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This study proposes a new approach for the classification of the calls detected in the songs with the use of Hidden Markov 
Models (HMMs) based on the concept of subunits as building blocks. HMMs have been used once before for such task but in 
an unsupervised algorithm with promising results, and they are used extensively in speech recognition and in few 
bioacoustics studies. Their flexibility suggests that they may be suitable for the analysis of the varied repertoire of humpback 
whale (Megaptera novaeangliae) calls because they cope well with variations in the call durations, which is a common feature 
in humpback whale vocalizations. Another attractive characteristic of HMMs is that highly developed tool-set is widely 
available as a consequence of the widespread use of their employment for human speech analysis. 

We describe the HMM classification method and show that a high level of performance can be achieved with modest 
requirements both in terms of computational load and storage. Training stage requires minimal manual input and once trained 
the recognition process is fully automated. We will present how the classification performance is affected by different amount 
of training. 

 

1 Introduction 
Songs of humpback whales (Megaptera novaeangliae) 

have been extensively studied for the past four decades, 
since they were defined as such by Payne and McVay 
(1971), who noticed that the sounds emitted by humpback 
whales recorded in Hawaii followed a patterned sequence. 
Since then, the songs produced by these baleen whales have 
been studied across the World (Winn et al., 1981; Helweg 
et al., 1998; Noad et al., 2000; Cerchio et al., 2001; 
Razafindrakoto, 2001; Suzuki et al., 2006; Whitlow et al., 
2006) because humpback whales breeding grounds, where 
songs are typically heard, are widespread. As a 
consequence of the vast amount of data collected through 
recording humpback whale songs in the wild, the need has 
arisen for the development of appropriate tools for the 
automatic classification of the song components. This 
would allow large scale comparisons of songs across 
populations and from year to year, which is  necessary to 
understand how songs are culturally transmitted and learn 
about their migratory patterns (Noad et al., 2000; Mercado 
III et al., 2005; Oviedo et al., 2008; Garland et al., 2011). 
The task of song classification is still largely carried out 
manually or with the use of algorithms that require 
substantial human supervision, which is extremely time-
consuming and not easily replicable when comparing songs 
analysed across research groups.  

Our new approach for song classification of humpback 
whales using Hidden Markov Models (HMMs) showed 
high level of classification of songs recorded in Madagascar 
between 2007 and 2009 (Pace et al., 2010; Pace et al., 
2011). HMMs have been used once before to model 
humpback whale calls, but with the implementation of an 
unsupervised algorithm (Rickwood and Taylor, 2008).  The 
power of HMMs derives from their ability to model non-
stationary random processes, specifically, they are 
particularly appropriate when modelling signals, such as 
humpback whale vocalisations, whose durations are 
stochastic. HMMs have become the basis of most modern 
algorithms for the classification of human speech (speech 
recognition) (Deller et al., 1993). This central role in 
speech recognition (and their wider use in the field of 
speech analysis) has meant that considerable research effort 
has been dedicated to the study of HMMs, one consequence 
of which is a highly developed, and widely available, tool-
set. This makes them attractive tools for application in a 
wide range of fields, including bioacoustics (Brown and 
Smaragdis, 2009; Ren et al., 2009). 

Speech models are well suited to describing the 
mechanisms of our vocal apparatus and our hearing, and 
through the extensive research that has been carried out on 
the matter, sentences and words can be characterised and 
classified with a high level of accuracy. The fact that we 
aim to build a classifier for humpback whale song that 
mimics the accuracy of a trained human listener justifies the 
adoption of processing tools that have been developed 
based on the human perception of speech. The underlying 
idea is that the model is tuned to the way humans perceive 
whale vocalisations, given that we can classify their songs 
accurately in a biological significant way.  

Models borrowed from speech production have already 
been implemented for the classification of humpback whale 
songs (Mercado III and Kuh, 1998; Mercado III et al., 
2010). One such instance is the source-filter model where 
vocalisations are modelled a system of voiced sounds and 
unvoiced sounds that are produced by a source, i.e. the 
voice-box. The sound then is filtered using an all-pole 
infinite impulse response filter (IIR) (Deller et al., 1993).  
This model is widely accepted to describe the mechanisms 
of speech production but it accounts only for the flow of air 
from the source to one filtering chamber and its propagation 
out to the environment. In the case of sound production in 
baleen whales, a more complex model is required because 
more mechanisms are likely to be involved. Although the 
specific pathways of sound production and propagation in 
baleen whales remain to be understood, it is recognised that 
air must be recycled within the vocal tract to allow 
continuous production of sound underwater and considering 
the lack of bubble emission during sound generation 
(Reindenberg and Laitman, 2007; Mercado III et al., 2010). 

