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Acoustic liners are often used to limit noise propagation in acoustic waveguides with a grazing flow such as venti-
lation, exhaust or aircraft engine. Standard liners are most often made of perforated plate backed by honey comb or
with porous material. The aim of this work is to study the influence of a set of periodic rigid inclusions embedded
in a porous lining to enhanced attenuation. Only an elementary cell of this periodic waveguide is studied using
the Bloch waves formalism. This yields a quadratic eigenvalue problem involving the Bloch wavenumber solved
with the finite element method. However these configurations require to investigate parameters often omitted in
academic lattice studies : (i) Dissipation; (ii) higher modes interaction; (iii) mean flow convection effect.
These absorbing concepts as well as the computational approach are validated with analytical solution on homo-
geneous waveguide. The influence of the inclusion shape, waveguide dimension and the mean flow impact are
illustrated on various examples.

1 Introduction

Acoustic liners are often used to limit noise propagation
in acoustic waveguides with a grazing flow such as ventila-
tion systems, exhaust device or aircraft engine. In the lat-
ter case, these acoustic treatments are generally made with a
perforated sheet backed by honeycomb [8]. This kind of ma-
terial have good absorbing properties only in a narrow fre-
quency band but their main advantages are their mechanical
robustness and their capability to resist to harsh conditions
i.e. they constitute the reference solution in a turbofan en-
gine. For the other applications porous material are often
used [20, 12, 17, 16] because they generally offer a wider ab-
sorption/attenuation band. See for instance the comparison
presented in Ref. [2].

In the last decades in parallel to this well known con-
cepts, very interesting results have been obtained in acoustics
thanks to the presence of periodic geometrical discontinuity
[4] or with periodic sequence of locally reacting material se-
quences [3, Chap. 5]. In such waveguide, the coherent effects
of multiple reflection lead to frequency bands in which prop-
agation of waves is forbidden, the so called band-gap. These
works are in line with numerous studies on periodic struc-
tures in whole waves community e.g. optics [10] or in solid
states physics. Always in acoustics, similar concepts have
been used to enhance absorbing properties of porous mate-
rial slab [7, 18] by embedding periodic inclusions. Thank to
this approach, it is possible get total absorption peak below
the quarter wave frequency or to widen the absorption in a
specified range.

The aim of this paper, is to test the potentiality of periodic
rigid inclusion embedded in a porous material for waveguide
applications instead of acoustics gratings [7, 18]. However
these configurations require to investigate parameters often
omitted in academic lattice studies : (i) Dissipation [5]; (ii)
higher modes interaction [22]; (iii) mean flow convection ef-
fect [15].

The dissipation is mostly neglected in the literature be-
cause band-gaps are the direct consequence of destructive in-
terferences and can not occurred in too dissipative media. Al-
though, porous material present strong dissipation and high
dispersion, the attenuation in a waveguide results of a com-
promise between waveguide dimensions, the liner thickness
and the porous material properties. In other words, interfer-
ence is a good candidate to enhance the attenuation in the
frequency range where the attenuation is too weak.

In order to investigate this kind of problem, it is assumed
the waveguide is periodic and of infinite extent. The Floquet-
Bloch theorem is used to reduce the computation on one pe-
riod, leading to a quadratic eigenvalue problem. This as-
sumption is not too strong since the infinite behavior is re-

covered when more than 4 or 6 cells are present [11]. To
tackle this problem, a finite element (FE) method, inspired
from Ref. [5], is chosen for its robustness and its ability to
take into account complex geometries.

The present paper is organized as follows. After present-
ing the FE formulation in Section 2, a numerical example on
U-shape inclusion are given.

2 Formulation of the method

2.1 Problem statement

We consider here the acoustic wave propagation in a 2D
infinite periodic waveguide lined with a porous material with
embedded rigid inclusions as described Fig. 1. In the acous-
tic domainΩa, ie x2 ∈ [0, ha] the velocity potential φ̂a satisfy
the convected wave equation

Δφ̂a(x) −
1
c2

a

d2φ̂a(x)
dt2

= 0, ∀x ∈ Ωa, (1)

where d
dt ≡

(
−iω + U∂x1

)
stands for the material derivative

along the mean flow with time-harmonic representation (e−iωt

is omitted for clarity). For a brief nomenclature, t is time, ca

denotes the sound speed and U is the mean flow axial ve-
locity and M = U/ca is the Mach number. It is convenient
for the analysis to introduce the velocity potential to simplify
the calculation. The acoustic velocity is simply v̂a = ∇φ̂a and

pressure may be recovered by using p̂a = −ρa
dφ̂a

dt where ρa is
the fluid density.

