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This paper is devoted to modelize steelpan making, with the special emphases on the first step, which consists in
sinking the drum head by hand with a pneumatic hammer. The main concern is to develop a model accounting
for the large change of geometry encountered by the initial clamped circular plate, which is transformed in a
spherical shell, and its influence on the vibratory properties of the structure. We propose here a simple one-
dimensional model: a hinged-hinged beam, subjected to selected external static forces that deform it into a curved
beam of profile close to the one of the top surface of the steelpan after the first making step. Several loadings,
including axial force and/or bending moment, are considered, and the influence of the residual stress state on the
eigenfrequencies of the final structures is quantitatively obtained.

1 Introduction
Steelpans belong to a musical instruments family coming

from the island of Trinidad and Tobago. They are usually
played in steelbands, that are orchestras composed of steel-
pans covering a range of several octaves. A steelpan is a
tuned percussion, built from cylindrical steel barrels. The cir-
cular plate on the top is subjected to several stages of metal
forming that stretch and bend the structure. Steelpan mak-
ing consists in pressing, hammering, punching and burning
in order to obtain a sort of main bowl within which convex
substructures are formed. Each convex dome corresponds to
a musical note where natural frequencies are precisely tuned
according to harmonic relationships ( f , 2 f , 3 (or 4) f , ...).
Usually, this instrument is played by striking each note with
a stick covered with a piece of rubber (Fig. 1).

Figure 1: Playing steelpan

Vibrations modelling have been proposed in a series of
papers by Achong et al. [1, 2]. In these works, the steelpan
is considered as a nonlinear system of oscillators, and en-
ergy transfers between normal modes of vibration are high-
lighted. Rossing et al. [11, 10] have performed modal analy-
ses by holographic techniques to observe modal interactions
between harmonically tuned notes. More recently, numerical
modal analyses with the finite element methods have been
proposed, accounting for the precise geometry of a tenor
bass steelpan [4]. The steelpan’s sound radiation has been
recently addressed experimentally [7]. Finally, some metal-
lurgical issues during the steelpan making have been consid-
ered in [8].

In all the previous literature works, the whole making
process is not taken into account in the acoustic modelling
and the steelpan is always considered as a vibrating structure
free of residual stresses. The present study aims at filling
this gap. During the making process, the initially flat circular
plate at the top of the barrel is subjected to several deforma-
tions to progressively change its shape into the final one of
the steelpan. The final state of the structure after those plas-
tic deformations is characterized by a plastic strain field that
leads to two components: (i) a deformed geometry, which
is in equilibrium with (ii) a particular residual stress field.

Since only the final state of the structure is under concern,
there is no need of computing all the successive plastic de-
formations steps (which would be a cumbersome operation).
The main goal of the present work is to study the part of
those two characteristics (the final geometry and the residual
stresses) on the vibratory characteristics of the steelpan.

The present study focuses on the first step of the steelpan
making, the sinking, in which the circular plate at the top of
the barrel is transformed into an almost spherical shell. Only
a simple one-dimensional model is considered, a hinged-hinged
beam. Initially flat, it is subjected to axial tension and bend-
ing moments in order to give it a circular profile, with a center
height close to 100 times the beam thickness. As a conse-
quence, a geometrically nonlinear model of the beam is used
as well as a numerical following path method to compute the
final geometry. Then, the eigenfrequencies of the deformed
and stressed beam are computed, and the influence of both
the residual stress state and the deformed geometry are quan-
tified.

2 Steelpan tuning and measurements

2.1 Deformation
A pneumatic hammer is used by the steelpan maker (the

tuner) in order to progressively transform an initial barrel
(Fig. 2) into a curved structure (Fig. 3). Initially, the diam-
eter of the circular plate is D = 567 mm with a thickness
h = 1.3 mm. The tuner controls regularly the depth of the
center which finally reaches H = 124 mm. The whole pro-
cess lasts around two hours.

Figure 2: Steel barrel typically used for steelpan making
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a)

b)

Figure 3: a) The top surface of the steelpan during
pneumatic hammering ; b) Final spherical shell obtained

after the process

2.2 Residual stress mesurements
Measurement of the residual stresses have been realized

at 8 points of the upper skin of the top shell of the barrel.
Six points have been selected on a given radius, and two
other points have been chosen on a different radius in or-
der to check the axial symmetry (Fig. 4a). Measurements,
realized thanks to a X-ray diffractometry [5], are reported on
Fig. 4b. The measured residual stresses are positive, which
means that tensile state is at hand. The order of magnitude is
108 Pa, and axisymmetry apears to be fairly well recovered.

