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In the present paper, we present a Steklov-Poincaré formulation, in order to solve the inverse problem of acoustic
source reconstruction in a confined domain [1, 2]. The solution is obtained by the resolution of the Helmholtz
equation on an empty domain bounded by the union of the measurement surface and the surface of the vibrating
structure. The difference between classical methods (NAH) and this Data Completion Method (DCM) is that
Cauchy data (acoustic pressures and velocities) have to be known on the measurement surface to recover data on
the remaining boundary. The DCM allows one to solve the inverse problem, even with acoustic perturbations due
to sources in the exterior domain, or due to measurements in a confined domain. Simulation and experimental
results are presented.

1 Introduction
In the last three decades, the resolution of the acoustic in-

verse problem has become very popular. The vibro-acoustic
problem consists in recovering the acoustic quantities on a
vibrating structure using near-field pressure measurements.
This problem is an “ill-posed” problem in the sense of Ha-
damard, especially because a small error on data provides
erratic solutions. In order to solve this problem, several ap-
proaches have been developed. Recently, Wu presented an
overview of acoustic imaging methods and their associated
regularization techniques [3]: near-field acoustical hologra-
phy (NAH), inverse boundary element method (IBEM), least-
square method (LSM)...

These techniques only require the knowledge of the pres-
sure field (or velocity) on a Γm surface surrounding the sour-
ce. Multiple data acquisition systems, with an antenna of two
microphonic probes or pressure/velocity probes, allow us to
access not only to the pressure, but also to the acoustic veloc-
ity on a surface. When these data are available, the acoustic
inverse problem can be viewed as a data completion problem
for the Helmholtz equation. This method is based on integral
formulations, solved by boundary element method (BEM).

The Data Completion Method (DCM) appeared recently
in acoustics, using a measurement surface Γm surrounding
the source surface Γu (see figure 1) [1, 2]. The major draw-
back of this configuration is that one needs to mesh all the
source surface, which can be time consuming if the size is
large. In this paper, the DCM is adapted to the configuration
of the figure 2 where only a part of the source (Γu) has to be
recovered .

Figure 1: Problem configuration 1

2 Data Completion Method (DCM)
For a time-harmonic disturbance of pulsationω, the Helm-

holtz-Kirchhoff integral is written on the surface Γ = Γm∪Γu

(see figure 2):

Figure 2: Problem configuration 2
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where ~s is a point on the surface Γ. The free space Green’s
function is G(~s, ~s′) = eikS /(4πS ), with S = |~s′ − ~s| and Ω−

is the interior solid angle coefficient given by the following
integral:
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The integral eq. (1) links together the acoustic pressure
p(~s) and the normal gradient ∂n p(~s) on the surface Γ. For
the numerical implementation, the continuous integral is dis-
cretized on a mesh with an isoparametric formulation [4].
Then, vectors p and ∂np are defined by:

p =

(
pm

pu

)
∂np =

(
∂npm

∂npu,

)
where pm and ∂mpm are the measured pressures and gradi-
ents on Γm, and pu and ∂npu are the unknowns on Γu.

Using a Steklov-Poincaré formulation described in paper
[2], one has to resolve to the following system:

F∂npu = b, (3)

where F is the Steklov-Poincaré operator which only depends
on the geometry of the discretized surface Γ, and b is a vector
which is related to the geometry and to the measured acous-
tic quantities pm and ∂npm. This operator is “ill-conditioned”
and a regularization technique must be used to find a realis-
tic solution. We use standard Tikhonov and the “L-curve”
methods to find the optimal regularization parameter [5].

3 Active intensity vector
Once vector ∂npu is known, the pressure pu can be found

with equation (1). Since the domain Ω is empty, one can cal-
culate the pressure and the three components of the gradient
vector for ~r ∈ Ω with the discrete forms of equations:
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p(~r) = −
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Γ
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]
dΓ, (4)

and

∂i p(~r) = −

"
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p(~s′)

∂2

∂n∂i
G(~r, ~s′) − ∂n p(~s′)∂iG(~r, ~s′)

]
dΓ.

(5)
where i is one of the three components x, y or z.

The i component of the active intensity is given by:

Ii(~r) =
1
2
<e

{
p(~r)

(∂i p(~r)
ikρ0c

)∗}
, (6)

where ∗ denotes the complex conjugate of the quantity, k is
the wave number, ρ0 the air density and c the velocity of
sound.

For the normal intensity vector, eq. (6) is rewritten in the
following form:

In(~s) = −
1
2
<e

{
p(~s)

(∂n p(~s)
ikρ0c

)∗}
, (7)

where the minus sign is added to be conform with the vizual-
isation of vector flux direction. An outgoing flux is positive
through a surface with the conventional outgoing normal. In
our vizualisation map, this normal intensity becomes nega-
tive.