In this study, we assess the performance of HMMs for 
the classification of humpback whale songs using different 
levels of algorithm training. Indeed, the goal is to maximise 
the recognition performance of the individual calls present 
in a song sequence, whilst minimising the amount of 
training data needed, so that human input is reduced as are 
time consumption and computational load. 

2 Methods 

2.1 Data collection and pre-processing 
Humpback whale songs were recorded in the Ste. Marie 

Island Channel which is located between the Island of Ste. 
Marie and the North East Coast of Madagascar (Indian 
Ocean). Whales are present in this area during the winter 
months, i.e. June to October, and come from Antarctica for 
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purposes of breeding. Data were recorded from a small boat 
using a single CO.L.MAR Italia GP280 hydrophone 
connected to a TASCAM HD-P2 recorder which recorded 
data at a sampling frequency of 44.1 kHz and digitalized 
using 16 bits. The hydrophone was located at a depth of 
approximately 20 m for all recordings and the bathymetry 
ranged between 28 to 40 m. 

Prior to classification, the song analysed in this study 
was segmented into its component units, i.e. continuous 
sounds between two silences, as defined by Payne and 
McVay (1971). This segmentation was performed 
automatically using an energy detector with a double 
threshold, and then refined manually to ensure that the 
limits of the start and the end of each call were accurate. 
Although the classification might as well work with 
partially detected calls where the start and end thresholds 
do not correspond precisely to the start and the end of the 
call, we preferred to adjust the markers manually to ensure 
that the performance of the classifier was not affected by 
incorrect segmentation of certain calls, and hence maximise 
the performance outcome. 

2.2 Feature extraction 
The individual vocalisations detected during the song 

segmentation stage were not directly inputted in the 
classification algorithm; instead they were reduced to a 
series of coefficients that described the essential 
characteristics of the call. The efficiency of three feature 
sets that are commonly adopted to represent bioacoustics 
signals was tested using our Madagascar recordings in a 
previous study on humpback whale call classification 
(Pace, et al., 2009). These included Linear Prediction 
Coefficients (LPCs), coepstrum, and Mel-frequency 
coepstrum coefficients (MFCCs). The results showed that 
MFCCs performed better than the other two feature sets for 
nearly all call types despite the fact that there are based on 
an anthropomorphic perception of sound. Hence, they were 
chosen for the feature extraction stage of our classification 
algorithm. 

Each call was represented through a series of 24 
features; specifically these are 12 MFCCs and 12 
corresponding delta coefficients (i.e ΔMFCCs). The 
number of coefficients was selected to optimise 
performance, as described in (Pace et al., 2011). These 
coefficients were calculated using the standard function 
included in the HTK toolkit (Young et al., 2000) which was 
used for the HMM implementation. This toolkit was chosen 
because it has been highly developed by Cambridge 
University and applied for several bioacoustics studies, as 
well as speech recognition tasks (Ren et al., 2009) . 

2.3 HMM implementation 
Each call class is represented by one left to right HMM 

with one state if the call frequency is stable throughout its 
duration or two states if the frequency is varying, e.g. in the 
case of an up-sweep or down-sweep, plus two “non-
emitting” states at the start and at the end of each model. A 
definition file was therefore created for each HMM which 
includes a general description of the features, i.e. type and 
vector size of the feature sets, the number of states and the 
transition probabilities matrix. The number of states of each 
HMM determines the size of the transition matrix: a three 
state HMM will have a 3×3 transition matrix.  

 
 

 

 

Figure 1: Bakis diagram of left to right HMM with four 
transition states. States 1 and 4 represent the start and end 
of each call and are termed ‘non-emitting’ whilst states 2 

and 3 are termed ‘emitting states’, and represent the 
transitions within states of a single call. The HMM allows 
for transitions skipping one state as well as visiting all of 

the states in succession. 

The transition between observations was modelled by a 
Gaussian mixture where, by definition, each probability 
was a real number from 0 to 1 and sum to unity. Given that 
each recording segment containing a call could include a 
silent part at the start and/or at the end of the sound clip, 
one HMM was created with the same characteristics 
described above to model the silences.  

