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Internal material defects detection by ultrasound non destructive testing is widely used in industry, ultrasonic 
data are obtained from travelling waves inside the matter and captured by piezoelectric sensors. The natural 
inhomogeneous and anisotropy character of steel made material causes high acoustic attenuation and scattering 
effect. This adds complexity to data analysis. In this research we address the non linear features of back scattered 
ultrasonic waves from steel plates and welds. Indeed structural noise data files captured from specimens, and 
processed by a wavelet energy filtering approach, show significant insights into the relationship between 
backscattered noise and material microstructures. This algorithm along with correlation coefficients, residuals 
and interpolations calculations of processed ultrasonic data seems to be a well-adapted signal analysis tool for 
viewing material micro structural dimension scales. Experiments show a challenging 3D interface between 
material properties, calculations and ultrasonic wave propagation modelling. As well as they indicate a quasi 
linear signal energy distribution at micro structural levels. It suggests probable incidence of microstructure 
acoustic signatures at different energy scales of the material phases. Multi polynomial interpolations of the 
processed noise data exhibit an attractor shape which should involves chaos theory noise data.  

1 Introduction 
Acoustical characterization is an important item in 

materials testing; it takes significant status during 
fabrication and “in service inspection” process. Ultrasonic 
techniques have been commonly used in power and 
petrochemical industries for nearly 50 years. However, cast 
or welded austenitic components remain difficult to reliably 
and effectively examine. In some devices grains 
orientations produce ultrasonic beam divergence and 
splitting mainly in the case of multi-pass welds when the 
re-melting process after each pass causes complex 
solidification process. Anisotropic grains large size 
compared with acoustic pulse wavelength, affects coarsely 
ultrasound propagation; by causing severe attenuation, 
changes in velocity and energy scattering [1]. Sound beam 
refraction and reflection arising at grain boundaries induce 
defects incorrectly reported, specific volumes of materials 
not examined or both [2].  Various industrial inspections on 
dissimilar components confirm the consequence of these 
physical phenomena on ultrasonic inspection 
implementation. Some experimental studies as in [3] and 
[4] confirm grain size influence on attenuation and noise, in 
addition to a frequency filtering when the wavelength is 
equal to the average grain diameter. Therefore, it seems to 
be essential to make relationships between material micro 
structural features and ultrasonic beam acoustic 
characteristics.  And try to examine micro structural 
parameters which are the source of attenuation and 
structural noise origin. As ageing and environment 
consequence on failure mechanisms cannot be sufficiently 
predicted by traditional methods, computational modelling 
of materials behaviour is becoming a reliable tool to 
emphasize scientific investigations and to match up 
theoretical and experimental approaches. This requires not 
only development of improved processing techniques but 
also better understanding of material structure. These 
conditions implicate multiple length scales analysis and 
multiple implementation steps. 

In this paper we present a new structural noise features 
analysis based on an energy smoothing algorithm. The new 
de-noising algorithm performs an accurate signal analysis 
as well as detection of little defects of 1mm. The following 
experiments obtained from structural noise signal captured 
from a steel plate, will give significant insights into the 
relationship of backscattered noise and microstructures 
which can help to micro structural dimension scales 
understanding 

2 Ultrasonic s noise features : 
overview and challenge 

Since ultrasonic signal is transient, non-stationary, and 
limited in time and frequency, extraction and analysis of the 
useful information remain difficult. Basically, flaw 
visibility is corrupted by electrical, pulse, ringing, structure 
noises or spurious signals. Commonly acoustic noise is 
assumed to be gauss random variable with zero averaging 
and limited band power spectrum function [1] [2]. Various 
signal processing techniques were investigated to interpret 
waveform data and extract useful information for further 
diagnostic and predictive purpose. In the literature, there 
are three main categories of waveform data analysis: time 
domain, frequency domain and time frequency analyses. 
The first calculates typical attributes as descriptive statistics 
(mean, peak, standard deviation, high order statistics etc.), 
and extract features by the use of autoregressive parametric 
models. However the complexity of the model order 
estimation carries on complicated modelling. In frequency 
domain, spectral analysis is certainly the oldest technique 
that presents the hidden view of the signal. Incompatible for 
transitory signals and non stationary data, its efficiency is 
limited. To solve this problem, time-frequency distribution 
approved several reliable techniques such as short-time 
Fourier transform (STFT), Wigner-Ville distribution and 
wavelet transform. Wavelet transform is one of the most 
successful processing techniques able to withdraw the non 
stable characteristics of the signal. 
Several applications of wavelet transform for defect 
detection were proposed, using continues wavelet transform 
enriched with recent techniques, discrete or multiresolution 
analysis and wavelet packet transform [9] [10]. An 
interesting synthesis of these techniques is presented in 
[11]. Similar to the time frequency distribution, wavelet is a 
time scale representation. It expresses the signal in a series 
of oscillatory functions with different frequencies at 
different times.  Its main advantage is its ability to produce 
high frequency resolution at low frequencies and high time 
resolution at high frequency, for signal with long duration 
low frequencies and short duration high frequencies. This 
provides facilities to noise cancellation in natural signals 
[2] [6] [7]. 

