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An ultrasonic method for determination of acoustical and geometrical properties of a viscoelastic plate
immersed in a known fluid (water) is presented. The method utilizes plane longitudinal waves that
are normally incident upon a homogeneous plate with attenuation obeying a frequency power law and
dispersion described by Szabo’s model. It requires only the knowledge of the fluid properties and recording
of two chirps: one without and one with the specimen inserted between the transmitting and receiving
transducers. The transmission coefficient of the plate is measured and compared to the predicted one, in
which the diffraction of waves emitted by the transducer is taken into account. An inverse scheme based
on a nonlinear least squares algorithm allows then simultaneous determination of the plate thickness,
density, attenuation (longitudinal) and phase velocity at a given frequency. The technique involves an
estimation of standard errors of parameter estimates. An example is given and discussed for a Plexiglas
plate. It is shown that thickness and velocity are estimated with a good accuracy (10−3). Density is
estimated also with a reasonable accuracy (10−2), whereas estimated attenuation is less precise.

1 Introduction

The use of ultrasonic transmission coefficient in elas-
tic constant determination of materials is well known
[1] and valid for dispersive as well as nondispersive me-
dia. A detailed analysis of application of the through-
transmission method for measurements of thin plate prop-
erties was given by Kinra [2], in which one of the four
properties (longitudinal wave velocity, attenuation, thick-
ness or density) of an immersed thin plate, was deter-
mined assuming the three others are known. In this
paper, we propose a new method [3] for simultaneous
determination of all of these properties using ultrasonic
through-transmission immersion measurements at nor-
mal incidence. We assume the water properties are
known, and the plate is viscoelastic and homogeneous.

Unlike the traditional method that utilizes only the
amplitude information, our new method uses both the
real and imaginary parts of the transmission coefficient
of the plate and requires no phase-unwrapping. Accord-
ing to this method, parameters to be estimated are ob-
tained by performing a least squares fit between the the-
oretical and experimental data points.

The paper is organized as follows. In Sec. 2, the
theoretical transmission coefficient is first reviewed for
the plane wave propagation, with and without diffrac-
tion correction. The models for attenuation and dis-
persion are also presented. The experimental procedure
is described in Sec. 3 and a result for a specimen of
Plexiglas is given using three different central frequen-
cies of transducers. In the fourth section, an algorithm
based upon an inverse search in a six-dimensional space
is elaborated for the simultaneous determination of the
model parameters and. A good agreement between the-
ory and experiment is demonstrated. The sensitivity of
the algorithm to the plate parameters is studied. Fi-
nally, conclusions are given in Sec. 5.

2 Theoretical background

2.1 Transmission through a viscoelastic

plate at normal incidence

It is proposed to determine thickness, density, phase
velocity and attenuation of a viscoelastic plate using
only transmission measurement at normal incidence. To
illustrate this let us consider a parallel face plate im-
mersed in water. The harmonic plane wave transmission
coefficient for this plate, can be expressed, in complex

form, by

T =
2eγw(f)E[

Zw(f)
Zp(f) +

Zp(f)
Zw(f)

]
sinh [γp (f) E] + 2 cosh [γp (f) E]

(1)
where γw, γp are the complex propagation constants for
the longitudinal plane wave, in the water and the plate,
respectively, f is the frequency and E is the thickness
of the plate. Here Zw = iρw2πf

γw
and Zp =

iρp2πf

γp
are the

complex acoustic impedances of water and the plate,
where ρw and ρp denote the densities of the two media.

2.2 The models for attenuation and dis-

persion

Inside the plate, the complex propagation constant
can be written as

γp(f) = αp(f) + i
2πf

vp(f)
(2)

where vp(f) and αp(f) are the phase velocity and at-
tenuation. For a wide variety of materials, frequency-
dependent attenuation is typically modeled by a power-
law relation involving two constants α0p and n.