For the volumetric acoustic intensity vector maps, the in-
tensity is computed on a lattice of points in Ω and displayed
in three-dimensional plots, as shown in the next sections.

4 Numerical simulation
The mesh used in this numerical simulation is shown on

figure 3, where the known quantities lie on the black surface
(Γm) and the unknowns on the red one (Γu). This configu-
ration has been chosen in order to fit the antenna used for
the experimental part (see figure 7). The radius of the hemi-
spheric antenna is r = 0.15 m. The total surface is discretized
with 110 planar triangular elements and 57 nodes. There are
36 known double data (pressures and gradients), 21 unknown
pressure data and 36 unknwon gradient data due to the join-
ing curve where the surface is non-smooth. There are two
different values of the gradient on a joining node because the
normal is not the same for the two surfaces.

Figure 3: Mesh : Γm (black) - Γu (red).

The simulation test is a simple case. One places a mo-
nopole above the antenna for the first configuration (~r0 =

[0, 0, 1]), below for the second one (~r0 = [0, 0,−1]) and,

for the last case, two monopoles at ~r1 = [1, 0, 1] and ~r2 =

[1, 0,−1]. This last configuration tests the method when the
antenna is placed near a rigid wall without source in front of
it. The Γu surface is approximately on the (x,y) plane (see
figure 3). Figures (4) to (6) show on the left the theorical in-
tensity map and on the right the results of the DCM. In these
figures, the normal intensity is scaled in dB and the color
of the intensity vectors is proportional to its linear magni-
tude. One can see that when the source is above or below
the antenna, the results of the DCM are a little more concen-
trated in the center of the Γu surface where the maximum and
minimum levels are increased by approximately 1 dB. To im-
prove the accuracy, different designs of the antenna must be
tested and perhaps increased the order of the shape fonctions
used on the numerical implementation of the integral formu-
lations. The essential conclusion drawn from these figures is
that the direction of the point source is correctly indicated by
the intensity vectors. When the antenna is placed in front of
a rigid surface, corresponding of the third case, the figure 6
shows that the intensity vectors are parallel to the (x,y) plane.

Figure 4: Theorical (left) and calculated (right) active
intensity at 300 Hz, monopole on top (z = 1 m).

Figure 5: Theorical (left) and calculated (right) active
intensity at 300 Hz, monopole below (z = −1 m).

Figure 6: Theorical (left) and calculated (right) active
intensity at 300 Hz, monopoles at ~r1 = [1, 0, 1] and

~r2 = [1, 0,−1].
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5 Experimental results
Figure 7 shows a photography of the antenna used in the

experiments. On this antenna, 36 p-p probes are fixed to form
an hemispheric surface. The lenght of inter-space between
the microphone is 3 cm (see figure 8). Proper calibration is
performed to correct modulus and phase mismatch between
microphones. The mock-up is a nearly rectangular box with a
slanting face. The size of the mock-up is about (0.85/0.75 m
× 1.1 m × 0.7 m). The picture shows loudspeakers, but there
are not used in this configuration test. One uses a shaker fixed
at the handle of one small vertical face of the mock-up (see
figure 9). The antenna is moved on 14 positions in the box:
2 positions in front of each short vertical faces, 3 positions
in front of the long vertical face, 3 positions in front of the
slanted long vertical face and 4 positions in the bottom face.
The upper face is not easily accessible and no position has
been taken on it.

Figure 7: Antenna installation in mock-up.

Figure 8: Example of a p-p probe.

Figure 10 shows the superposition of the power spec-
trum of an accelerometer placed near the shaker (black line)
and the mean power spectrum over all pressure points in the
mock-up (grey line). The pics on each response correspond
to acoustical and structural modes. The frequency of 165 Hz
corresponds to an antiresonance where the response of the
accelerometer is minimum in contrast of a high level of pres-
sure in the box.

In the figures 11 to 16, we present for each frequency
the pressure map and the results of the data completion me-
thod. The pressure map is formed by the 14 positions of the
antenna in the box. The shaker drive voltage (a pseudo band-
pass signal between 20 and 3000 Hz) is used as the reference
signal to calculate the transfert functions. 150 nonoverlap-
ping segments of time record, each containing 512 points,

Figure 9: Picture of the mock-up.

Figure 10: Superposition of accelerometer and pressure
power spectrums.

are used with a sample rate of 5120 Hz. In order to com-
pensate the nonstationarity between the 14 mesurements, an
average is performed on the 14 auto-spectral references to
yield complex pressure:

py = Hstep
ry ×

√
S avg

rr (8)

where Hstep
ry is the transfert function between one microphone

and reference for one antenna position and S avg
rr is the aver-

age of the 14 auto-spectral vectors of the reference. This
procedure yields smooth pressure maps.