3 Analytical one dimensional model

3.1 Prestressed beam model
In order to obain the deformed geometry and study the

effects of the residual stresses on the dynamic behaviour, an
Euler-Bernoulli’s beam of total length L, with a rectangu-
lar cross-section of width b and thickness h, is considered
(Fig. 5). It is made of an homogeneous and isotropic ma-
terial of Young’s modulus E, Poisson ratio ν and density ρ.
Hinged-hinged boundary conditions are imposed at x = 0
and x = L.

The classical constitutive law of the prestressed beam re-
duces to:

σxx = Eεxx − σ0xx. (1)

where σxx and εxx are the axial stress and strain. σ0xx is an
initial imposed stress used to model plastic strains imposed
to the top plate of the barrel during the first making step.

A von Kármán model is used to express the strain/displace-
ment relationship as εxx = u′ + 1

2 w′2 − zw′′ where u and w
are the axial and transverse displacement, respectively, and
(.)′ = ∂(.)/∂x.

From the local stress relation Eq. (1), the resultant axial
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Figure 4: Surface stress measurement by X-ray
diffractometry after sinking the barrel: on the points 1, 2, 3,
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Figure 5: Hinged-hinged prestressed buckled beam

force and bending moment are:
N =

"
s
σdS = ES (u′ +

1
2

w′2) − N0,

M =

"
s
zσdS = EIw′′ − M0.

(2)

where S = bh and I = bh3/12. The initial load σ0xx now
appears as an initial imposed axial force, N0 =

!
S σ0xxdS

and an initial bending moment M0 =
!

S zσ0xxdS .

The equations of motion for the displacement of the beams
read [9]: ρS ẅ + EIw′′′′ − (Nw′)′ + M′′0 = 0

ρS ü − N′ = 0
(3)

Neglecting axial inertia implies N′ = 0 so that N is uniform
in [0 L] and:∫ L

0
Ndx = LN =

ES
2

∫ L

0
w′2dx − LN0 (4)
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where N0 = 1
L

∫ L
0 N0dx is the mean value of the imposed ax-

ial stress N0.

Those equations are made dimensionless by introducing:

w̄ = w/h , x̄ = x/L (5)

and

t̄ =
1
L2

√
EI
ρS

t , N̄ = N
L2

ES h2 and M̄ = M
L2

EIh
(6)

so that, the nondimensional problem to solve finally reads
(where bars are omitted for the sake of clarity):

ẅ + w′′′′ − εNw′′ − M′′0 = 0

N =
1
2

∫ 1

0
w′2dx − N0

(7a)

(7b)

where ε =
S w2

0
I is a nondimensional nonlinear coupling pa-

rameter.
It should be noticed that the x−dependance of the axial initial
force N0 has no influence on the model which depends only
of its mean value N0.

3.2 Static and dynamical problems
By imposing increasing values of N0 and M0, the beam

will buckle and reach an equilibrium state. Our goal is twofold:
first to find a couple of initial structural stress field (N0, M0)
allowing to reach the measured shape of the steelpan at the
end of the process ; second, to investigate the vibrations around
this buckled state. The influence of the residual stress state
and geometry on the eigenfrequencies will be quantified.

0 L

x

z

Figure 6: Static and dynamical problems: vibration around
an equilibrium buckled state

The transverse displacement and internal axial force are
separated in a static part (ŵ, N̂) and a dynamical one (w̃, Ñ)
as: w(x, t) = ŵ(x) + w̃(x, t),

N(x, t) = N̂(x) + Ñ(x, t).
(8)

Introducing (8) into (7) we obtain the following static prob-
lem: 

ŵ′′′′ − εN̂ŵ′′ − M′′0 = 0,

N̂ =
1
2

∫ 1

0
ŵ′2dx − N0.

(9a)

(9b)

and the dynamical one:
¨̃w + w̃′′′′ − εN̂w̃′′ − εÑŵ′′ − εÑw̃′′ = 0,

Ñ =
1
2

∫ 1

0
w̃′2dx +

∫ 1

0
w̃′ŵ′dx.