During the training phase a database of labelled 
(manually classified) data is employed. The manual 
classification is performed by an experienced observer, 
through visual inspection of the spectrograms and aurally.  

The training stage deals with calculating the maximum 
likelihood estimates (MLE) of the transition probabilities 
matrix of the states. In practice, this means that starting 
from a prototype HMM after the training process one 
obtains a model whose mean, variance and transition 
probabilities are calculated based on the statistical 
properties of the data present in the training set. This is 
achieved in two steps:  

i) The Viterbi algorithm (Forney, 1978) is used to find 
the most likely state sequence corresponding to each 
training sample;   

ii) A Baum-Welch (Baum et al., 1970) re-estimation is 
performed to find the probability of being in each state at 
each time frame using the Forward-Backward algorithm. 
This probability is then used to form weighted averages for 
the HMM parameters. A thorough review of the use of 
HMMs is provided by Rabiner (1989).  

For the recognition stage, a Viterbi alignment (Viterbi, 
1967) was performed to match each call of the testing 
dataset the best matching HMM. The output of the HMM 
recognition was then compared to the manual classification 
and the correction classification rate computed as a 
percentage. 

In this study, three scenarios of training were analysed: 
initially the recognition performance was tested by training 
the HMM on 50% of the calls for each call class, up to a 
maximum of 12 training calls per class. Then we tested the 
HMM with 25% of data training, and lastly 10% data 
training was used. In the latter case, the amount of training 
data per class was sometimes slightly above 10% because 
the minimum number of samples required to train each 
HMM is 3 calls. A table showing the number of calls 
trained in each class and the recognition results is presented 
in the results section.  
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3 Results 
The performance 2008 based on the recognition of 

individual calls of the HMM model for the classification of 
a humpback whale song recorded in Madagascar in is 
presented in this section.  

The calls identified during the segmentation were 
manually classified as described in the methods and named 
alphabetically, according to the sequence in which they 
were encountered in the song. Hence the first unit type was 
termed a, the second was termed b, and so on.  

The song recorded in Madagascar in 2008 was 
segmented into 334 units, which were divided into 16 
classes. Three classes were omitted form the analysis 
because they contained fewer than 6 calls, i.e. the minimum 
number to be able to run both the training and testing stages 
of the algorithm. The call types identified are presented in 
the table below, as well as the number of calls used to train 
each category for each training scenario (Table 1). 
 

Table 1: table showing the call types identified in the 
recording analysed, as well as the number of calls used 

during the training stage for each of the training scenario. 
The classification performance for each of the scenarios is 

presented as a percentage of the total number of calls tested 
for each call type. The training set number denoted by a ‘*’ 
mean that the actual number of calls used for the training 
stage should have been less than three if we calculated the 
appropriate percentage of calls for the training scenario; 

however, we had to train the HMM with 3 calls which is the 
minimum number required for running the algorithm. Also 

note that the number of calls used for the training was 
rounded to the nearest integer. 

Call type 
Training 

Classification 
performance  

 (% out of 181) 

50% 25% 10% 50% 25% 10%

a 12 11 4 97 100 84 

b 10 5 * 100 100 100 

d 6 3 * 86 100 86 

f 7 4 * 100 50 100 

g 6 3 * 100 100 100 

h 10 5 * 100 60 10 

i 10 10 4 97 91 85 

j 8 4 * 86 57 14 

k 10 6 * 88 81 38 

l 5 * * 100 100 100 

m 10 6 * 100 93 93 

n 9 8 3 87 96 91 

o 7 4 * 88 100 88 

overall 110 72 41 94 90 78 
 
The results show that the best performance overall was 

achieved using 50% of the data for training the HMMs and 

the other 50% for testing the classifier; however, this was 
not true of all the call classes tested Figure 2.  

 

Figure 2: percentage correct classification of the Hidden 
Markov Modelling classification obtained for three 

different training scenarios for each call type (or unit type) 
and overall. 

With a 25% percentage reduction in training data, the 
classification performance decreases only by 4% but the 
mistakes affect the various call types differentially. Indeed, 
in three instances, namely units ‘f’, ‘h’ and ‘j’, the 
classification accuracy halved (or nearly halved). On the 
other hand, there are 3 instances in which more units were 
correctly classified when there were 25% rather than 50% 
calls used for training.  

In the last training scenario, when the HMMs were 
trained using only 10% of the data (or slightly more) the 
overall classification performance reduced to 78%. Again 
here some call types were more affected than others by the 
change in training set size. Specifically, units ‘h’, ‘j’ and ‘k’ 
were classified very poorly (<40% correct classification), 
whilst the classification of the other unit types was nearly 
equal to the one obtained with the other training scenarios. 