αp(f) = α0pfn (3)

where the power-law exponent n ranges from 0 to 2 for
most liquids and solids. To model the dispersion, a time
causal model developed by Szabo [4] is adapted. Szabo’s
model is a time-domain expression of causality analo-
gous to the Kramers-Kronig relations in the frequency
domain that link together the attenuation and disper-
sion. Using this model, we have for n �= 1:

1

vp (f0)
−

1

vp (f)
= −

α0p

2π
tan

(nπ

2

) (
fn−1 − fn−1

0

)
(4)

where f0 is a reference frequency at which a reference
phase velocity V0p = vp (f0) is defined. For the spe-
cial cases of n = 0 (frequency-independent media) and
n = 2 (viscous media), the model predicts no dispersion.
Based on Szabo’s model and on the attenuation power
law, the measurement of the acoustic attenuation and
velocity in the viscoelastic material reduces to the esti-
mation of the three parameters: V0p, α0p and n. Atten-
uation in water is taken to be a quadratic power of the
frequency: αw(f) = α0wf2. In this case, the dispersion
vanishes according to the model of Szabo: vw (f) = Vw.
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Using Eqs. (3) and (4), the three terms involved
in the transmission coefficient (see Eq. (1)) can be ex-
pressed by

Zpw(f) =
Zp(f)

Zw(f)
=

ρpV0p

ρwVw

×
α0wVwf + i2π

α0pV0pξ (f) + i2π
(5)

γp(f)E =
E

V0p

f {α0pV0pξ (f) + i2π} (6)

γw(f)E =
E

Vw

f (α0wVw + i2π) (7)

where

ξ (f) = fn−1 − i
(
fn−1

0 − fn−1
)

tan
(nπ

2

)
(8)

One can see that Eqs. (5) to (8) and therefore the
transmission coefficient T depend on five plate proper-
ties: velocity V0p, attenuation coefficient α0p, attenua-
tion exponent n, thickness E, and density ρp, and on
three properties of water: velocity Vw, attenuation co-
efficient α0w and density ρw. Eqs. (5) to (8) can be
rewritten so that they depend only on six parameters:

Zpw(f) = p4 ×
p6f + i2π

p3ξ (f) + i2π
(9)

γp(f)E = p2f {p3ξ (f) + i2π} (10)

γ(f)E = p1f (p6 + i2π) (11)

ξ (f) = fp5 − i (fp5

0 − fp5) tan

(
(p5 + 1) π

2

)
(12)

where the parameters p are given by

p1 = E
Vw

, p2 = E
V0p

, p3 = α0pV0p,

p4 =
ρpV0p

ρwVw
, p5 = n − 1, p6 = α0wVw

(13)

2.3 Transmission coefficient with diffrac-

tion

Investigations of the effect of diffraction on wave
propagation have been made by a number of authors in
the case of two identical circular transducers of radius
a. The transducer is usually treated as a finite piston
source. The acoustic field is found at each point in the
propagation medium and an integration is performed
over the receiving transducer surface. For the propa-
gation in a fluid medium, the diffraction correction ex-
pression can be defined as the sum 〈φ〉 (with diffraction)
divided by 〈φ0〉 (plane wave)

D (s) =
〈φ〉

〈φ0〉
= 1 − e−i 2π

s

[
J0

(
2π

s

)
+ iJ1

(
2π

s

)]
(14)

where s = 2πz
ka2 is the Fresnel parameter, k is the wavenum-

ber and z is the propagation distance. Here J0 and J1

are the zeroth and first order Bessel functions of the first
kind, respectively.

The objective here is to extend this analytical expres-
sion to the multiple transmission through a viscoelastic
plate [6]. A schematic of the problem is shown in Fig-
ure 1. Two transducers separated by a distance L are
placed in a water tank and aligned properly. If we use

Figure 1: Propagation at normal incidence.

s0 (t), sw (t) and sp (t) to designate the transmitted sig-
nal, the received signal with the water path only, and
the received signal with the plate inserted between the
two transducers, respectively, the Fourier transforms of
sw (t) and sp (t) can be found as following:

Sw (f) = S0 (f) D (sw) e−Lγw(f)Sr (f) (15)

and

Sp (f) = S0 (f) TwpTpwe−(L−E)γw(f)Sr (f)

×
∞∑

m=0

D (s2m+1) R2m
wwe−E(2m+1)γp(f) (16)

where S0 (f) is the Fourier transform of s0 (t) and Sr (f)
is the frequency response of the receiving transducer.
Twp = 2Zw

Zw+Zp
and Tpw =

2Zp

Zw+Zp
are the transmission

coefficients at the two water-plate interfaces. In Eq.
(16), the reflection coefficient Rwp =

Zw−Zp

Zw+Zp
, at the

water-plate interface, is used since multiple transmis-
sions are taken into account.