In the porous material, ie x2 ∈ [−hp, 0], the skeleton of
the porous material is considered as infinitely rigid, thus the
Champoux-Allard-Johnsonequivalent fluid model [1] is used
to get the equivalent bulk modulus Kp(ω) and density ρp(ω)
(see Allard [1] for details). The celerity is given by the ratio
cp(ω) =

√
Kp(ω)/ρp(ω). Assuming there is no mean flow in

the porous material, the velocity potential v̂p = ∇φ̂p satisfies
the Helmholtz equation,

Δφ̂p(x) + kp(ω)2φ̂p(x) = 0, ∀x ∈ Ωp, (2)

with kp(ω) = ω/cp(ω). The pressure is then simply p̂p =

iωρp(ω)φ̂p. Both media are coupled together at the interface
Γc. Here we assume the continuity of the pressure and the
continuity of the normal displacement hold[21], leading re-
spectively to

ρpcpikpφ̂p = −ρaca
(
−ika + M∂x1

)
φ̂a, (3a)

−iω∂na φ̂a = ca
(
−ika + M∂x1

)
∂na φ̂p, (3b)

where ni denotes the outward normal unit vector to ith do-
main with i = a, p. Note the continuity of the displacement
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Figure 1: Geometry of the problem.

corresponds to the Ingard-Myers condition [9, 14] for paral-
lel uniform mean flow. On the rigid walls Γiw, (i = a, p), the
normal velocity vanish and we get ∂ni φ̂i = 0.

2.2 Bloch waves and eigenvalue problems

As the governing equation, the boundary condition and
the geometry are d-periodic, it follows from the Floquet-
Bloch theorem the solution are Bloch waves [10]

φ̂i(x) = φi(x)eikBx1 , (4)

i.e. the velocity potential can be split into a d-periodic field
φi(x) modulated by a plane wave with the Floquet Bloch
wavenumber kB. Note, the Bloch wavenumber is common
for both media as the axial wavenumber for classical guided
wave problems.

On the right and left boundary of the elementary cell, re-
spectively on Γr and Γl, the velocity potential satisfies the
condition

φ̂i(x + de1) = φ̂i(x)eikBd, with i = a, p. (5)

It follows from (5) that the real part of kB measures the change
in phase across the cell and its imaginary part the attenua-
tion. In addition, it can be directly shown from (4) that kB

is defined modulo 2π/d. The smallest values belongs to the
irreducible Brillouin zone.

By inserting (4) into (1), (2) and (3) we get respectively

(
Δφa −

1
c2

a

d2φa

dt2

)
+ kB

(
2i

(
1 − M2

)
∂x1φa − 2kMφa

)

− k2
B(1 − M2)φa = 0, (6)

and (
Δφp + k2

pφp

)
+ 2ikB∂x1φp − k2

Bφp = 0, (7)

on both domain and

ρpcpikpφp = −ρaca
[
−ika + M

(
∂x1 + ikB

)]
φa, (8a)

−iω∂nφa = ca
[
−ika + M

(
∂x1 + ikB

)]
∂nφp, (8b)

on Γc. These equations (6)-(8) leads to an eigenvalue prob-
lem. The first terms in (6) and (7) correspond to the wave
equation applied on the periodic fields φi (i = a, p) and the
others, involving kB can be seen as the correction terms that
force the periodic boundary condition. The resolution is gen-
erally performed by fixing kB (real) andω is considered as the
eigenvalue. Propagating modes correspond to real frequency
whereas evanescent modes (i.e. band gap) correspond to

complex frequency. However, as in the porous media all co-
efficients are frequency dependent, the eigenvalue problem
is highly non-linear in ω. Therefore, it is preferable to solve
the quadratic eigenvalue problem at fixed ω values with kB

as eigenvalue[5]. This approach will be detailed in the next
section.

2.3 Finite element discretisation

The associated weak formulation is obtained after multi-
plying (6) and (7) by a periodic test function ψ̄i, (i = a, p),
integrating over an elementary cell and ones integration by
parts. This yields

∫
Ωa

⎛⎜⎜⎜⎜⎝−∇ψ̄a · ∇φa +
dψ̄a

dt
dφa

dt

⎞⎟⎟⎟⎟⎠ dΩ

+ kB

∫
Ωa

(
2i(1 − M2)ψ̄a∂x1φa − 2kaMψ̄aφa

)
dΩ,

− k2
B(1 − M2)

∫
Ωa

ψ̄aφa dΩ

−

∫
∂Ωa

(
ψ̄a Me1 · na

dφa

dt
− ψ̄a

∂φa

∂na

)
dΓ = 0.

(9)

for the convected Helmholtz equation with d̄
dt ≡

(
iω + U∂x1

)
.

The weak formulation in the porous media is deduced by
putting M = 0 and switching the subscript a and p. The
global formulation is obtained by summing the weak formu-
lation of both domain Ωa and Ωp.