The aim of this work is to propose a new method based 
on wavelet analysis optimization. In this paper, wavelet 
multiscale analysis was investigated with a forecast 
viewpoint, as a powerful computational tool for noise 
discrimination and features extraction. This idea has 
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emerged after having examined continuous, discrete, 
wavelet packet and dual transforms on natural signals from 
heterogeneous materials, mostly welding defects signals. 
More details of this works are given in [12] [13] [14]. In 
this work the structural noise features are extracted by a 
new energetic smoothing algorithm which permits the 
identification of the noise analyzing function and 
invalidation of the noise random nature. The energetic 
extraction of the noise and the useful signal has provided 
easy filtering with enhanced defect detection in natural 
ultrasonic signals from steel pieces with artificial flaws and 
welding defects 

3 The energy approach 
Since useful ultrasonic energies are clustered in the 

signal central frequency band and the defects energy fit 
lower frequencies than the structural noise. So the energetic 
analysis provides a larger view of the signal energetic 
configuration and permits as well as easy extraction of the 
noise. 

Wavelet basis functions as described in the Mallat’s 
book [7] are constructed by dyadic dilation (index j) and 
translation (index k) of a mother wavelet: 

 

                                      (1)     
             

Wavelet transform is characterized by two functions the 
scaling function (2) and its associated wavelet (3): 

                     

                              (2) 
      

           k)             (3) 
             
Where g (k) is a suitable weighting sequence and h (k) 

is the refinement filter 
The orthogonal aspect of wavelet transform provides for 

any function f(x) vectors of atoms composed by detail 
coefficients (4) and approximation coefficient (5) which 
characterize the atomic decomposition of f(x): 

 
         (4) 
              (5) 

               
Subsequently wavelet transform with a depth j can be 
adjusted by (6): 
  

 фjk    (6) 
 
3.1 From atomic representation to energy 
distributions  

 
The purpose of the energy distributions is to distribute 

the energy of the signal over time and frequency.  The 
starting point is that since the energy of a signal x can be 
deduced from the squared modulus of either the signal or its 
Fourier transform, we can interpret |x(t)|2 and |x(v)|2 as 
energy densities, respectively in time and in frequency. It is 
then natural to look for a joint time and frequency energy 
density ρz (t, v), such that:  
    

  (7) 
 

3.2 Wavelet smoothing method 
Smoothing is an estimation technique that takes into 

account both past and future observations, and can be more 
accurate than filtering [22]. Generally, wavelet smoothing 
and wavelet de-noising can be used to enhance signal to 
noise ratio. The difference between these two processes is 
that smoothing removes high frequency components of the 
transformed signal regardless of their amplitudes, while 
denoising removes small amplitude components of the 
transformed signal regardless of their frequencies. 
However, it is not easy to choose a suitable strand value for 
de-noising which is significant to the noise suppression 
achievement without signal loss. For this reason, wavelet 
smoothing provides fine visual quality of the processed 
scales (spectra), which is more suitable to signal features 
extractions. Sachs in [19] gives a rich report on wavelet 
smoothing by non linear thresholding for non stationary 
time series de-noising and signal recovery. In any case, the 
literature designs two classes of smoothers: linear, 
including local polynomial smoothing, loess, spline and 
kriging, and nonlinear, such as running medians and other 
median-based smoothers [20] [21] [22]. In contrast to their 
performance for data containing only Gaussian noise, linear 
smoothers do not respond well to data containing impulsive 
noise, or noise generated by microstructures. Non linear 
energetic smoothing algorithms are more suitable. 

4 New approach and algorithm 
If the above methods are suitable their implementation 

needs several algorithms and experiments, for detecting 
best analysing functions and best threshold regulation rules. 
In fact “Hwang, Mallat” theorem indicates the presence of 
maxima at the finer scales where singularities occur, in 
addition when the wavelet is the nth derivative of a 
Gaussian, the maxima curves are connected and go through 
all of the finer scales [7]. As the 8th Gaussian derivative is 
the analysing function in our experiments, the core of the 
“Hwang, Mallat” theorem offers us the opportunity to 
investigate the spirit of the minima maxima smoothing 
energetic analysis.  

The new filtering algorithm is based on the energy 
content of the wavelet coefficients via an energy smoothing 
of the noise function [23]. 
 
4.1 The algorithm 

 
While ultrasonic energies are concentrated in the central 

frequency band, therefore different frequencies close the 
band are represented in the transform domain by very weak 
amplitudes and can be scattered without loss of 
information.  