The diffraction corrections D (sw) and D (s2m+1) are
calculated according to Eq. (14) and using the appro-
priate values of the Fresnel parameter s, as follows

sw = vw(f)L

fa2 (17)

s2m+1 = 1
fa2 [(L − E) vw (f) + (2m + 1) Evp (f)]

for m ∈ {0, 1, 2, ∞)

(18)

From Eqs. (15) and (16), the transmission coefficient
with diffraction is given by:

T =
4Zpw(f)

[Zpw(ω)+1]2 eγw(f)Ee−γp(f)E

×
∞∑

m=0

D(s2m+1)
D(sw)

([
Zpw(ω)−1
Zpw(ω)+1

]2

e−2γp(f)E

)m (19)

As shown in the previous section, the transmission
coefficient without diffraction correction depends on six
dependent variables given by the set (13). It is conve-
nient to use the same parameters also to describe the
transmission coefficient with diffraction corrections. In
addition, we define two more parameters

q1 =
a2

(L − E)Vw

, q2 =
E

L − E
(20)

so that Eqs. (17) and (18) can be rewritten as:

sw = 1+q2

fq1
(21)
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s2m+1 = 1
fq1

[
1 + 2πq2p1(2m+1)

p2

[
2π−p3(f

p5
0 −fp5) tan

(
(p5+1)π

2

)]
]

for m ∈ {0, 1, 2, ∞)

(22)

Note that q1 and q2 are specially related to the trans-
ducers separation distance L and radius a.

3 Experiments

Figure. 2 exhibits a schematic of the experimental
set-up used for the trough-transmission measurements.
Three pairs of transducers are used, a set of 1 MHz
transducers (Panametrics V152), a set of 2.25 MHz
transducers (Panametrics V389) transducers, all having
a radius a = 19.05 mm, and a set of 5 MHz trans-
ducers (Panametrics V307) with a radius of 12.7 mm.
The pair of transducers and the plate are immersed in
a tank containing running water. The distance between
each transducer and the plate is fixed at 150 mm. The
two transducers are coaxially aligned to obtain maxi-
mum transmission. The transmitting transducer is ex-
cited with a 150 μs, hanning windowed chirp produced
with an arbitrary function generator (Agilent 33220A).

Two measurements are made: in the first, with the
plate in place, the received signal is acquired at the
temperature θ1, and then sampled and averaged using
a digital oscilloscope (Yokogawa DL9240L). This aver-
aged signal is called the plate signal, s1(t). Next, when
the specimen is removed, the received signal is recorded
as the reference signal, s2(t) at the temperature θ2. For
each signal, a digital thermometer (Traçable®) measures
the temperature of water to the accuracy of 0.05 °C.

In our experimental system, a signal drift in time
may be caused by the change of sound speed in wa-
ter due to the temperature change. This variation in
the immersion fluid temperature from the instant of the
through-sample measurement to the the instant of ref-
erence measurement will result in significant errors in
parameters determination. When temperature control
is not available in the experimental set-up, it is neces-
sary to compensate for the temperature changes. One
obvious way is to measure the temperature for both the
through-sample and through-water signals and use them
to calibrate the reference signal with the temperature
change. In this way, the correct experimental transmis-

Figure 2: A schematic of the through-transmission
set-up.
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Figure 3: (a) Waveforms for the whole acoustic field
transmitted through water and a Plexiglas sample. (b)

associated FFT magnitude.

sion of the plate is given by

Texp =
S1(f)

S2(f)
e

i2πfL
(

1
Vw(θ1)

−
1

Vw(θ2)

)
(23)

where S1(f) and S2(f) are the FFT of s1(t) and s2(t),
respectively.

Using the 2.25 MHz pair of transducers, the two sig-
nals transmitted through water and through a Plexiglas
plate of thickness E = 8 mm are shown in Figure 3(a).
The associated FFT magnitude of the two waveforms
are plotted in Figure 3(b).