(10a)

(10b)

Finally, by neglecting all nonlinear dynamical terms in
Eqs. (10a,b), the linear vibration w̃ of the structure around
the prestressed deformed state ŵ are solutions of:

¨̃w + w̃′′′′ − εN̂w̃′′︸︷︷︸
residual stress

− εŵ′′
∫ 1

0
w̃′ŵ′dx︸              ︷︷              ︸

geometry

= 0 (11)

Equation (11) represents the linear vibration of a straight
beam, modified by two additional terms: one associated to
the residual stresses N̂ and one related to the static deformed
geometry of the beam ŵ.

3.3 Discretisation
The two problems are discretised by expanding the un-

knowns on the linear modes basis {Φk} of the unbuckled prob-
lem without prestress:

ŵ(x) =

K∑
k=1

Φk(x)q̂k and w̃(x, t) =

K∑
k=1

Φk(x)q̃k(t) (12)

where qk is the modal coordinate and Φk =
√

2 sin(kπx) is
the normalised mode shape (

∫ L
0 Φ2

k(x)dx = 1) for the hinged-
hinged beam, solution of the linear problem Φ′′′′k −ω

2
kΦk = 0,

with ωk, the corresponding natural frequency.

3.3.1 Static problem

Introducing Eq. (12) into Eq. (9), multiplying the result
by Φk, integrating over the length of the beam and using the
orthogonality properties of the modes leads to the following
problem for the unknowns {q̂k}k=1...K :

ω2
k q̂k + εN̂

K∑
i=1

αk
i q̂i − Kk

0 = 0,

N̂ =
1
2

K∑
i=1

K∑
k=1

αk
i q̂iq̂k − N0.

(13a)

(13b)

where, according to the boundary conditions,

αk
i = −

∫ 1

0
Φ′′k Φidx =

∫ 1

0
Φ′iΦ

′
kdx is a nonlinear coupling

coefficient .
In Eq. (13a) we observe that the initial stress field appears
through N0 and Kk

0 =
∫ 1

0 M′′0 Φkdx.

We will see in section 4 that a simple uniform distribu-
tion of bending moment (M0(x) = M0 ∀x), associated to an
axial force N0, is sufficient to create a static deformation to
the beam very close to the one measured on the deformed
upper surface of the steelpan shown in Fig. 3(b) after the first
making step. The corresponding value of Kk

0 , computed with
M0(x) = M0[H(x) − H(x − 1)], is Kk

0 = −2
√

2M0kπ if k is
even, and zero if k is odd. One can notice that this uniform
distribution of bending moment is equivalent to two concen-
trated moments applied at the beam’s ends, x = 0 and x = 1.
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3.3.2 Dynamical problem of the prestressed beam

Modal expansion for Eq. (11) leads to the dynamical prob-
lem expressed with the modal unknows {q̃k}k=1...K :

¨̃qk + ω2
k q̃k + ε


N̂

K∑
i=1

αk
i q̃i︸      ︷︷      ︸

residual stress

+

K∑
i, j,l=1

αl
jα

k
i q̃ jq̂lq̂i︸             ︷︷             ︸

geometry


= 0 (14)

This dynamical problem allows to study linear vibrations around
the buckled equilibrium state.

Eq. (14) can be written in matrix formulation as
¨̃q + Aq̃ = 0, with

Aki = ω2
kδki + ε


−N0α

k
i +

1
2

K∑
i, j=1

αk
i α

l
jq̂ jq̂l︸                        ︷︷                        ︸

residual stress

+

K∑
j,l=1

αk
jα

l
iq̂ jq̂l︸         ︷︷         ︸

geometry


(15)

The eigenfrequencies of the dynamical problem (vibrations
around the buckled state) are finally given by diagonalizing
A.

Eq. (15) shows that two different kinds of added terms
have an influence on matrix A (and thus on the eigenfrequen-
cies): those arising from the residual stress state N̂, and those
from the deformed geometry ŵ. The influence of the resid-
ual stress on the eigenfrequencies can thus be quantified by
comparing the eigenvalues of A computed with (N̂ , 0) or
without (N̂ = 0) the corresponding term.

