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The duality between signal and noise is widely observed in the scientific context of the 20th century. Noise is

retrospectively associated to nuisance, annoyance, and was even subjectively defined as a non-signal. Definition,

anyway, takes noise away from its original meaning, turns it into signal and keeps this duality existing through

time. This work treats the subject as a matter of perception, more specifically, as a matter of two different listening

experiences for deterministic and non deterministic sound stimulus. People with trained ears were asked to freely

choose adjectives for pairs of sounds took from a group of: three different probability distributed white noises, a

pink noise, a Brownian noise, a square, a square with aliasing effect, a sawtooth, and a pure sine wave. Twenty

seven acoustic descriptors were extracted from the samples, from spectral kurtosis to dissonance level. The results

were submitted to factorial analysis for finding the best descriptors when separating both groups of sounds, and

which physical parameters are correlated to perceptive ones. The results points ’diffuse/concentrated’ as the most

successful adjectives for separating signal from noise, the salience of a fundamental frequency as a determinant

for the distinction, and some correlation between subjective and objective data.

1 Introduction
Noise seems to be a key term when trying to understand

the scientific context of the 20th century, once assumed that

generic signals are only coherent when presented under some

desorganized background. Signals are ordered phenomenons,

noises are not.

Communication channels aims to transmit messages, but

noise is what defines its boundaries. Noises probably came

first then signals, and also because of this, limits the way

humans perceive the world.

As a sound element, noise is widely complex. Its mean-

ing is subjective and its perception varies historically, so-

cially and culturally. Noise is intuitively associated to denial,

and retrospectively defined as non-information, non-music,

nuisance, annoyance. In other words, noise is defined not as

a signal.

According to Moles there is no difference in terms of ab-

solute structure between perturbations and signals: ”signals

and noises have the same nature, and the only logical and

appropriate difference that can be established between them

have to be based in the conception of intention from the emit-

ter part: noise is a signal which has no intention of being

transmitted.” [1]

From a objective point of view, deterministic processes

are the ones that can have their future behavior determined

by a finite number of measurements; non deterministic pro-

cesses, on the contrary, are the ones that can not be deter-

mined [2]. Signals, then, may be completly random, but will

be here assumed as deterministic sound elements. Noises are

usually unpredictable, and are here represented as non deter-

ministic phenomenons.

Papers dealing with noise as a sound element were al-

ready published [3] [4], and some were even about its rela-

tion with music [5], but none of these focused on noise as

playing a role in human sound perception.

This work tries to discuss the way people listen to the dif-

ferences between these two classes of sounds, deterministic

and non deterministic, and which are the physical features of

their waves that are correlated to this distinction.

The paper is structured as follows. In section 2 the sound

samples are presented and shortly described. Both meth-

ods for feature extraction are presented in section 3; listen-

ing tests were used for extracting perceptive parameters, and

a computational tool was applied for extacting the physical

ones. The results were submited to principal components

analysis in both cases and are presented in section 4, as well

as the correlation between them. The last section discuss the

results and propose some future work.

2 Presentation
This work makes use of: uniform white noise, gaussian

white noise, laplacian white noise, pink noise, brownian noise,

sine wave, sawtooth wave, square wave and a square wave

with aliasing effect samples.

White noise is perfect noise. It has all frequency contents

ocurring with a flat power spectral density, which turns its

existence only possible in theory: an infinite energy would

be necessary to represent all these frequencies in the real

world [6]. White noise should also be mentioned as having

no memory, each of its hiss is completly uncorrelated and in-

dependent of the previous one. Doesn’t matter how far they

are from each other, they don’t contribute with any knowl-

edge about the past of the signal.

White noises can have any probability distribution and

this reflects in the incidence of the frequency contents. If

this is uniformally distributed, all values have equal prob-

ability of ocurring; if its gaussian distributed, this should

present major part of its content around the mean, follow-

ing a gaussian curve; and if it has laplacian distribution, the

same should occur but according to a laplacian curve.

Pink and Brownian noises have their spectral energy den-

sity decreasing in a inverse proportion to the frequency bin

number, the first decreases as 1/ f , the second 1/ f 2 [7]. When

compared to the sound of the white noise, these two ’colored’

noises presents enhanced low frequency spectrum content,

and may give the listener the sensation of a lower sound.

