
HAL Id: hal-00810893
https://hal.science/hal-00810893

Submitted on 23 Apr 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

I-Simpa, a graphical user interface devoted to host 3D
sound propagation numerical codes

Judicaël Picaut, Nicolas Fortin

To cite this version:
Judicaël Picaut, Nicolas Fortin. I-Simpa, a graphical user interface devoted to host 3D sound propa-
gation numerical codes. Acoustics 2012, Apr 2012, Nantes, France. �hal-00810893�

https://hal.science/hal-00810893
https://hal.archives-ouvertes.fr

I-Simpa, a graphical user interface devoted to host 3D
sound propagation numerical codes

J. Picaut and N. Fortin

Département Infrastructures et Mobilité (IFSTTAR/IM), Route de Bouaye, CS4, 44344
Bouguenais Cedex

judicael.picaut@ifsttar.fr

Proceedings of the Acoustics 2012 Nantes Conference 23-27 April 2012, Nantes, France

9

Whatever for indoor noise applications (room acoustics, noise in vehicles. . .) or sound propagation in the

environment (open field, urban areas. . .), many numerical codes have been developed by researchers. Most of them

have many common aspects, like the definition of the domain geometry and the materials (boundary conditions,

impedance. . .), the definition of sound sources and of receivers (position, spectrum, directivity. . .). Moreover, they

all have the same objective that is to predict the sound field within the domain, with several acoustics indicators, like

acoustic pressure or sound levels, and through several representations (impulse response, spectrum. . .). In order to

make easier the use of such codes (pre and post-processing of data), as well as for facilitating comparisons between

models, a specific graphical user interface (I-Simpa) was developed specifically. In addition to previously cited

facilities, this tool allows users to implement their own numerical models, as well as to manipulate the interface

and to develop specific treatments by creating built-in Python(TM) scripts. As example, the paper will present the

implementation of an energetic model for room acoustics predictions. The final objective is to create a community

around this tool in order to exchange numerical codes, scripts, information. . .

1 Introduction
I-Simpa was initiated during a research project funded

par the French Environment and Energy Management

Agency (ADEME), in collaboration with the University of

La Rochelle, the French institute of sciences and technology

for transport, development and networks (Ifsttar), the

University of Poitiers, and a French Engineering department

SerdB. The main objective was to develop a new prediction

model for the sound propagation in complex environments

(indoor and outdoor). During the project, a graphical user

interface (GUI) was developed specifically as a pre and

post-processor of the prediction model. At a later time,

the developers decided to generalize the GUI, in order to

host other numerical calculation codes for 3D complex

environments (see section 3.2).

Although I-Simpa is well adapted for energetic

models (ray-tracing, sound-particle tracing, theory of

reverberation. . .), it can be extended to use undulatory

approaches. Classical applications are room and building

acoustics, environmental noise and industrial noise, but it

can be easily extend to other applications concerning the

sound propagation in 3D environments (interior of vehicle,

sound in cavities. . .).

The main concepts of I-Simpa are the following:

• a functional GUI: elements and components are

organized in tree structures, to easily access to all

information, parameters and properties. Many features

are proposed for helping users;

• an ”open” system: all information and data are

organized in spreadsheets that can be displayed,

exported, copied;

• an ”open” tool: each user can integrate its own

numerical propagation code, develop its own

functionalities within the interface for its own

applications.

2 Presentation of I-Simpa

2.1 Graphical user interface
The interface is organized on a main window, with a

menu bar and a toolbar (figure 1), which contains a set of

dockable/undockable sub-windows:

• The first window, titled ”Project”, is decomposed

into three tabs, which should correspond to the three

Figure 1: I-Simpa interface (with dockable/undockable

windows): illustration with a room acoustics application.

steps in conducting a project: preparing the 3D

scene (tab ”Scene”), running the calculation code

(tab ”Calculation”), showing/processing results (tab

”Results”). The first tab ”Scene” allows to define all

acoustical characteristics that are needed for running

the project, such as boundary properties, sound

sources, receivers (see section 2.2), etc. In the second

tab ”Calculation”, users can choose the numerical

code and define all calculation parameters. In the last

tab ”Results”, all numerical results are showed and

can be post-processed if necessary. All data in each

tab are organizing in one or more trees.