The results of DCM is the representation of the normal
active intensity on the surface Γu and the vectors of active in-
tensity inside the antenna domain (empty domain Ω) for the
14 positions. For a better visualization, only the higher lev-
els are represented: positive values in red scale and negative
values in yellow scale with 10 dB of dynamic range each.
As in the previous simulation part, negative intensities mean
that there is a flux flowing out of the structure of the mock-
up. The intensity vector representation is an helpfull tool to
localize the most vibrating surfaces. In contrast, when these
vectors are parallel to the surface, that means that the struc-
ture doesn’t vibrate.

Figures 11 and 12 show results at 70 Hz. The measured
pressure is quite homogeneous (6 dB of dynamic) with a
maximum near a corner. In fact, this maximum is at the op-
posite side of the source point excitation as we can see on
figure 12. On this figure, we clearly identify the excited face
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of the mock-up. Three faces have positive normal active in-
tensities, the long vertical face has a negative one and the
bottom face seem to be rigid. We can identify on this figure
that the structure moves on an acoustical mode (0,0,0) in the
box.

Figure 11: Measured pressure at 70 Hz.

Figure 12: Calculated active intensity at 70 Hz

Figures 13 and 14 show results at 195 Hz. The pressure
map corresponds to the acoustical mode (1,0,0) in the box.
On the intensity map, one recognizes a (1,0) plate mode on
the excited face: one side has positive values with ingoing
intensities and the other has negative values with outgoing
vectors. We see also that the long vertical face is excited
near the corner.

Figures 15 and 16 show results at 315 Hz. The pressure
map corresponds to the acoustical mode (0,2,0) in the box.
On the intensity map, one recognizes a (2,0) plate mode on
the excited face: there is a negative area between two posi-
tives. The others face, where intensity vectors are parallels
to the structure, seem to be rigid.

Figures 17 and 18 show results at 165 Hz. The pressure
map shows the (0,1,0) acoustical mode in the box. On the
intensity map, one can see that the opposite face vibrates on
his (1,0) plate mode. There is a coupling between the two
opposite plates where the opposite face vibrates more than
the excited face. This has been previously seen on the ac-
celerometer power spectrum which shows an antiresonance
reponse at this frequency.

Figure 13: Measured pressure at 195 Hz.

Figure 14: Calculated active intensity at 195 Hz

6 Conclusion
This paper presents an experimental application of the

Data Completion Method (DCM) for acoustic imaging. From
a set of acoustical quantities (pressure and velocity) on a
boundary part of an empty domain, one can access to the
set on the remaining part. This is a more general approach
to resolve the inverse problem in acoustic. The advantage of
this formulation is that it works even if sources are all around
the antenna and not only in front of it. This is an alternative
method for confined domain where usual imaging methods
fail to give a solution.

The results show that this is a very efficient method at low
frequencies. In this case, from the pressure map it is impos-
sible to localize the origin of noise. The DCM is a powerfull
method to evaluate the vibration of structure with intensity
vector map. This is an helpfull technique to understand the
vibro-acoustic problem.

Another important point is that the DCM use a local ge-
ometry which allows to perform only measurements around
a source without modelling the entire geometry. This fact
is important in balance to the time consuming of the algo-
rithm. Once the numerical integrals are performed, they can
be stocked for a geometry and can be used after for several
cases. In this paper, our geometry is suitable to perform mea-
surement near a plane structure. In future works, other an-
tenna designs will be studied to test different geometries, for
example near an edge or a corner, where it is difficult to have
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Figure 15: Measured pressure at 315 Hz.

Figure 16: Calculated active intensity at 315 Hz

results with classical methods.

Figure 17: Measured pressure at 165 Hz.

Figure 18: Calculated active intensity at 165 Hz
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10ème Congrès Français d’Acoustique, CFA 2010,
Lyon, France, 12-16 avril 2010.

[2] C. Langrenne and A. Garcia, “ Data completion method
for the characterization of sound source”, J. Acoust.
Soc. Am. 130 (4), october 2011, 2016-2023.

[3] S. F. Wu, “Methods for reconstructing acoustic quan-
tities based on acoustic pressure measurements”, J.
Acoust. Soc. Am. 124 (5), 2680-2697 (2008).

[4] A. F. Seybert, B. Soenarko, F.J. Rizzo and D.J. Shippy,
“An advanced computational method for radiation and
scattering of acoustic waves in three dimensions”, J.
Acoust. Soc. Am. 77, 362-368 (1985).

[5] P. C. Hansen, “Analysis of discrete ill-posed problems
by means of the L-curve”, SIAM Rev. 34, 561-580
(1992).

Proceedings of the Acoustics 2012 Nantes Conference23-27 April 2012, Nantes, France

1804