The sine wave, as well known, has no superior harmon-

ics; the sawtooth have all of them, with magnitude inversely

proportional to the number of the harmonic; and the square

wave have only the odd partials [8]. Aliasing effect is a re-

current effect in the signal process field, which is closely re-

lated to the frequency used for sampling the signal. It intro-

duces perceptual content in the digitalized signal that were

not present in the original one.

Non deterministic samples were sinthesized departing

from their probabilty distribution curves with MATLAB soft-

ware, and the deterministic ones were synthesized with Au-

dacity software, with a 1 KHz fundamental frequency. All

the sounds have 2 seconds of duration.

3 Feature Extraction

3.1 Listening Tests
Subjective listening tests are normally realized with the

aim of obtaining information about how people listen to an
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specific group of sounds [9]. The process of presenting ad-

jectives to the listeners for them to associate to each sound

have great potential of influencing the results, and this is why,

in this experiment, people were free to choose whatever de-

scription they wanted according to a method called Repertoty
Grid Method [10].

The sounds were pesented to a group of 10 people from

Brasil, Colombia, Chile, Spain and Russia, between 22 and

35 years old, 6 female and 4 male, all involved with some ac-

tivity related to music. They were informed with the fewest

possible information about the tests, and were asked to de-

scribe the sounds with adjectives in the most natural way they

could. The only restriction imposed was that the elected term

had to be related to the timbre of the sound.

In a first part of the process pairs of sounds were elected,

each one necessarily belonging to a different group (deter-

ministic and non deterministic), and the listener were asked

to describe the difference between them by choosing an ad-

jective as well as its opposite. Once the description had al-

ready been made, each of the 9 samples were rated in a scale

from 1 to 5, varying from the adjective to its opposite. This

was repeated 5 times for each volunteer resulting in 50 pairs

of adjective for the 9 sound samples.

The tests were applied at the Music and Technology Group,

and at the University of Barcelona, Spain, and took approxi-

mately 30 minutes each.

The results were all translated to english and were com-

bined in such a way that when identical descriptons pairs (ad-

jective/opposite) were choosen, the rates were summed. The

matrix with the data was normalized for the following proce-

dures.

3.2 Acoustic Parameters
The physical features of the samples were extracted by

using a tool for retrieving acoustical parameters of music files

called Essentia [11], and only the ones that make reference to

the timbre of the sounds were maintained for analysis. They

were all calculated with a sampling frequency of 44,1 KHz,

taking 2048 samples in each iteration, and sucessives frames

should coincide 1024 samples for better resolution in transi-

tions. The 27 features are listed below:

1. Barkbands Kurtosis: Bark bands are slices of the hu-

man hearing spectrum calculated trought a psychoa-

coustical scale called Bark scale. Kurtosis is a proba-

bilistic measure which provides information about the

behavior of the variable around its mean value. Nega-

tive kurtosis indicates flat bark bands, positive kurtosis

indicates peakier ones, and null values indicates nor-

mal distributions. This are generally used for timbre

description.

2. Barkbands Skewness: Skewness measures the assime-

try of a distribution around its mean value. A nega-

tive skewness indicates bark bands with energy con-

centrated in the high frequencies, a positive skewness

indicates bark bands with energy concentrated in low

frequencies, and a null value indicates symmetric dis-

tributions. For silence and constant sounds the skew-

ness has null values. This are generally used for timbre

description.

3. Barkbands Spread: Spread is defined as the variance

of a distribution around its mean value. Is the same as

the second central moment and used for timbre classi-

fication.

4. Dissonance: Perceptual descriptor used for measur-

ing the roughness of the sound, based in the fact that

two sinusoidal spectral components share a dissonance

curve which, values are dependent on their frequency

and amplitude relations. The total dissonance value id

derived by summing up the values for all components

(i.e. spectral peaks) in a sampling window. This is

generally used for sound segmentation.

5. Hfc: The high frequency content is a simple measure-

ment, taken from the singal spectrum (usually a STFT

spectrum) which can be used to characterize the amount

of high frequency content present in a signal. In con-

trast to perceptive measures, it is not based in any ev-

idency about its relevance to human hearing. Despite

that, it can be usefull for some applications, like sound

event detection for example.

6. Pitch: Is represented as the fundamental frequency of

the analysed sound. This is calculated through the fre-

quency spectrum for monophonic signals.