• The second window shows the 3D geometry, with

different views (with/without lines, interior/exterior/no

surfaces, with/without material colors).

• The third windows, titled ”Properties”, gives all

properties of an element, and is activated by selecting

the corresponding element in one of the data trees.

• The fourth window is decomposed in two tabs. The

first one (”Console”) gives internal messages from

I-Simpa or external messages from the calculation

codes. The second one (”Python”) allows to use

PythonTM command lines to manipulate data.

2.2 Data project (input data)
As I-Simpa was firstly developed to use calculation

codes based on energetic models, main features correspond

Proceedings of the Acoustics 2012 Nantes Conference23-27 April 2012, Nantes, France

10

to common numerical codes of sound propagation based, for

example, on ray-tracing approaches. However, new input

data and features can be added using PythonTMscripts (see

section 3.1).

Running a project requires to follow several steps:

1. importing 3D scene geometry (with triangle meshing):

user can import 3D models with extension 3DS (3D

Studio), STL (stereolithography), PLY (Stanford) and

POLY (TetGen, see tetgen.org). A manual design

of parallelepipedic models is also proposed. Specific

importation tools have also been developed in order to

correct model defaults (see section 2.3).

2. applying boundary materials: once the model is

loaded, users have to assign materials (absorption,

transmission loss, scattering, reflection law. . .) and

information (mass density, resistivity. . .) for each

surface element of the 3D scene. Data can been

imported from the internal database or from external

database. The internal database can also been modified

by users.

3. adding punctual sound sources: the next step is to add

sound sources in the model and to define all acoustic

parameters (spectrum, directivity, delay. . .);

4. adding punctual and surface receivers: in order to

compute several acoustical parameters, it must be

necessary to locate receivers in the model. Punctual

receivers as well as surface receivers (on the surface

model or on arbitrary 2D planes) can be considered.

5. adding fitting zones: for some applications, such as for

noise prediction in industrial halls, fitting zones with

probabilistic parameters (mean free path, absorption,

diffusion law) can be considered.

6. giving environmental data, such as atmospheric

conditions and meteorological parameters.

2.3 Model correction
A specific attention has been paid on the model

importation. Indeed, some calculation codes require that

3D-models must be closed and without ”default”, which is

not still possible in practice. Two importation tools have

been added in I-Simpa in order to correct models that don’t

respect theses conditions, called Piecewise Linear Complex

(PLC) constraints.

The first one, called ”Preprocess” is applied when

the model is closed, but contains intersections and

discontinuities between faces (figure 2). In this case,

the algorithm identifies intersections between faces and

produces new faces to match with the PLC constraints. Two

cases are considered:

• there is a non-coplanar intersection between two

faces (i.e. a face intersects another one). Then each

side of the intersection of the two faces is split into

several faces. The final shape is the same, but the PLC

constraints are respected;

• there is a discontinuity between two faces (i.e. they

don’t share the same edge), then, faces are split in two

faces at each corresponding vertex.

(a) Intersection between two non-coplanar faces

(b) Discontinuity between two faces

Figure 2: Model corrections: faces intersection and

discontinuity.

The second one is applied when the model contains

many faces, with unknown holes and coplanar faces in

intersection. In this case, user cannot reasonably fix by

”hand” such geometry errors with a 3D modeling software.

This issue is more complicated, and has involved the

development of an advanced algorithm, called ”mesh

approximation”, with five steps:

1. Voxelization: a voxel is the three-dimensional form

of a pixel. The voxelization process creates a 3D

matrix where cells are defined by their size and

position in space. When a cell is in collision with

the model surface the value of the cell is modified.

This algorithm uses single dimension aggregation for

processing speed (in the next step) and memory load

reduction. Instead of store x times the same value of

matrix on the K dimension the algorithm stores only

a single value with an exponent x. The user must

specify the resolution of the voxelization in model

unit, smaller resolution giving more output faces.

