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The subject of reverberation time in non-diffuse environments has been of considerable interest since the 
inception of room acoustics in the early twentieth century. Various prediction methods have been developed with 
the aim of accurately predicting the reverberation time of an enclosure under these circumstances; a completely 
universal method has yet to be devised. This paper examines the decay processes in rooms where absorption is 
unevenly distributed, which is a common occurrence in practice and often leads to a non-diffuse sound field. In 
order to establish the nature of these decay processes, a seven-subsystem Statistical Energy Analysis model has 
been developed, based initially on the axial, tangential and oblique mode groups and then extended to include the 
dimensions of formation. The damping and coupling loss factors are established analytically from the absorption 
and scattering coefficients of the walls respectively. For homogeneous (evenly distributed absorption) rooms, the 
relative diffusivity is established using the absorption and scattering parameters.  For non-homogeneous 
enclosures, the validity of the results obtained using this method is tested using various computer simulations. 

1     Introduction 
In 1959, Fitzroy [1] published a paper highlighting the 

fallibility of the Sabine formula as a method for predicting 
the reverberation time of rooms with a non-uniform 
absorption distribution. One prominent example featured a 
ceiling with all-over acoustical treatment, leaving the floor 
and walls relatively untreated. Here, it was shown that the 
Sabine formula predicted reverberation times that were far 
shorter in duration than the measured reverberation times. 

These inaccuracies have serious implications in the 
realm of building acoustics; new structures in the UK 
typically have to comply with regulations set out in 
Approved Document E [2] and Building Bulletin 93 [3], 
and imprecise predictions may result in the regulations not 
being met or excessive treatment being applied.  

Unfortunately, rooms with uneven absorption 
distributions are more common in practice than ideal 
‘Sabine’ rooms, and so a variety of methods have been 
devised for the purpose of overcoming this problem, 
ranging from modified prediction formulae [1, 4-6] to ray-
tracing computer software such as CATT-Acoustic [7] and 
ODEON [8].  

Nilsson [9] studied the absorbing ceiling scenario 
extensively, and postulated a method for this particular 
case. The method is based on Statistical Energy Analysis 
(SEA), a high-frequency energy transmission model used 
for predicting the transmission of sound in complex 
structures with many resonant modes [10]. Here, the sound 
field is sub-divided into two components, comprising 
grazing modes and non-grazing modes (where the latter are 
at oblique incidence to the ceiling), for calculating the 
reverberation time.  

This work aims to extend such an SEA model to 
accommodate arbitrary absorption distributions, which can 
be achieved by sub-dividing the sound field into the axial, 
tangential, and oblique mode groups, and then sub-dividing 
further by accounting for the possible direction(s) of the 
mode groups (shown in Figure 1). The result is a seven-
subsystem SEA model. 

2    Energy Decay Modelling 
There are several advantages offered through using SEA 

for predicting reverberation times. One of the most crucial 
benefits is that the SEA model calculates the total acoustic 
potential energy in the enclosure as a function of time, and 
so a theoretical energy decay curve is obtained. This gives 
far more insight into the acoustic characteristics of the 
rooms than a prediction formula would reveal, particularly 
in regards to the decay processes. In particular, an enclosure           

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Possible directions associated with a) axial modes 
b) tangential modes c) oblique modes. 

with a sound field that is approximately diffuse will exhibit 
an almost linear decay curve. Conversely, the decay curves 
of rooms with non-diffuse sound fields are typically non-
linear due to the presence of multiple decay rates that 
depend on the direction of the sound waves. In the SEA 
model, the energy decay rates are primarily determined by 
the damping loss factors ߟௗ and the coupling loss factors ߟ௖, 
and so the relative ‘diffusivity’ of the modelled enclosure 
can be directly attributed to these parameters.  

It is also possible to relate the damping loss factors and 
coupling loss factors of the modelled enclosure to the 
absorption and scattering coefficients of each surface 
respectively. The latter offers an advantage to the 
experimental approach suggested by Nilsson [9] in terms of 
simplicity, given that no additional measurements are 
required. Furthermore, these definitions allow various SEA 
phenomena to be explained easily in physical terms; for 
instance, if the Smith criterion for strong coupling [10] is 
satisfied (ߟ௖ ≪  ௗ), the law of equipartition applies, whereߟ	
the modal energies are equal and the coupling loss factors 
become irrelevant.  In this case, the decay curve is linear, 
and the sound field in the enclosure is therefore diffuse.  