7. Pitch Instantaneous Confidence: A measure of the con-

fidence of the pitch calculated for the signal. Provides

the evidence about how much a pitch, calculated in a

single sampling window, is affecting the whole spec-

trum. If its value is near to one, there is only one

pitch value for the whole mixture, a zero value indi-

cates multiple pitches indistinguishables.

8. Pitch Salience: The pitch salience is given by the rela-

tion between the highest peak and the zero difference

peak of the autocorrelation function. Sounds with-

out defined pitch have a mean value of relevance near

to zero, while harmonic sounds presents values near

to one. Unvarying pitch sounds have a small pitch

salience variance while sounds with varying pitch have

a high pitch salience variance.

9. Silence Rate 60dB: This is the rate of frames where the

level is above a given threshold, here -60dB. Returns

one whenever the instant power of the input frame is

below the given threshold, zero otherwise.

10. Spectral Centroid: The spectral centroid is a measure

used in digital signal processing to characterize an au-

dio spectrum. It indicates where the ”center of mass”

of the spectrum is.

11. Spectral Complexity: Timbral complexity is a mea-

sure of the complexity of the spectrum of the audio

file. Typically, in a piece of audio several elements are

present. This increases the complexity of the spectrum

of the audio and therefore, it represents a useful audio

feature for characterizing a piece of audio.

12. Spectral Crest: The crest is the ratio between the max-

imun value and the arithmetic mean of the spectrum.

It is a measure of the noisiness of the spectrum.

13. Spectral Decrease: Extracts the decrease of an array

of Reals (which is defined as the linear regression co-

efficient). The range parameter is used to normalize

the result. For a spectral centroid, the range should be
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equal to Nyquist and for an audio centroid the range

should be equal to (audiosize - 1) / samplerate.

14. Spectral Energy: The spectrum energy at a given frame.

15. Spectral Energyband High: The Energy Band Ratio of

a spectrum is the ratio of the spectrum energy from

start cut off frequency to stop cut off frequency to the

total spectrum energy. For the Energy Band Ration

High, start Cut off Frequency = 4000Hz and stop Cut

off Frequency = 20000Hz.

16. Spectral Energyband Low: The Energy Band Ratio of

a spectrum is the ratio of the spectrum energy from

start cut off frequency to stop cut off frequency to the

total spectrum energy. For the Energy Band Ration

Low, start Cut off Frequency = 20Hz and stop Cut off

Frequency = 150Hz.

17. Spectral Energyband Middle High: The Energy Band

Ratio of a spectrum is the ratio of the spectrum energy

from start cut off frequency to stop cut off frequency

to the total spectrum energy. For the Energy Band Ra-

tion Middle High, start Cut off Frequency = 800Hz and

stop Cut off Frequency = 4000Hz.

18. Spectral Energyband Middle Low: The Energy Band

Ratio of a spectrum is the ratio of the spectrum energy

from start cut off frequency to stop cut off frequency to

the total spectrum energy. For the Energy Band Ration

Middle Low, start Cut off Frequency = 150Hz and stop

Cut off Frequency = 800Hz.

19. Spectral Flatness dB: This is a kind of dB value of the

Bark bands. It characterizes the shape of the spectral

envelope. For tonal signals, flatness dB is close to one,

for noisy signals it is close to zero.

20. Spectral Flux: Spectral Flux is a measure of how quickly

the power spectrum of a signal is changing, calculated

by comparing the power spectrum for one frame against

the power spectrum from the previous frame. The spec-

tral flux can be used to determine the timbre of an au-

dio signal, or in sound event detection, among other

things.

21. Spectral Kurtosis: The kurtosis gives a measure of the

flatness of a distribution around its mean value. A neg-

ative kurtosis indicates a flatter signal spectrum. A

positive kurtosis indicates a peakier signal spectrum.

A kurtosis equal to zero indicates a spectrum with nor-

mal distribution.

22. Spectral RMS: The root mean square spectrum energy.

This is used for measuring the loudness of the sound

frame.

23. Spectral Rolloff: Computes the roll-off frequency of a

spectrum. The roll-off frequency is defined as the fre-

quency under which some percentage (cutoff), of the

total energy of the spectrum is contained, 85% in this

case. The roll-off frequency can be used to distinguish

between harmonic (below roll-off) and noisy sounds

(above roll-off).

