array of transducers [1, 2].

Recently, the Hilbert-Huang Transform (HHT) [4, 6, 7],

has been applied for non-stationary signals features analy-

sis. Peng et al. [3] shows that the HHT can be an useful

tool for both analysis and damage features extraction of vi-

bration signal. In this paper, the HHT is used for detecting

structural damage in polymer composite materials. an ana-

lysis of a GFRP composite plates containing a circular hole,

in order to simulate damage, has been carried out. Finally,

a damage detection performance comparison with a tradi-

tional Short Time Fourier Transform based analysis approach

is performed.

The paper is structured as follows: In section 2, the prin-

ciple of the HHT and the Short Time Fourier Transform are

presented. In section 3, describes the experimental proce-

dure. The diffused signals HHT based damage detection and

the comparison results with the Fourier based analysis are

discussed in section 4. In section 5, conclusions and future

works are presented.

2 Details on the algorithms used

2.1 Principle of the HHT
The HHT, developed by Huang et al. [4, 5, 6, 7], is a

time-frequency signal processing technique which was spe-

cially designed to analyze non-stationary data changes even

within one oscillation cycle [8]. This method tends to em-

pirically extract the intrinsic oscillation modes by their char-

acteristic time scales in the data, and then to decompose the

data accordingly.

2.1.1 EMD method

The EMD decomposes signals into a set of intrinsic mode

functions (IMFs) which represent simple oscillatory modes.

Generally, the finest component of the shortest period at each

instant will be identified and decomposed into the first IMF.

The components of longer periods will be identified and de-

composed into the following IMFs in sequence [9, 10]. The

EMD method is based upon the assumption that any signal is

composed from the contribution of different IMFs. For each

one, it will assigned the same number of extrema and zero-

crossings. There is only one extremum between successive

zero-crossings. Each IMF should be independent of the o-

thers. In this way, each signal could be considered as the

sum of a finite IMFs components, each of which must satisfy

the following definition [5, 6, 7]:

1. In the whole data set, the number of extrema and the

number of zero-crossings must either equal or differ at

most by one;

2. At any point, the mean value of the envelope defined

by local maxima and the envelope defined by the local

minima is near zero.

The EMD decomposes data in a few steps. Hence, any

signal x(t) can be decomposed as follows [7]:

1. Identification of all the local extrema, then connecting

all the local maxima by a cubic spline line as the upper

envelope.

2. Repeating the same process for the local minima to

produce the lower envelope. The upper and lower en-

velopes should cover all the data between them.

3. The mean value of upper and lower envelope is desig-

nated as m1, and the difference between the signal x(t)
and m1 is the first component, h1, (figures 1 and 2). In

that way, we have

x(t) − m1 = h1. (1)

If h1 satisfy the IMF requirements, then h1 can be con-

sidered as the first component of x(t).

4. If h1 is not an IMF, it is treated as the original signal

and repeat the steps 1-3; then

h1 − m11 = h11, (2)

where, m11 is the mean of both upper and lower en-

velope value of h1. This procedure is called sifting
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Figure 1: Sifting process: the original data x(t) with the

upper and the lower envelopes (dotted lines) and resultant

mean line m1 (bold line).
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Figure 2: The data after the first sifting process.

process and is repeated, up to k times, on the succes-

sive data hik until the mean line between the upper and

lower envelopes is near zero for any point. Then,

h1(k−1) − m1k = h1k, (3)

and the first IMF component, designated as

c1 = h1k, (4)

represents the finest scale or the shortest period com-

ponent of the signal x(t).

5. Extracting c1 from x(t), leads to

r1 = x(t) − c1. (5)

The whole sifting process is repeated on r1 for n times

to obtain the successive components of increasing pe-

riod. Then, n IMFs of signal x(t) could be obtained.

Hence,

rn−1 − cn = rn. (6)

When rn becomes a monotonic function from which

no more IMF can be extracted, then the decomposition

process can be stopped. By cumulating (5) and (6)

x(t) =
n∑

j=1

c j + rn, (7)

where the last component rn, treated as a residue, is

the mean trend of x(t). The IMFs c1, c2, . . . , cn in-

clude different frequency bands ranging from high to

low. The frequency components contained in each fre-

quency band are different and they change according

to the variation of signal x(t).

An IMF is a counter part to the simple harmonic func-

tion, but it is much more general: instead of constant ampli-

tude and frequency, IMFs can have both variable amplitude

and frequency as functions of time. This frequency-time dis-

tribution of the amplitude is designated as the Hilbert ampli-

tude spectrum, or simply the Hilbert spectrum. Now, the next

section deals with the Hilbert spectrum analysis.