Additional parameters for the SEA model include the 
mode counts and initial energies of each subsystem. 
Analytical expressions for these variables can be derived 
fairly easily using the wave-theoretical analysis presented 
by Morse and Bolt [11] in the 1940’s, and are illustrated in 
the next section alongside the loss factors.  

a)

b)

c)
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It is standard procedure to express the reverberation 
time of an enclosure in terms of octave or one-third octave 
frequency bands. The SEA model utilises the octave bands 
by expressing the various parameters according to the 
angular frequency limits ߱௟௢௪௘௥,௨௣௣௘௥	 and centre frequency ω௖ of the octave band in question.  

3    Theory       

3.1    SEA Modelling 
By assuming that the system has reached a steady-state and 
the source is turned off, the vector of energies {۳(ܜ)} will 
decay from its initial values {۳(૙)}. In this case, the decay 
processes can be modelled by a series of coupled equations: 

																							 ddt {۳(t)} + ω௖ۺ{۳(t)} = ݐ											0 ≥ 	0																				(1) 
where ۺ is the 7 x 7 loss factor matrix that contains the 
damping loss factors ߟ௜ and coupling loss factors ߟ௜௝:  
ۺ																								 = ൦ηଵ + ξଵ −ηଶଵ ⋯ −η଻ଵ−ηଵଶ ηଶ + ξଶ ⋯ −η଻ଶ⋮ ⋮ ⋱ ⋮−ηଵ଻ −ηଶ଻ ⋯ η଻ + ξ଻൪.																	(2) 
Here, the parameter ߦ௜ is determined using: 

௜ߦ																																																			 =෍ߟ௜௝.ே
௜ஷ௝ 																																									(3) 

where ݅ and ݆ denote the transmission and recipient 
subsystems respectively. Information on the mode groups 
and relevant dimension(s) for each subsystem is shown in 
Table 1. 

Table 1: Details of SEA subsystems. 

 

 

 

 

 

 

The decay constants of the uncoupled subsystems are found 
from the eigenvalues ઩ of the loss factor matrix, and the 
uncoupled energies are obtained from the eigenvector 
matrix ઴.  Taking the Laplace transform of Eq. (1) and pre-
multiplying by ઴ then yields the general solution to Eq. (1):  																													{۳(t)} = diag(઴{۳(0)}){ି܍ன೎઩ܜ}																								(4) 
However, it should be noted that the eigenvector 
components in ઴ are typically subject to arbitrary scaling, 
which is undesirable. The eigenvector matrix ઴ can be 
rescaled appropriately to ઴ࡿ such that the contributions of 
each of the eigenvector components are the same, and is 
achieved using: 									઴ࡿ = {઻}઴,										{઻} = ({۳(૙)}۷)ିଵ૖ିଵ{۳(૙)}.														(5,6) 

Once the modified eigenvector matrix ઴ࡿ is substituted into ઴, the total energy in the enclosure as a function of time 
can be established by applying Eq. (4), and then summing 
the energy vector {۳(t)} for each time block. The 
derivations of each parameter in Eq. (4) are explained in the 
next section. 

3.2     SEA Parameters 
Since ઩ and ઴ can be obtained from the loss factor 

matrix, the primary unknown in Eq. (4) is the vector of 
initial energies{۳(0)}. This parameter is ascertained using 
the 7 x 1 energy-per-mode vector {۳܍܌ܗܕ} and the 7 x 1 
mode count vector, denoted as {܍܌ܗܕۼ}:  																																	{(0)۳} = diag(۳܍܌ܗܕ){܍܌ܗܕۼ}																															 							{܍܌ܗܕۼ} = [N௔௫ N௔௫ N௔௫ N௧௔௡ N௧௔௡ N௧௔௡ N௢௕]܂								(7,8) 
where N௔௫, N௧௔௡ and N௢௕ are the mode counts of each 
subsystem in Table 1. The expressions for Eq. (8) are 
obtained from Kuttruff’s eigenfrequency lattice [12]: 