24. Spectral Skewness: The skewness is a measure of the

asymmetry of a distribution around its mean value. A

negative skewness indicates a signal spectrum with more

energy in the high frequencies. A positive skewness

indicates a signal spectrum with more energy in the

low frequencies. A skewness equal to zero indicates a

symmetric spectrum. For silence or constants signal,

skewness is zero.

25. Spectral Spread: The spread is defined as the variance

of a distribution around its mean value. It is equal to

the 2nd order central moment. Used for timbral char-

acterization.

26. Spectral Strongpeak: The Strong Peak is defined as

the ratio between the spectrum maximum magnitude

and the bandwidth of the maximum peak in the spec-

trum above a threshold (half its amplitude). It reveals

whether the spectrum presents a very pronounced max-

imum peak. The thinner and the higher the maximum

of the spectrum is, the higher the value this parameter

takes.

27. Zero Crossing Rate: The Zero Crossing Rate is the

number of sign changes between consecutive signal

values divided by the total number of values. A mea-

sure of the noisiness of the signal: noisy signals tend

to have a high value.

4 Results
Seven pairs of adjectives were repeated during the listen-

ing experiments: ’dark/bright’,’deep/superficial’, ’dirty/clean’,

’full/empty’, ’harsh/high’, ’rounded/spiky’, ’together/lonely’.

The first referring to noises and the second to the determin-

istic signals. These are comun references people make when

differentiating these two groups of sound.

The five pairs of adjectives that separate more accurately

the two different classes of sound according to the method of

analysis of variance (ANOVA) are presented in table 1.

Table 1: Pairs of adjectives choosen by ANOVA

Pairs of Adjectives p-valor

Diffuse/Concentrated 4.597 e-05

Comfortable/Annoying 5.554 e-05

Salt/Sweet 6.839 e-05

Dark/Shiny 7.525 e-05

Neutral/Disturbing 8.565 e-05

91% of the total variance of the data of the listening tests

are explained by the 3 first principal components, and 86%

by the 2 first ones, according to Principal Component Anal-

ysis (PCA). The figure 1 shows these two principal compo-

nents.

The first component (horizontal axis) mainly separates

the two groups of sound, one from another, and the major

loads are related, in order, to the adjective pairs: ’noisy/clean’

(1.756e-01), ’neutral/disturbing’ (1.749e-01), ’salt/sweet’

(1.747e-01), ’harsh /high’ (1.740e-01), and ’natural/artificial’

(1.730e-01).

The second component (vertical axis) separates pink noise,

gaussian white noise, uniform white noise, sawtooth wave
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and square wave with aliasing, from square wave without

aliasing, brownian noise, laplacian white noise and sinewave.

The highest loads that contribute for this separation are: ’con-

taminated/pure’ (4.093e-01), ’atonal/tonal’ (2.405e-01),

’harsh/sweet’ (2.026e-01), ’dirty/clean’ (1.865e-01), and ’bit-

ter/sweet’ (1.431e-01).

−6 −4 −2 0 2 4 6

−
3

−
2

−
1

0
1

2
3

x[, 1]

x[
, 2

]

ownian

pink
gaussian

laplacian

uniform

sawtooth

sinewave

squarea

square

Figure 1: Two first principal components explaining 86% of

the variance of the data obtained from the listening tests.

The five physical features that also separate more accu-

rately the two different classes of sound according to ANOVA

are presented in table 2.

Table 2: Acoustic features choosen by ANOVA

Acoustic Features p-valor

Pitch Instantaneous Confidence 4.552 e-03

Spectral Spread 7.849 e-03

Spectral Decrease 3.655 e-02

Spectral Energyband Middle High 4.469 e-02

Spectral Energyband High 5.369 e-02

88% of the variance of the data obtained from the acous-

tical descriptors is explained in the 3 first principal compo-

nents, and 75% is represented in the 2 first ones. The figure 2

shows these two principal components.

The first principal component of the objective measure-

ments also separates mainly deterministic from non deter-

ministic sounds, and the acoustical descriptors that contributes

with highest loads are: ’spectral flatness dB’ (8.630e-02),

’pitch instantaneous confidence’ (8.533e-02), ’spectral com-

plexity’ (7.622e-02), ’zero crossing rate’ (7.541e-02), ’spec-

tral skewness’ (7.394e-02).