To remove holes that are present in the model, the

resolution of the voxelization must be slightly higher

than the maximum size of holes;

2. Volume identification: the matrix output of the

voxelization contains set and unset cells. Unset cells

form region separated by set cells. This step updates

the matrix with a volume index value equal to the

first empty cell found, and propagates through cell

neighbors until it reaches non empty cells. This step is

repeated until an empty cell cannot be found;

3. Marching cube algorithm: the previous step fills

holes, but the volumetric model that is obtained must

be translated to the surface model. The marching

cube algorithm [1] is a well known method to convert

3D-scalar field into an iso-surface polygonal mesh;

4. Vertex translation: the objective is to refine the output

of the marching cube step to get closer to the original

model. Each vertex of the marching cube mesh is then

translated to the closest original model face.

5. Triangle decimation: this step allows to reduce the

number of faces by merging co-planar faces. This

is done by the progressive mesh face decimation

algorithm [2] that collapses edges and topology-

preserves the mesh.

Proceedings of the Acoustics 2012 Nantes Conference 23-27 April 2012, Nantes, France

11

Figure 3 shows an example of the mesh approximation

on the Elmia Concert Hall model (see http://www.ptb.

de/en/org/1/16/163/roundrobin/roundrob2_1.htm)

used during the Round Robin II [3]. The original model

contains intersections and discontinuity between faces,

wrong face orientations and holes. The final step gives

a model without default, well oriented faces, close to the

original one, which can be used with numerical codes

requiring high constrained models.

(a) Original model

(b) Marching cube algorithm

(c) Vertex translation

Figure 3: Generation of an approximate 3D model.

2.4 Results (output data)
Once a numerical code is linked with I-Simpa, user can

run calculations. If the format of the output data files follows

the I-Simpa I/O format, all results can been displayed in the

”Results” tabs. Results are organized on a tree structure that

is the exact image of the folders/files tree structure on the

hard disk.

In function of the output file extensions, specific

post-processing are allowed by I-Simpa. At the present

time, since the interface was initially developed for

energetic-based models, room acoustics parameters can

been calculated according to the ISO 3382-1 standard

[4], such as reverberation times, Clarity, Definition, Early

support, Centre time, Strength, Early Lateral Energy

Fraction, Late Lateral Sound Level. In addition, several

results can been displayed such as echogram and Schroeder

integration curves, intensity vectors, sound map (stationary,

time-varying, cumulated values), iso-contour (for surface

receivers), ray-tracing and particle-tracing animations

(figure 4) on highly customizable graphics. All results can

also be displayed on spreadsheets and are free to be exported

out of I-Simpa (by copy/paste or using CSV files).

(a)

(b)

Figure 4: Illustration of the use of I-Simpa with a sound

particle tracing code (SPPS) for outdoor/indoor

applications: graphical and spreadsheet displays.

3 Extensions
One main concept of I-Simpa is to be ”open” (figure 5), in

order that people can use the GUI for their own applications,

which means that new functionalities and other numerical

codes can been considered (using user toolboxes). In

addition, the GUI can be adapted for each user, by creating

new language translation files (for internationalization) or

changing the appearance of graphic objects.

3.1 PythonTM commands and toolboxes
Users can extend the capabilities of I-Simpa by writing

their own PythonTM commands and scripts, using a specific

PythonTM library, called uictrl, which contains functions

that are interpreted by I-Simpa. This allows to add new

Proceedings of the Acoustics 2012 Nantes Conference23-27 April 2012, Nantes, France

12

Figure 5: I-Simpa extensions.

functionalities within the interface, manipulate data and I/O

files, realize new calculations and representations, create

automatic processes, develop specific applications, link

I-Simpa to other calculation codes or softwares.

A PythonTM console is available within I-Simpa

interface: users can write commands within the console to

execute specific but simple actions. For long or complicated

commands, users can develop and run scripts instead, and

create toolboxes.