N௔௫ = ൫݇௨௣௣௘௥ − ݇௟௢௪௘௥൯ܮ௫,௬,௭ߨ  

	N௧௔௡ = ௫,௬,௭൫݇௨௣௣௘௥ଶܮ௫.௬.௭ܮ − ݇௟௢௪௘௥ଶ ൯	4ߨ − ൫ ௔ܰ௫,௜ + ௔ܰ௫,௝൯2  

௢ܰ௕ = ܸ൫݇௨௣௣௘௥ଷ − ݇௟௢௪௘௥ଷ ൯6ߨଶ −	 ௧ܰ௔௡,௧௢௧2 − ௔ܰ௫,௧௢௧4 						 
௧ܰ௔௡,௧௢௧ = ൫ ௧ܰ௔௡,௜௝ + ௧ܰ௔௡,௜௟ + ௧ܰ௔௡,௝௟൯	 																													 ௔ܰ௫,௧௢௧ = 	 ൫ ௔ܰ௫,௜ + ௔ܰ௫,௝ + ௔ܰ௫,௟൯																							(9) 

where ݈ is an additional subsystem subscript, ܮ௫,௬,௭ is the 
room dimension in the direction of the relevant subscript, ܸ 
is the room volume, and ݇௨௣௣௘௥ and ݇௟௢௪௘௥  are the upper 
and lower limits of the octave band respectively, in terms of 
the acoustic wavenumber ݇.  

The decay processes of the enclosure are determined by 
the relative energy levels of the subsystems, and it is 
therefore reasonable to normalise {۳܍܌ܗܕ} such that the 
energy-per-mode of the oblique mode group is unity. It is 
shown by Morse and Bolt [11] that if the mode shapes are 
normalised, an axial mode has approximately four times 
more energy than an oblique mode, and a tangential mode 
has twice the energy of an oblique mode. Therefore:  																												{۳܍܌ܗܕ} = [4 4 4 2 2 2  	(10)																										܂[1
The damping loss factors of the subsystems were calculated 
using three different methods for the purposes of analysis 
and comparison [13], where the most appropriate method 
was chosen for each case. First, the damping loss factors for 
each individual surface were ascertained according to the 
incidence of the waves that form the subsystem in question 
to the surface (i.e. normal-incidence, two-dimensional 
random-incidence, three-dimensional random-incidence, 
and grazing-incidence). The total damping loss factors were 
then obtained by summing the individual damping loss 
factors for each surface accordingly.  

The normal-incidence damping loss factor ߟ௡௢௥௠,௜ is 
found from the normal-incidence absorption coefficient ߙ௡:     

௡௢௥௠,ௐߟ	 = cosିଵ ൬(ߪ − 1)(ߤ + ܴ௡ଶ)2ܴ௡(ߪ + (ߤ ൰ܮ௫,௬,௭	݇௖ ߪ			, = 1 + ܴ௡ଶ + 2ܴ௡,			 

Subsystem Mode Groups Direction(s)
1 Axial
2 Axial
3 Axial
4 Tangential
5 Tangential
6 Tangential
7 Oblique -

ݖݕݖݔݕݔݖݕݔ
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ߤ								 = 2(1 + ܴ௡ଶ − 2ܴ௡), ܴ௡ = ට1 −  (11,12,13,14)								2݊ߙ
where ݊ is the surface subscript, ܴ௡ is the reflection 
coefficient of the surface, and ݇௖ is the centre frequency of 
the octave band in terms of the acoustic wavenumber. In 
order to apply Eq. (14), it is assumed that ܴ௡ is real, which 
holds provided the surface is sufficiently rigid.  

The expressions for the two-dimensional (tangential) 
and three-dimensional (oblique) random-incidence damping 
loss factors (ߟଶ஽,௡ and ߟଷ஽,௡ respectively) are: 

ଶ஽,௡ߟ = − ܿ଴ ln൫1 − ௫,௬,௭ܮ௖߱ߨ௥,௡൯ߙ ଷ஽,௡ߟ			, = −ܵܿ଴ ln൫1 − ௥,௡൯4߱௖ܸߙ 		(15,16) 
where ܿ଴ is the speed of sound in air and ߙ௥,௡ is the 
random-incidence absorption coefficient of the surface. It 
should be noted that Eq. (16) only holds if the sound field is 
diffuse; for the non-diffuse case, Eq. (16) reverts to: 