4 Inverse procedure

As shown previously, the transmission coefficient with
diffraction correction is defined by the set of parameters
(p1, p2, p3, p4, p5, p6, q1, q2), which can be determined
from experimental data by inversion. For this purpose,
we employ the least squares method for the minimiza-
tion of the sum of squared deviations between the calcu-
lated Tcal and the experimental Texp transmission com-
plex coefficients considering parameters (13) and (20) as
variables in a multidimensional space

min
N∑

n=1

�e2
(

T
(n)
cal − T (n)

exp

)
+ �m2

(
T

(n)
cal − T (n)

exp

)
(24)

Here, N is the number of data points at different fre-
quencies, and �e and �m designate the real and imagi-
nary parts.
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4.1 Sensitivity analysis

Sensitivity analysis is a good indicator of inversion
stability because it allows one to determine whether a
parameter is clearly identifiable. Here we consider only
the local sensitivity which consists in changing only one
parameter at a time. In this case, we define a sensitivity
coefficient denoted Si which describes the variation in
the complex transmission with respect to small change
in one parameter:

Si =

√√√√√√√√

N∑
n=1

�e2
(

T
(1)
cal − T

(2)
cal

)
+ �m2

(
T

(1)
cal − T

(2)
cal

)
N∑

n=1

�e2
(

T
(1)
cal

)
+ �m2

(
T

(1)
cal

) (25)

where T
(1)
cal is the calculated transmission, computed with

standard parameters and T
(2)
cal is the calculated transmis-

sion updated when the value of a parameter is modified.
Table 1 provides the sensitivity coefficients Si cal-

culated for a 1%� increase in each parameter from its
reference value, with the other parameters set at their
reference values. Calculations are done using properties
typical for Plexiglas plate immersed in water, and re-
sults are provided for three different frequency ranges:
0.6-1.4, 1.5-3 and 3-6 MHz. Several conclusions can be
made. First, the transmission coefficient is most sensi-
tive to p1 and p2 which are related to the thickness and
wave velocity. Second the sensitivities to p3, p4, p5 and
q1 are significantly smaller. Third, the transmission co-
efficient is found to be extremely insensitive to changes
in p6 and q2. Therefore, in order to simplify the inver-
sion and reduce convergence difficulties that could arise
due to lack of sensitivity of the transmission coefficient
to p6 and q2, these two parameters will not be consid-
ered further in the inverse process. Finally, one can see
except for parameter p4, that the higher the frequency
range of interest, the higher the sensitivity coefficient,
so that all plate properties with the exception of den-
sity, can be determined with better precision from the
data measured at 5 MHz than at 1 MHz. It must be
noted here that the sensitivity coefficient, although be-

Table 1: The sensitivity coefficients Si calculated for a
1%� increase in each parameter.

Parameters Sensitivity coefficients Si (%�)

(+1%�) 0.6-1.4 MHz 1.5-3 MHz 3-6 MHz

p1 = E
Vw

85 189 370

p2 = E
V0p

48 106 205

p3 = α0pV0p 0.22 0.38 0.72

p4 =
ρpV0p

ρwVw
0.41 0.39 0.38

p5 = n − 1 0.46 0.83 1.7

p6 = α0wVw 0.00067 0.0032 0.012

q1 = a2

(L−E)Vw
0.11 0.14 0.17

q2 = E
L−E

0.022 0.016 0.016

ing a good indicator of the inversion stability, does not
fully reflect the accuracy of the reconstructed param-
eters. Other factors such as signal-to-noise ratio and
bandwidth used for reconstruction can significantly af-
fect the result.

4.2 Parameters identification

Our goal is to determine the five plate properties
(V0p, α0p, n, E, ρp) without any prior knowledge, as
is often required in practice. To realize this, first we
determine the set of parameters (p1, p2, p3, p4, p5, q1)
from experimental data by inversion. Next, considering
the properties of water (ρw, Vw, α0w) as known, the
plate properties are calculated as follows:

E = p1Vw, V0p = p1

p2
Vw, α0p = p3p2

p1Vw
,

ρp = p4p2ρw

p1
, n = p5 + 1

(26)

where the properties of water are taken to be Vw =
3.2246 θ+1420.02 m/s, ρw = −0.20783 θ+1002.31 kg/m3

and α0p = 3 × 10−14 Np/m/Hz2

The six parameters are determined simultaneously
using the Matlab® routine lsqnonlin, where the Gauss-
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Figure 4: Complex transmission of a 8 mm Plexiglas
plate calculated and measured in the 3-6 MHz

frequency range: (a) real and (b) imaginary parts.
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Table 2: Properties determined for the 8 mm Plexiglas plate using data measured at 1, 2.25 and 5 MHz.

