Nonlinear contactless optoacoustic technique for crack detection and evaluation - Archive ouverte HAL Accéder directement au contenu
Communication Dans Un Congrès Année : 2012

Nonlinear contactless optoacoustic technique for crack detection and evaluation

Sylvain Mezil
Connectez-vous pour contacter l'auteur
Vitali Goussev

Résumé

Nonlinear techniques for non destructive testing provide cracks detection with high sensitivity. The frequency-mixing technique [J. Appl. Phys. 106, 036101 (2009)] is based on the absorption of two laser beams independently modulated at frequencies $f_L$ and $f_H$ (with $f_L{\ll}f_H$) and focused at the same spot, generating thermoelastic and acoustic waves, respectively. When the focusing is on a crack, the thermoelastic wave causes crack breathing, resulting in the generation of the frequency sidelobes $f_H{\pm}n f_L$ ($n=1,2,...$), absent otherwise. The technique can be implemented all-optically through detection by deflectometry or interferometry [Opt. Lett. 36, 3449 (2011)]. Here we report two-dimensional crack imaging with a 50 ${\mu}$ m resolution and a 40 dB range contrast. The theoretical model [J. Appl. Phys. 107, 124905 (2010)] explains frequency-mixing phenomena. Here we report an extension of the theory, including possible hysteresis in the crack breathing motion. The fit of the extended theory to the measured amplitudes and phases of the sidelobes provides opportunity to determine crack parameters. This research is supported by ANR project “ANL-MEMS” ANR-10-BLAN-092302.
Fichier principal
Vignette du fichier
hal-00810701.pdf (130.86 Ko) Télécharger le fichier
Origine : Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-00810701 , version 1 (23-04-2012)

Identifiants

  • HAL Id : hal-00810701 , version 1

Citer

Sylvain Mezil, Nikolay Chigarev, Vincent Tournat, Vitali Goussev. Nonlinear contactless optoacoustic technique for crack detection and evaluation. Acoustics 2012, Apr 2012, Nantes, France. ⟨hal-00810701⟩
188 Consultations
36 Téléchargements

Partager

Gmail Facebook X LinkedIn More