ଷ஽,௡ߟ																											 = −2ܿ଴ ln൫1 − ௫,௬,௭ܮଶ߱௖ߨ௥,௡൯ߙ 																																		(17) 
The grazing-incidence loss factor was obtained using a 
method shown by Nilsson [9] for a pressure-release surface: 

௚௥௔௭.௡ߟ																						 = ଶ2ߨ	 ൥ߞ௡ ቆ 1݇௖ܮ௫,௬,௭ቇଷ൩																																(18) 
where ߞ௡ is the non-dimensional acoustic impedance of the 
surface, which is assumed to be real. This enables the total 
damping loss factors for each type of subsystem (ߟ௔௫,  :௢௕) to be calculated usingߟ,௧௔௡ߟ

௔௫ߟ	 =෍ߟ௡௢௥௠,௡ଶ
௦ୀଵ +෍ߟ௚௥௔௭,௡ସ

௦ୀଵ ௧௔௡ߟ			,	 =෍ߟଶ஽,௡ସ
௦ୀଵ +෍ߟ௚௥௔௭,௡ଶ

௦ୀଵ ,
௢௕ߟ =෍ߟଷ஽,௡଺

௦ୀଵ 																																													(19) 
These damping loss factors are shown as a function of the 
average absorption coefficient for a homogeneous 5 x 4 x 3 
metre enclosure in Figure 2 as an example.  

 

 

 

 
 

 

Figure 2: The damping loss factors as a function of the 
absorption coefficient. The centre frequency of the octave band 

is 1 kHz, and it is assumed that the sound field is diffuse. 

The coupling loss factors were obtained using the power  
transmission ௜ܹ௝  between the subsystems ݅ and ݆, which is 
ascertained from the random-incidence scattering 
coefficient ݏ by assuming a Lambertian scattering surface. 
The following equation is then applied:  

௜௝ߟ																																														 = ௜ܹ௝߱௖ܧ௜ 																																													(20) 

The expressions for the coupling loss factors of an 
individual surface are: 

௔௫,௔௫,௡ߟ = ௔௫,௧௔௡,௡ߟ			,0 = ௧௔௡,௢௕,௡ߟ = 8ܿ଴ܵ௡ ௝ܰ1)ݏ − ௖ܸ߱ߨ(௥,௡ߙ ௛ܰ௘௠ ,		 
௔௫,௢௕,௡ߟ = 2ܿ଴ܵ௡ ௝ܰݏ൫1 − ௖ܸ߱ߨ௥,௡൯ߙ ௛ܰ௘௠ ,	 

௧௔௡,௧௔௡,௡ߟ = 32ܿ଴ܵ௡ ௝ܰݏ൫1 − ଶ߱௖ܸߨ௥,௡൯ߙ ௛ܰ௘௠ 		 																										 ௛ܰ௘௠ = 4 ௢ܰ௕ + 2 ௧ܰ௔௡,௧௢௧ + ௔ܰ௫,௧௢௧																				(21) 
where ܵ௡ is the area of the surface, ௛ܰ௘௠ is four times the 
total number of modes in the enclosure within the octave 
band and ௝ܰ is the number of modes in the recipient 
subsystem. It is possible to swap the initial and recipient 
subsystems by simply altering ௝ܰ for the new recipient 
subsystem. The total coupling loss factors are then obtained 
by summing the contributions of each of the common 
surfaces shared by the two subsystems: 