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

Plexiglas (8 mm)

Frequency range
0, 6 − 1, 4 MHz 1, 5 − 3, 0 MHz 3, 0 − 6, 0 MHz

E (σE) [mm] 7.558 (0.009) 7.555 (0.005) 7.556 (0.005)

ρp (σρp
) [kg/m3] 1188.2 (20.4) 1188.5 (15) 1192.4 (21.1)

V0p
*(σV0p

) [m/s] 2741.6 (6.6) 2747.4 (3) 2745.6 (2.6)

α0p (σα0p
) [Np/m/Hzn] 2.47 (6.32) × 10−4 1.07 (1.13) × 10−4 9.2 (6.1) × 10−5

n (σn) 0.8 (0.18) 0.856 (0.072) 0.867 (0.043)

* f0 = 2.5 MHz

Newton or Levenberg-Marquardt algorithm is used. Lower
and upper bounds are specified for all the variables. Ini-
tial guesses are found from a forward procedure con-
sidering especially the periodicity and decreasing am-
plitude with frequency of the measured spectrum data.
Statistical confidence intervals and standard deviations
σ for the predicted parameters are then computed using
a combination of nlinfit and nlparci functions.

Figure 4 shows the experimental transmission coef-
ficient measured for the plate of Plexiglas in the 3-6
MHz frequency range. The red lines represent real and
imaginary parts calculated from the parameters deter-
mined. The comparison is found to be excellent. The
discrepancy between the two curves is very small: 0.5%.
Similar results are obtained for 0.6-1.4 MHz and 1.5-3
MHz frequency ranges.

Numerical values are compared in Table 2 for the
three frequency ranges. The value for the phase velocity
is determined at f0 = 2.5 MHz. Table 2 also presents
statistics (mean and standard deviation) of the parame-
ters reconstructed by the inverse algorithm. One can see
that error for ρp, α0p and n is larger than that for E and
V0p (properties responsible for minima positions) which
correlates with the sensitivity analysis presented in Ta-
ble 1. The most pronounced error is observed for α0p of
which values estimated for the three frequency ranges
are not close to each other. The error in α0p and n de-
termination is however smaller when data is measured
at 5 MHz, again in accordance with corresponding sen-
sitivities. In addition, the calculated resultant three fre-
quency phase velocity and attenuation using Eqs. (3)
and (4) indicate that although the measurements are
made under different measurement conditions such as
different transducers, temperature and sample surface
investigation, the results of dispersion and attenuation
measurements are quite stable and should be reliable.

5 Summary and conclusions

This paper describes an ultrasonic method that al-
lows simultaneous determination of some properties (thick-
ness, density, longitudinal phase velocity and attenua-
tion) of a viscoelastic plate immersed in water, using
measured transmission coefficient at normal incidence.
By introducing intermediate parameters, the number of
parameters describing the transmission coefficient with
diffraction correction is reduced. The sensitivity of the
proposed method to the individual parameters is studied

and the inversion is performed accordingly. The prop-
erties of the plate are calculated from the intermediate
parameters determined assuming the properties of water
as known.

It is shown that the largest standard deviation/mean
ratio for the thickness determined is about 0.11%, for
phase velocity 0.24%, for density 1%, and for attenua-
tion exponent and coefficient 23% and 260%. We con-
clude that even though the theory and the experiment
curves agree extremely well (see Figure 4), this data
cannot be inverted to deduce attenuation due to a lack
of sensitivity of transmission to α0p and n. However,
as the results suggest, estimation of n is comparatively
better than that for α0p. Also it can be noticed that the
estimation becomes more precise, in particular for α0p,
when high frequency data is used.

Identification results from other specimens demon-
strate the accuracy of our method. The attenuation
power law and the dispersion predicted by the Szabo’s
model are found to be suitable for modeling the vis-
coelastic nature of these samples.
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