The second component observed in figure 2 separates brow-

nian noise, pink noise and sine wave, from white noises,

sawtooth wave and square wave with aliasing effect. The

descriptors with more influence were: ’spectral energyband

low’ (1.088e-01), ’spectral energyband middle low’ (1.051e-

01), ’high frequency content’ (8.916e-02), ’spectral rolloff’

(8.718e-02), and ’spectral decrease’ (8.700e-02).

The 3 first principal components of the perceptive data

were compared to each of the physical features and the 3

highest correlation degrees are shown in table 3
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Figure 2: Two first principal components explaining 75% of

the variance of the data obtained from acoustical analysis.

Table 3: Correlation between the first three perceptive

components and acoustic descriptors.

Descriptor Correlation
Index (mod)

PC1 Pitch Instant. Confidence 0.90

Spectral Spread 0.77

Spectral Energyband Middle

Low

0.75

PC2 Spectral Flatness dB 0.67

Spectral RMS 0.67

Barkband Skewness 0.65

PC3 HFC 0.69

Spectral Decrease 0.66

Spectral Energyband Low 0.62

5 Conclusion
People do differentiate random sounds from coherent ones

by listening to them, and they do this also using terms re-

lated to vision, touch and taste sensations, like ’dark/bright’,

’rough/smooth’ and ’salt/sweet’.

Noise is historically associated to annoyiance and nui-

sance, but the results here presented shows that people also

elect positive terms for describing it. Adjectives like ’relax-

ing’, ’pleasant’, ’confortable’ and ’natural’ were attributed to

noises when compared to synthesized deterministic sounds,

which were described like ’irritanting’ and ’strident’.

The principal component of the perceptive data associates

mainly noises with terms like ’noisy’ and ’harsh’, but also

associate the same ones to ’natural’ or ’neutral’. The second

component indicates pink noise, gaussian white noise and

uniform white noise as beeing as ’atonal’, ’harsh’ and ’dirty’,

as sawtooth and square wave with aliasing effect. Brownian

noise, laplacian with noise, square wave and sine wave are

’pure’, ’clean’, ’sweet’ and ’tonal’ according to these results

(figure 1).

The first principal component referred to the objective
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data separates noisy sounds from harmonic ones through:

’spectral flatness’, ’pitch instantaneous confidence’, ’spec-

tral complexity’ and ’zero crossing rate’. These are acoustic

descriptors developed for distinguishing complex spectrums

from organized ones, which had their purpose validated here.

The second component for this type of data associates

pink noise to sine wave and to brownian noise. This results

that way specially because of spectrum energy location de-

scriptors, two referred to low frequencys and one to the high

spectrum content. Pink and brownian noises presents spec-

tral power density decreasing when frequency increases, and

sine wave don’t have superior partials. White noises have flat

spectrum energy, square and sawtooth waves are well known

as having enhanced high frequency content. This may ex-

plain these results.

Grill et al. [10] achieved some correlation, for exam-

ple, between ’high/low’ adjectives and ’spectral centroid’ de-

scriptor (-0.69), between ’smooth/coarse’ and ’spectral skew-

ness’ (-0.63), and between ’edgy/flowing’ and ’spectral flat-

ness’ (-0.61) when using textural musical sounds as hearing

stimulus. These are results that can not be compared with

the ones presented here once the elected adjectives are dif-

ferent in each experiment, and were not directly compared to

acoustic features.

’Pitch instantaneous confidence’ is highly correlated to

the most significant perceptual component, and was also the

descriptor that presented the better p-value for separating co-

herent samples from random ones according to the objective

analysis. This validates the instantaneous confidence of pitch

as closely related to the perception of sound randomness, and

as an efficient acoustic descriptor for distinguishing between

synthesized deterministic and non deterministic sounds.

’Spectral flatness’ and ’spectral root mean square’ are

weakly correlated to the second principal perceptive com-

ponent that separate ’atonal’, ’dirty’ and ’bitter’ sounds from

’tonal’, ’clean’ and ’sweet’ ones.

Noise is a contemporary term used by engineers, physi-

cists, economists, biologists and musicians, which can be

discussed from many different points of view. This works

tries some simple analysis in the subject by treating noise

from the perceptual perspective. Future experiments should

increase the number of participants as well as the number of

sounds samples. The concepts here presented should also be

expanded for enriching the discussion.
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