௔௫,௜ߟ			 = ෍ ௔௫,௜,௡ଶߟ̅
௡ୀଵ ௧௔௡,௔௫ߟ			, = 	෍ ௧௔௡,௔௫,௡ଶߟ̅

௡ୀଵ ,								 
௧௔௡,௧௔௡ߟ = ෍ߟ௧௔௡,௧௔௡,௡ଶ

௡ୀଵ ௧௔௡,௢௕ߟ			, = ෍ߟ௧௔௡,௢௕,௡,ସ
௡ୀଵ 	 

௢௕,௔௫ߟ																				 = ෍ߟ௢௕,௔௫,௡ଶ
௡ୀଵ , ௢௕,௧௔௡ߟ = ෍ߟ௢௕,௧௔௡,௡ସ

௡ୀଵ 									(22) 
where 

௔௫,௜,௡ߟ̅									 = 	 ൜ 			.ݐݏ݅ݔ݁	ݏ݂݁ܿܽݎݑݏ	݊݋݉݉݋ܿ	݋݊	݂݅								0			ݐݏ݅ݔ݁	ݏ݂݁ܿܽݎݑݏ	݊݋݉݉݋ܿ	݂݅						௔௫,௜,௡ߟ ௧௔௡,௔௫,௡ߟ̅					 (23)						 = 	 ൜ 			.ݐݏ݅ݔ݁	ݏ݂݁ܿܽݎݑݏ	݊݋݉݉݋ܿ	݋݊	݂݅											0			ݐݏ݅ݔ݁	ݏ݂݁ܿܽݎݑݏ	݊݋݉݉݋ܿ	݂݅				௧௔௡,௔௫,௡ߟ 			(24) 
The total coupling loss factors are shown as a function of 
the scattering coefficient for the 5 x 4 x 3 metre enclosure 
in Figure 3. The centre frequency is 1 kHz and ߙ௥	is 0.05. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: The coupling loss factors as a function of the 
scattering coefficient.  

From Figure 3, it is evident that coupling is strongest into 
the oblique mode group and weakest into the axial mode 
groups. Therefore, if the scattering coefficient is 
sufficiently high, the subsystem energies will couple into 
the oblique mode group, which will thus dominate the 
decay process and result in an approximately diffuse field. 
The converse is true if the scattering coefficient is small. 
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4    Simulations    

4.1    Homogeneous Enclosures     

The reverberation time of a homogeneous 5 x 4 x 3 
metre enclosure obtained using the SEA model is shown as 
a function of the average scattering coefficient in Figure 4.  

 

 

 

 

 

Figure 4: Reverberation time 	 ଺ܶ଴	at 1 kHz  (ߙ௥ = 0.1) . It is 
evident that ଺ܶ଴	tends to a limiting value as ݏ is increased. 

 
Once the scattering coefficient is high enough for the 
reverberation time to remain constant, the Smith criterion 
for strong coupling is satisfied, and the decay curve is 
linear, corresponding to a diffuse field. Therefore, the 
diffusive state of a homogenous enclosure can be 
established from the average absorption and scattering 
coefficients by calculating the normalised gradient ߙ)ܬ௥,  (ݏ
of the reverberation time curve, as shown in Figure 4. This 
parameter is ascertained from the following expression: 

,ݎߙ)	ܬ																																			 (ݏ 	= ߲ ଺ܶ଴߲ݏ ଺ܶ଴(ߙ௥, 0)ൗ 																							(25) 
The resulting ‘diffusivity indicators’ are obtained for the 
enclosure shown in Figure 4, and are illustrated for the 500 
Hz and 2 kHz octave bands in Figure 5.  

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 5: Variation of ܬ	ݎߙ),  with the average absorption and (ݏ
scattering coefficient at a) 500 Hz and b) 2 kHz. The dark red 
and blue regions on the left of the figures (ߙ௥ < 0.8) indicate 

large and small reverberation time gradients respectively. 

In this case, the sound field is diffuse for values of ܬ	ߙ)௥,  (ݏ
lower than 0.05 − 0.1. From Figure 5, it is evident that there 
are fewer combinations of absorption and scattering 
coefficient that result in a diffuse field at 500 Hz than for 2 
kHz, thereby confirming that the sound field is more likely 
to be diffuse at high frequencies.  

In addition, Figure 5 shows that the sound field is 
diffuse for a large range of scattering coefficient values if 
the absorption coefficient is small (ߙ௥ < 0.1). However, the 
possible combinations for a diffuse field become 
increasingly restricted to larger scattering coefficient values 
as the absorption coefficient is increased, which highlights 
that the sound field is less diffuse when the average 
absorption coefficient is large.  

The reverberation time of the enclosure is also 
ascertained as a function of the average absorption 
coefficient ߙ௥ using the SEA model. The ଺ܶ଴ values are 
compared with results obtained with the Sabine, Eyring 
[14] and EN 12354-6 [6] prediction formulae in Figure 6. 

 

 

 

 

Figure 6: Reverberation times at 2 kHz obtained using the 
SEA model (ݏ = 0.5)  and various prediction methods. 