2.1.2 Hilbert spectrum analysis

The Hilbert spectrum analysis provides a method for con-

sidering instantaneous frequency, which can be used for an

accurate investigation of composite structures [11]. One of

the easiest way to calculate the instantaneous frequency, Fix(t) (t),
is to apply the Hilbert transform. Indeed, for a real signal

x(t), it is possible to use the analytic signal z(t) associated to

x(t),
z(t) = x(t) + jy(t) = a(t) exp

[
jθ(t)
]
, (8)

in which,

a(t) =
√

x2(t) + y2(t), (9)

θ(t) = arctan

[
y(t)
x(t)

]
. (10)

From equation 10, we can have the instantaneous frequency

as

Fix(t) (t) =
1

2π

dθ(t)
dt
. (11)

After performing the Hilbert transform to each IMF com-

ponent, the original time-series x(t), can be expressed as the

real part (RP) of z(t):

x(t) =
n∑

i=1

ai(t) exp

[
j2π
∫ T

0

Fix(t) (t)t
]
, (12)

in which T is entirely signal length. In equation 12, both

amplitude, ai(t) and frequency Fix(t) (t) of each component are

presented as functions of time. This time-frequency distribu-

tion of the amplitude is designated as the Hilbert Spectrum

(HS). Various forms of Hilbert spectra presentations can be

made [7]. The Marginal Hilbert Spectrum (MHS), offers a

measure of total energy contribution from each frequency

value, i.e the MHS represents the cumulated amplitude over

the entire data span [5, 7]. If more qualitative results are de-

sired, the smoothed presentation of the Hilbert spectrum is

preferred. In the smoothed form, the energy density and its

trends of evolution as functions of frequency and time are

easier to identify. Several smoothing methods can be applied

[5]. In this work, a 15 × 15 weighted Gaussian filter will give

the Smoothed Hilbert Spectrum (SHS).

2.2 Short-Time Fourier Transform
One of the most used time-frequency representations of a

time signal is known as Short Time Fourier Transform (STFT).

The STFT basic idea is a moving window Fourier Transform

[13, 14]. The time domain moving window over the signal

generates a 2-D time-frequency distribution called spectro-

gram. The STFT of a signal x(t) is defined as
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Figure 3: GFRP composite plate with a circular hole.

STFT(t,F) =
∫ +∞
−∞

x(τ)w(τ − t) exp(− j2πFτ)dτ, (13)

in which w(τ− t) is the moving window. Many window func-

tions are used, each of them at different application [13].

Some of them are known as Hamming, Hanning, Kaiser-

Bessel and Gaussian windows. In this paper, Hamming win-

dow is used for the analysis of the diffused ultrasonic waves.

3 Experimental procedure
The experimental work is carried out on a GFRP plate

in order to acquire diffuse ultrasonic signals under damaged

and undamaged conditions. GFRP composite samples noted

0
◦
8 are fabricated. The stacking sequence consists of 8 lay-

ers of unidirectional reinforcement. A circular hole of 5 mm

diameter was introduced in the middle of the GFRP sam-

ple in order to simulate damage. Two piezoelectric sensors

were mounted on the GFRP sample as shown in figure 3,

and secured with small clamps. The sensors used, for the

generation and the reception of diffused waves, are a broad-

band sensors with an operating frequency range lying from

100 kHz to 1 MHz. The excitation signal e(t) is a sinusoidal

burst composed of a single period frequency around 100 kHz.

This excitation is repeated each 20 ms, and provided by an

Agilent 33220A function generator. The reception is pro-

vided through a Nicolet Sigma 100 acquisition system. This

system allows the registration of 100,000 samples of the re-

ceived signal at a sampling frequency of 10 MHz. In order to

improve the signal to noise ratio, the received signal, is col-

lected after an averaging of 100 acquisitions. The geometry

of the GFRP samples, the hole and the sensors locations are

given in figure 3.