In practice, users can easily add elements on the data

trees and add new functionalities when right-clicking on

tree elements (popup menu), etc. After developing their

own scripts, they can create toolboxes for running specific

actions. By default (and as examples), I-Simpa is given

with toolboxes for manipulating sound sources and receivers

(translation, rotation. . .), creating and running a jobs list,

and more.

Adding a toolbox within I-Simpa consists only in

creating sub-folders in the UserScript folder located in

I-Simpa installation folder with a file __ui_startup.py file

inside, containing command line import toolbox_name

for importing the module named toolbox_name. A second

file __init__.py must be created in the same sub-folder

and should contains the specific script of the new toolbox.

For instance the listing at figure 6 shows the script in the

__init__.py file for adding an action in the popup menu

that is activated when right clicking on a group of sound

sources. It allows to activate or desactivate all sound sources

in the group simultaneously. Others examples are also given

in the I-Simpa documentation [5]. In this example, a specific

class is creates and then load in I-Simpa using the last

command uctrl.application.register menu manager

that links the class with the corresponding tree element (i.e.
a group of sound sources) with I-Simpa.

3.2 Calculation codes
By default, I-Simpa is given with two calculation codes,

which are appropriate for room acoustics applications (TCR

and SPPS) as well as environmental and industrial noise

(SPPS). The TCR code is a simple implementation of the

classical theory of reverberation and can be applied for

calculating simple room acoustics parameters (for a single

room). The SPPS code is based on particle-tracing method,

similar to classical ray-tracing methods, and is well adapting

for calculating sound fields in complex environments [6].

In addition, I-Simpa has been designed in order to host

any calculation codes of sound propagation in 3D model.

Although, I-Simpa is well adapted to energetic sound

propagation model (like TCR and SPPS), it can be extend

to undulatory approaches. As example, the integration of

the transmission line matrix method (TLM) in I-Simpa is

currently in progress [7].

The use of external codes in I-Simpa requires (1) that

the calculation code can use 3D-models with triangular

faces and (2) that the executable file can be called using

a bash command line. In practice, in order to add the

calculation code in I-Simpa (i.e. in the tab ”Calculation”

of the sub-windows ”Project”), users have to declare the

new code using a PythonTM script in the UserScript

folder containing the corresponding PythonTM commands

for importing the code. In addition users have to put the

executable file in a new folder within the core folder that is

located in the I-Simpa installation folder. Lastly, users have

to write an connector script in order that I/O files between

I-Simpa and the code be compatible. The last action can

be done by using two librairies libsimpa (for PythonTM

programming) and libinterface (for C++ programming),

designed for manipulating I/O I-Simpa files.

3.3 GUI translation (internationalization)
I-Simpa is designed for international users. At the present

time, I-Simpa provides translations for French and English

users. As I-Simpa uses language files for translation, users

can propose new translations (i.e. in other languages) or

corrections of an existing translation. In addition, users who

develop their own PythonTM scripts can also use language

files in order to internationalize their own applications.

In I-Simpa coding, specific functions have been used

in order that expressions can be internationalized. This is

for example the case at figure 6 for the ” ("Enable")”

expression that can be translated a posteriori in another

language. After compiling the code with a specific tool

(like Poedit, see www.poedit.net), it produces a Portable

Object file containing translations. Then, the .po file is

compiled in a Machine Object file (.mo file) in order to

be readable by I-Simpa. For each language (i.e. French,

English. . .), the corresponding .mo file is located in a folder

language at the root directory of I-Simpa installation.

3.4 Graphics
In spite of the poor interest, I-Simpa allows to replace the

existing toolbar and menu icons by user icons, by replacing

the corresponding graphics files in the Bitmaps folder of

the root directory of I-Simpa by new ones. Filenames are

sufficiently explicite to identify each icon and button; the

first word in the filename define the category of the icon: tree

Proceedings of the Acoustics 2012 Nantes Conference 23-27 April 2012, Nantes, France

13

class manager:
This class make the user able to enable or disable a group of sound sources with one click only

def __init__(self):
#Constructor. Register the two new menu functions

self.enable_grp_sourcesid=uictrl.application.register_event(self.enable_grp_sources)

self.disable_grp_sourcesid=uictrl.application.register_event(self.disable_grp_sources)

def getmenu(self,typeel,idel,menu):
#Called by the user interface. The list menu structure contains the current implemented functions.