4 Discussion 
High levels of classification performance were obtained 

using Hidden Markov Modelling for classifying humpback 
whale calls, as demonstrated in our previous work which 
compared classification performance across songs of 
different years and emitted by a variety of singers (Pace et 
al., 2010; Pace et al., 2011). Whilst, in this study we did not 
compared songs from different years, we aimed at 
analysing in more detail how different amount of training 
affects the classification performance. For an automatic 
classifier to be efficient and widely used, the amount of 
training required to run the algorithm should be minimized 
to reduce the human input, which introduces subjectivity 
making it hard to replicate studies across research groups, 
and decrease the computational load so that the whole 
recognition task can be implemented quickly even with 
large datasets.  

The results presented in this study show how three 
different training scenarios affect the performance of the 
automatic classification; the information that can be 
extrapolated can help choosing which scenario is better for 
the task that one needs to perform, considering the trade-off 
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between amount of time and human input required at the 
training stage and the performance outcome. 

The data showed that the largest training set size led to a 
higher classification performance, with calls being correctly 
classified in more than 85% of the cases for all call types. 
Decreasing the training set led to a reduced classification 
performance, but this decrease was not linear and affected 
different call types differentially. The smallest training 
sample size resulted in an overall decrease of 16% in 
classification performance compared to the 50% training set 
scenario. Whilst this is not a huge decrease, it can be quite 
conspicuous when analysing large amounts of data, as is 
customary when dealing with humpback whale song 
classification tasks. In addition, the recording used for the 
analysis had quite a high signal to noise ratio (SNR), which 
is difficult to achieve for continuous recordings taken in the 
field. We expect the classification performance to be worse 
when the quality of the recordings is lower, and a larger 
amount of training being required in these cases so that the 
HMMs can recognize the characteristics of the original 
signal, rather than the artefacts of the noise that may be 
present.  

The fact that some call types were more affected than 
others by the change in training set size suggests that 
training should be tuned to the type of call. Given that 
humpback whale songs are composed of units that vary 
considerably in characteristics, it is feasible that different 
types of calls may need different amount of training. 
Indeed, the repertoire of humpback whale includes tonal 
harmonic calls, broadband sounds, and fast up-sweeps and 
down-sweeps (Thompson et al., 1977; Dunlop et al., 2007). 
Considering that with the 50% training scenario, the 
classification performance was similar across call types, 
one can conclude that the differential performance is not 
due to the performance of the feature set used. This could 
have been a possibility given that MFCCs are based on the 
Fourier representation of the signals, and therefore are 
particularly suited for characterising harmonic sounds. The 
unit types that were most affected by changes in the amount 
of training data used were either broadband calls (units ‘h’ 
and ‘j’) or calls where sudden changes in frequency could 
be observed (units ‘f’ and ‘k’). This is unsurprising 
considering that the few calls present in the training set 
might differ from one another and not give an accurate 
enough representation of the characteristics of the other 
calls that belong to the same class that were present in the 
test set.  

Further work will consist in comparing training data sets 
sizes for larger test data sets, and to test songs emitted by 
different singers in one or more years to check if the results 
are consistent with these findings. We would expect a 
larger amount of training being required for correct 
classification of calls emitted by different singers to 
account for individual variability in the sound 
characteristics. In addition, the same study will be extended 
to the classification task based on the segmentation of songs 
into smaller building blocks, which we defined as subunits 
(Pace et al., 2010; Pace et al., 2011). Subunit segmentation 
was also proposed for killer whale calls (Shapiro et al., 
2011). We would expect the differential response across 
call types to be greatly reduced when classifying songs 
based on subunits because the calls identified in such 
categories are more stable in the frequency domain because 
where sudden frequency shifts are observed in a unit, this 
will lead to splitting it into two (or more) subunits.   

6 Conclusion 
Hidden Markov Models are well suited and easily 

adaptable for the classification of humpback whale calls. 
The classification performance with three training scenarios 
performed in this study suggests that, as expected, a larger 
training set leads to more accurate classification; however, 
given that halving the amount of training required, leads to 
only a 4% decrease in performance, one could choose to 
favour this scenario to reduce human input and effort 
considerably. Further analysis is required to consolidate the 
results and test the performance on larger test sets and 
songs emitted by different whales. 
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