4 Results and discussion

4.1 Time-frequency investigation of a synthetic
time-varying signal

A synthetic signal, f (t), was created to simulate time-

varying dominant frequencies which may be faced in dif-

fused signal measurements. The test signal is composed of

four changing sinusoidal waves with different frequencies in-

terfering (figure 4).
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Figure 4: Test signal f (t) and its IMFs components.
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Figure 5: Hilbert spectrum of f (t).

f (t) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

3 × cos(2π10t); 0 s ≤ t < 2 s

1 × cos(2π20t); 2 s ≤ t < 2.5 s

2 × cos(2π30t); 2.5 s ≤ t < 2.9 s

3 × cos(2π40t); 2.9 s ≤ t < 4 s

The HS of f (t) is shown in figure 5. As may be seen, the

HHT gives very sharp time-frequency representation of the

oscillating components of the synthetic signal f (t). The fre-

quency gap occurred around 2s and 4s is well detected. The

HS representation shows the presence of oscillatory modes

located at low frequencies. This is due to that the HHT is a

data driven process. The most energetic signal components

are located at the first IMFs. The results using this method

were compared to these obtained by the STFT method. The

time-frequency representation is provided in figure 6. The

time-frequency resolution of STFT depends on the window

function length. A narrower window, (figure 6a), gives good

time resolution but poor frequency resolution. A wide win-

dow, (figure 6c), gives better frequency resolution but poor

time resolution.
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Figure 6: Results of test signal analysis using STFT with

different window function length: ((a)- 0,64 s, (b)- 1.28 s,

(c)- 2.56 s).

0 0.5 1 1.5 2 2.5
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

Time (ms)

A
m

pl
itu

de
 (

m
V

)

Figure 7: The received diffused signal from the undamaged

GFRP sample.

4.2 Hole detection in GFRP composite plate
In this part of the paper, the performance of both HHT

and the STFT methods for detecting a hole damage in a GFRP

plate is discussed. Figures 7 and 8, show the diffused sig-

nal waveforms from the undamaged and the damaged GFRP

sample, (before and after introducing a circular hole), re-

spectively. In the case of the damaged case, the acquired

signals takes more time to reach the receiver then those ac-

quired from the undamaged case due to the introduced hole

(figure 8).

The visualization of the results of the HHT based analysis

of the both previous signals are presented, in figures 9 and 10

respectively. The time-frequency representation by means of

the SHS of the diffused signal from the undamaged sample

(figure 9) shows the presence very low frequency compo-

nents located at the beginning of the signal waveform. Mean-

while, in the case of the damaged sample, the SHS represen-

tation shows the presence of a significant frequency compo-

nent due to the introduced hole. This frequency signature,

located around 180 kHz, is stretched along the signal wave-

form (figure 10).

The STFT method is applied for the analysis of the same

previous signals. The visualization of the results of the time

frequency distribution of these signals, is presented in fig-
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Figure 8: The received diffused signal from the damaged

GFRP sample.

Figure 9: SHS of diffused signal from the undamaged GFRP

sample.

ures 11 and 12. As may be seen, in the case of the undam-

aged sample, the STFT presents a frequency signature lo-

cated around 400 kHz (figure 11). The hole occurrence is

also detected by the presence of a second frequency compo-

nent around 180 kHz (figure 12). Hence, it can be concluded

that the hole presence generate a frequency signature which

is estimated at around 180 kHz. Meanwhile, contrary to the

HHT analysis, which does not need any pre-processing steps,

the spectrogram provided by STFT is time-frequency limited

in resolution. During the STFT processing, the results are not

good in both time and frequency domain. In addition, any

signal component, whose time duration is smaller than the

time duration of the window decomposition, is disappeared

after the transform of the signal.

5 Conclusion
A time-frequency analysis of non-stationary diffused sig-

nals has been conducted. The accuracy of the HHT as a tool

for both analysis and damage detection in GFRP composite

materials has been provided by a simultaneous STFT based

analysis. This procedure shows a better time-frequency reso-

lution for HHT method then the STFT based analysis. Mean-

while, it is not eligible to say such signal processing tech-

nique has a right or wrong time-frequency decomposition.

The must important is whether the method being applied is

useful or not useful for the specific application. The HHT is
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Figure 12: Diffused signal analysis from the damaged

GFRP sample using STFT with different window function

length: ((a)- 0,64 s, (b)- 1.28 s, (c)- 2.56 s).

Figure 10: SHS of diffused signal from the damaged GFRP

sample.

F
re

qu
en

cy
 (

H
z)

(a)

0.5 1 1.5 2 2.5
0

200

400

F
re

qu
en

cy
 (

H
z)

(b)

0.5 1 1.5 2 2.5
0

200

400

F
re

qu
en

cy
 (

H
z)

(c)

Time (ms)
0.5 1 1.5 2 2.5

0

200

400

Figure 11: Diffused signal analysis from the undamaged

GFRP sample using STFT with different window function

length: ((a)- 0,64 s, (b)- 1.28 s, (c)- 2.56 s).

a data driven signal processing technique with far less pre-

processing steps then traditional methods. In that way, the

HHT may be attractive for in situ structural health monitor-

ing applications.
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