submenu=[(uictrl._("Enable"),self.enable_grp_sourcesid),(uictrl._("Disable"),self.

disable_grp_sourcesid)]

menu.insert(2,(uictrl._("All emitters"),submenu))

menu.insert(2,()) #Add a separator

return True
def set_grp_src_activation(self,idgrp,newstate):

grpsrc=uictrl.element(idgrp)

all_property=grpsrc.getallelementbytype(uictrl.element_type.

ELEMENT_TYPE_SCENE_SOURCES_SOURCE_PROPRIETES)

for prop in all_property:
uictrl.element(prop).updateboolconfig("enable",newstate)

def enable_grp_sources(self,idgrp):
#Called by user interface when the user click on the enable menu item

self.set_grp_src_activation(idgrp,True)

def disable_grp_sources(self,idgrp):
#Called by user interface when the user click on the disable menu item

self.set_grp_src_activation(idgrp,False)

#Register the toolbox in I-SIMPA: this toolbox is linked with sources groups

uictrl.application.register_menu_manager(uictrl.element_type.ELEMENT_TYPE_SCENE_SOURCES , manager())

Figure 6: Script example: activating/desactivating a group of sound sources.

(an element in the tree structure), popup (an icon in a menu

popup), toolbar (an icon in the toolbar).

In addition, new color palettes for the representation

of sound maps can be added within I-Simpa. Palettes are

defined using the GIMP file format with the extension .gpl

(see http://www.gimp.org/).

4 Support and community
As I-Simpa has been developed ”by researchers for

researchers”, the objective is to create a community

around the software, in order to share information, scripts,

toolboxes, applications, translation files, etc. For that

purpose, a specific web site (i-simpa.ifsttar.fr) has

been realized with several tools:

• Request and bug tracking: users can report

malfunctions, errors, bugs or simply requests

using the tracking system;

• Forums: several forums have been opened in order to

share information and find answers to problem;

• Showcases: users can share I-Simpa projects and

ilustrations/screenshots.

5 Conclusion
With I-Simpa, authors have tried to develop a software

for their own need, mainly in order to simplify the use and

the development of sound propagation model in 3D complex

environments. Since such software can also be of interest for

the whole acousticians’ community, authors have decided to

freely share I-Simpa and to propose tools in order that users

can used I-Simpa for their own applications. At this step, the

objective is to create a specific community around I-Simpa in

order to share works and to develop new versions of I-Simpa

that will be enhanced by the community.

References
[1] W.E. Lorensen, H.E. Cline, ”Marching Cubes: A

high resolution 3D surface construction algorithm”,

Computer Graphics 21(4), 163-169 (1987)

[2] H. Hoppe, ”Progressive meshes”, SIGGRAPH 96:
Proceedings of the 23rd annual conference on
Computer graphics and interactive techniques 30,

ACM, 1996.

[3] I. Bork, ”A comparison of room simulation software.

The 2nd Round Robin on Room Acoustical Computer

Simulation”, Acustica 86, 943-956 (2002)

[4] International Organization for Standardization, ISO

3382-1:2009: Acoustics – Measurement of room

acoustic parameters – Part 1: Performance spaces”

(2009)

[5] J. Picaut, N. Fortin, Manuel d’utilisation de I-Simpa (in

French), Ifsttar, Université de la Rochelle (2011)

[6] J. Picaut, N. Fortin, ”SPPS, a particle-tracing numerical

code for indoor and outdoor sound propagation

prediction”, Acoustics 2012 Nantes Conference (2012)

[7] G. Guillaume, J. Picaut, G. Dutilleux, B. Gauvreau,

”Time-domain impedance formulation for transmission

line matrix modelling of outdoor sound propagation”,

Journal of Sound and Vibration 330(26), 6467-6481

(2011)

Proceedings of the Acoustics 2012 Nantes Conference23-27 April 2012, Nantes, France

14