Figure 6 shows that the SEA model agrees well with 
Eyring’s formula until ߙ௥ ≈ 0.5, where the SEA model gives 
longer predictions. In Figure 5b), the point ݏ = 0.5, ݎߙ = 0.5 
lies on the boundary between diffuse and non-diffuse 
behaviour, and so the deviation can be explained by the 
decreasing diffusivity of the sound field. Thus, the 
diffusivity indicators can be used to verify the validity of 
the diffuse field assumption used by the Sabine and Eyring 
formulae before predictions are made. 

4.2    Non-Homogeneous Enclosures     

In the more general case of uneven absorption distribution, 
it is not normally possible to apply the specific techniques 
shown in the previous section. Instead, the mid-frequency 
reverberation time ௠ܶ௙ of a 10 x 9 x 8 metre enclosure is 
obtained using the SEA model for various absorption 
distributions. These results are then compared to the ௠ܶ௙ 
predictions made using other prediction methods, in order 
to establish the consistency of the SEA model in the non-
homogeneous case. Here, ௠ܶ௙  was calculated using: 

																																					 ௠ܶ௙ = ହܶ଴଴ + ଵܶ௞ + ଶܶ௞3 																														(28) 
where ହܶ଴଴ is the ଺ܶ଴ reverberation time in the 500 Hz 
octave band etc. The scattering coefficient was kept 
constant for each surface (ݏ =  ௥ was defined asߙ ;(0.08
0.05 for an untreated wall and 0.8 for an absorbing wall. 
The results are shown in Table 2 overleaf.   
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Table 2: Predicted ௠ܶ௙ values (C – ceiling treatment, F – 
floor treatment, W3/W4 – treatment on side walls). 

 
 
 
 
 

 

It is suggested in Table 2 that the predictions made with the 
SEA model are generally consistent with the results 
obtained using the CATT-Acoustic model and the Arau 
prediction method. However, there is an exception for the 
case where the ceiling, floor, and side walls are acoustically 
treated; the prediction obtained using the SEA model is far 
longer than all other predictions except that of Fitzroy’s 
equation, which tends to overestimate ଺ܶ଴.   

This apparent discrepancy can be explained by 
examining the SEA decay curves illustrated in Figure 7.  

 
 

 
Figure 7: Energy decay curves of each subsystem in the 

SEA model, including the total energy decay curve. 

Figure 7 shows that the start of the decay is dictated by the 
oblique mode group, which contains the most energy due to 
the large number of modes. At approximately -30 dB, an 
abrupt break point occurs, where the decay rate is 
determined by the ݔ-direction axial mode group, and hence 
the decay curve becomes non-linear. This is because the ݔ-
direction axial mode group forms across the end walls, 
thereby circumventing the absorbing surfaces, which results 
in a relatively small decay rate and a long ଺ܶ଴ prediction. 

Due to the discrepancy, it is uncertain whether SEA 
predictions are valid for cases where absorbing material is 
placed on all surfaces except those that are normal to the 
longest room dimension; more experimental data is 
required to make this judgement. It may be possible that the 
effect of lateral damping is underestimated, which would 
explain the long predicted reverberation time.  

Having said this, it should also be noted that the 
scattering coefficient is very small in this case. Increasing 
the scattering coefficient would have the effect of reducing 
the abruptness of the break point through increased 
coupling, which will reduce the ଺ܶ଴ prediction.  

In short, the SEA model has the potential for predicting 
the reverberation time in rooms with uneven absorption 
distributions, subject to further experimentation.    

5    Conclusions 
The SEA model presented by Nilsson was extended to 

accommodate arbitrary absorption distributions. A method 
of obtaining the damping and coupling loss factors from the 
absorption and scattering coefficients respectively was 
proposed. For homogeneous rooms, it was found that the 
results tended towards Eyring’s formula, and the relative 
diffusivity of the room could be obtained from the gradient 
of the reverberation time curve. For non-homogeneous 
rooms, simulations showed that the SEA model generally 
gave consistent results, except for the case where 
absorption was placed on the ceiling, floor, and side walls.  
     Suggestions for future work include obtaining more 
experimental data for comparing with SEA predictions (one 
such comparison was conducted in [13] with varying 
degrees of success), as well as extending the SEA model 
further to include more complex scenarios, such as 
enclosures with non-homogeneous surfaces.   
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