4 Numerical results and discussion
The static problem Eq. (13) is an algebraic equation for

the unknowns {q̂k}k=1...K depending on two parameters (N0,
M0). It is solved by a continuation method, implemented in
the software MANLAB, based on the asymptotic-numerical
method [3, 6]. The continuation procedure imposes the choice
of a control parameter λ linked to the initial stresses. We then
replace in the computation algorithm N0 by λN0 and M0 by
λM0, so that increasing λ leads to increase M0 and N0 in the
same proportion.

In the aim of comparing numerical results to the exper-
imental measurements, we use dimensioned variables. For
this, value of classical steel parameters, as ρ = 7500 kg/m3

and E = 210 MPa, are used. Also, we consider a beam with
a total length L = D = 567 mm, a thickness h = 1.3 mm, and
the maximal amplitude of ŵ as ŵ(L/2) ≈ 124 mm.

Two different cases are investigated, shown in Fig 7a.
First, we show a classical buckled state related to a pure ax-
ial loading (N0 , 0 and M0 = 0). We can notice that the
resulting deflection does not fit perfectly the measured shape
of the steelpan. Then, we add a bending moment (N0 , 0 and
M0 , 0) in order to increase the curvature near the bound-
aries. We observe that, for N0 = 30930 and M0 = 3093, the
buckled state perfectly fit the measured profile.
Figure 7(b) shows the two corresponding buckling diagrams.

We can see that in the first case, a perfect pitchfork bifurca-
tion is observed (only one solution branch has been reported
in the figure). When M0 , 0 a degenerate bifurcation is at
hand.

a)
0 0.1 0.2 0.3 0.4 0.5

0

0.05

0.1
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w
 [

m
]

b)

Figure 7: Static solutions: (−−) N0 , 0, M0 = 0 ; (—)
N0 and M0 , 0 (a) numerical results ŵ compared with the
experimental profile − ◦ − ; (b) corresponding buckling

digram for ŵmax = ŵ( L
2 )

Figure 8 presents the evolution of the mean value of the
local residual stress σ = N̂/S (with S = bh the cross-section
area of the beam) as a function of N0. In both cases, σ de-
creases until the buckling load (N0 = N0c) is reached. When
there is no added bending moment, for N0 > N0c, σ becomes
a negative constant. The system is in a compressive state.
When M0 , 0 and after the buckling load, σ is not a constant
and increases with N0. It becomes positive for N0 = 2414,
which means that from that point, the local stress repartition
shows a tensile behaviour. At the end of the computed branch
for which the buckled state corresponds to the experimental
one, the residual stress value has the same order of magni-
tude as the measurement, for a beam width b = 40 mm.

Figure 8: Residual stress evolution: (−−) N0 , 0, M0 = 0 ;
(—) N0 and M0 , 0
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Finally, to quantify the residual stress and geometry ef-
fects, Eq. (15) is plotted with and without the residual stress
terms (Fig. 9). We observe that before the beam buckled and
for small deformation, in both cases (M0 = 0 (Fig 9c) and
M0 , 0 (Fig 9d)), the residual terms decreases the eigenfre-
quencies values of about 15%. For N0 > N0c and for large
flexural deformations, the residual effect stays at a constant
value when M0 = 0 (Fig 9a) whereas when M0 , 0 (Fig 9b),
the gap between the eigenfrequencies computed with or with-
out the residual stress increases continuously.
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Figure 9: Impact of the residual stress state on the
post-buckled eigenfrequencies : for all pictures (—)

geometry only ; (—) geometry and residual stress terms. a)
N0 = [0 : 30000] and M0 = 0 ; b) N0 = [0 : 30000] and

M0 = N0/10. c) zoom of fig a: N0 = [0 : 10] and M0 = 0 ;
d) zoom of fig b: N0 = [0 : 10] and M0 = N0/10

5 Conclusion and future work
In order to model the first step of the steelpan making, we

have established a one-dimensional model of a prestressed
buckled beam. We showed that experimental deformation
is obtained when the initial stresses have two components:
an axial force and a bending moment. Experimental tensile
residual stress state is recovered. The eigenfrequencies of the
buckled beam are mainly determined by the geometry with a
residual stress state effect responsible of about 15% of their
value, which is the main result of this work.
This model will be expanded to circular plates with the aim
of being closer to the real experimental process.
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