But how the structural noise can be removed? The idea 
is to approximate it with an analysing function. The 
proposed algorithm illustrated admits the development of a 
noise analysing function with an easy filtering process. In 
this algorithm, the extraction from the signal of the noise 
energetic coefficients is based on the removal of the 
maximum energetic coefficients vector from the original 
signal wavelet decomposition by the 8th derivative gauss 
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function. In contrast the computation of the noise energetic 
threshold is achieved from the wavelet coefficients of the 
noise Morlet scalogram. An inverse wavelet transform 
procedure gives us statistical noise characterization. The 
Morlet function is selected after a correlation process 
between wavelet bases and extracted noise database from 
ultrasonic signals captured from welds, welding defects and 
artificial flaws. Then the filtering is performed based on an 
energetic subtraction of the maximum noise energetic 
coefficients vector analysed by the Morlet, from the 
minimum signal energetic coefficients vector analysed by 
the 8th derivative of the Gaussian i.e. a subtraction between 
two continuous wavelet representations of the same signal 
is performed. 

5 Experiments 
Steel material used in these experiments is a rich 

element which can undergo quenching and tempering, see 
chemical analyses in table 1. Metallographic investigations 
reveal ferrite and pearlite structure (figure 1). Grain size 
varies between 40 and 60 µm and hardness testing gives an 
average value of 120 HV. Structure noise function extracted 
and analyzed by the de-noising algorithm [9], undergoes 
computing mismatching and correlation process between 
interpolation and residuals coefficients. See example of 
pure signal filtering in (Figure 2). Obtained results, point to 
occurrence of quasi linear energy distribution in (figure 3), 
which could advise to apparent energy scales incidence of 
micro structural acoustic signatures. In (figure 4) residuals 
display fitting indications from first samples noise data 
obtained after multi-interpolation stages. This must be 
correlated with ultrasonic frequency band and material 
behavior. (Figure 5) reveal particular residual distributions 
of Fourier transform noise function, after several 
polynomial interpolations. This will recommend 
relationship exploration with some material properties.   

 

       
  

Figure 1. Ferrite pearlite structure (X50 & X100) 
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Figure 2. Signal and noise analysis: (a) Natural signal from 
steel piece of 35 mm, inside 1 mm flaw indications 
captured by a 5 MHz Krautkramer transducer.  (b) 

Extracted functional noise. (c) Smooth filtered signal where 
the flaw indications are amplified and noise totally 

withdrawn. 
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Figure 3. Noise functional analysis displays different 
energy scales 
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Spline: norm of residuals = 0
4th degree: norm of residuals = 284.1592
5th degree: norm of residuals = 284.1442
6th degree: norm of residuals = 284.1176
7th degree: norm of residuals = 284.0955
8th degree: norm of residuals = 284.0493
9th degree: norm of residuals = 284.0013
10th degree: norm of residuals = 283.9499
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Figure 4.  Residuals of the structure noise after several 

interpolations 
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Figure 5. Attractor shape after multi-polynomial 

interpolations 
 

Table 1:  XRF Chemical analysis  
 

Cr 1.36% 
Ni 0.90% 
Mn 0.85% 
Si 0.52% 
Al 
Cu 

0.45% 
0.13% 

S 0.00218% 
Mo 0.048% 
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Mg 0.04% 
Sb 0.02% 
P 0.01% 
V 0.01% 
Fe balance 
C 0.126% 

6 Conclusion 
Non linear denoising of ultrasonic signals captured from 
welds, with multiscale approximation using thresholding, 
permits an adaptive representation of the signal 
discontinuities. The new energy algorithm involving the 
energetic matter of the signal and the noise, by means of 
minimisation of a smoothing functional is promising. In this 
algorithm no signal decomposition is performed and the 
threshold level is determined by an arithmetic process of 
the maximum and the minimum wavelet coefficients 
energetic level. Therefore the structural noise is 
approximated by a wavelet function, and the denoising 
process is carry out by discrimination between two wavelet 
functions.  This algorithm is powerful when the selected 
analyzing functions are the best matching mother wavelet 
functions to signal and noise information.  In reverse case, a 
scaling function must be composed for the generation of the 
experimental wavelet functions. The approximation of the 
structure noise by the Morlet function, offers the prospect 
to investigate a multiscale material microstructure 
characterization, in an attempt to extract some useful 
microstructure material features as presented in Fig 9, 
where we can observe different levels of the structural noise 
energy concentration at different scales, extracted from a 
steel plate by ultrasonic testing with 5Mhz piezoelectric 
tranducer. In reality, if anisotropic noise is related to local 
variations in texture or shapes of macro etches, the 
relationship of this ultrasonic property to microstructure is 
not well understood, and up to now no careful theory has 
been presented to quantitatively describe these relationships 
[24]. Chaos theory seems to be helpful for this issue. 
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