The last step is to impose the boundary conditions on
∂Ωi = Γc ∪ Γir ∪ Γil ∪ Γiw. On the rigid wall Γir , the con-
dition ∂ni φ̂i = 0 leads to

∂niφi = −ikB(e1 · ni)φi. (10)

On the waveguide wall, the standard Neumann condition is
recovered since e1 · ni = 0. However, on inclusion walls, the
correction term must be taken into account.

On the lateral boundary, due to the periodicity condition
on φ, the boundary integrals vanish. Note the degree of free-
dom related to the Γir are re-expressed with respect to those
of Γil and the problem is finally solved with a reduced set
of unknown, as done in Ref. [19] (excepted we are solving
directly the periodic field).

Let us focus now on the Γ boundary. As the mean flow
is parallel to the duct, the first term of the boundary integral
vanishes. It remains

+

∫
Γc

ψ̄a
∂φa

∂na
dΓ +

∫
Γc

ψ̄p
∂φp

∂np
dΓ. (11)

However imposing coupling condition is a little more tricky
and require Lagrange multiplier. We introduce λ = ∂naφp and
its associated test function λ̄′. Using (8b) in the previsous
expression yields the two first integrals in

ca

−iω

∫
Γc

ψ̄a
[(
−ika + M∂x1

)
λ + ikBMλ

]
dS

−

∫
Γc

ψ̄pλ dS +
1
−iω

∫
Γc

λ̄′
[
ρaca

(
−ika + M∂x1

)
φa

+ρacaMikBφa + iωρpφp

]
dS , (12)
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and the pressure continuity (8a) is weakly added thanks to λ̄′

in the last integral.
Once the power of kB have been collected, we get the

following quadratic eigenvalue problem in kB

K0 + K1kB + K2k2
B = 0, (13)

where Ki (i = 0, . . . , 2) are combination of bilinear opera-
tor involving the test function, the periodic potential and the
Lagrange multiplier. The discretisation of Ki operators are
carried out using Lagrange quadratic finite elements in both
fluid and porous domains, excepted for the Lagrange multi-
plier for which a linear discretization is required to avoid spu-
rious modes. The mesh were performed with Gmsh [6]. The
FE implementation (integration, matrix assembly and eigen-
value problem) is carried out on Matlab. The first twenty
eigenvalues of smallest magnitudes are solved with implic-
itly restarted Arnoldi method [13] once the quadratic eigen-
value problem has be recasted into an equivalent generalized
eigenvalue problem of double the dimension.

The convergence of the method has been investigated on
homogeneous waveguide with an arbitrary period d. It has
be shown the error decreases as h4, where h is the element
length. In this case, a relative error of 1% can be achieved
with 10 quadratic elements per period for the first four modes.

3 Results on U-shape inclusions

In this section, we are interested in U-shape inclusions
(see Fig. 2) embedded in a metal foam (see Tab. 1). These
scatterers are located at the center of the periodic cell with
the dimensions : ha = 135 mm, hp = 20 mm and d = 15 mm.
The modal attenuation in dB/m, given by

A(kB) = 8.68 · ImkB, (14)

can be shown for such configuration in Fig. 3. A significant
enhancement can be observed compare to the homogeneous
porous liner (in blue) over the whole bandwidth. In addi-
tion, the first attenuation peak amplitude is twice higher and
a second peak emerges around 5000 Hz.

To explain this behavior, the band diagram, obtained by
plotting the Bloch wave number according to the frequency,
is presented in Fig. 2. The band diagram summarizes all dis-
persion properties of the waveguide. When kB < 0.5 and
the frequency is not too high, the periodic wave guide can
interpreted in the homogeneous waveguide framework. For
example it can be observed the phase velocity of most of the
modes tend to c0 excepted for the first cut-off mode. In this
case, the phase velocity limit is lower than the celerity in the
homogeneous porous material and is related to the presence
of the inclusions. This phenomenon can be used to defined
a new tortuosity at the mesoscopic scale. After the crossing
with the fundamental mode towards 1700 Hz, this mode re-
mains localized in the liner and a good approximation can
be obtained by solving the Bloch eigenvalue problem in the
liner alone, assuming pp = 0 boundary condition on the cou-
pling interface Γc (see ∗ marker in Fig. 2). It is worth noting
that the first attenuation peak is strongly connected to this
crossing. Indeed, modes avoid each other thank to a modifi-
cation of the kB imaginary part leading to an enhancement of
the attenuation. Similar explications may hold for the second
peak. In this case, the fundamental and the second cut-off

Table 1: Materials properties used in numerical tests. With
the porosity	, flow resistivity σ, the tortuosity αinf , the

viscous and thermal characteristic lengths Λ and Λ′.

Material 	 σ αinf Λ Λ′ Ref.
- [kNm-4s] - [μm] [μm]

Metal foam 0.99 6.916 1.17 100 245 -
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Figure 2: Band diagram for U-shape inclusions. The gray
scale indicates the magnitude of the imaginary part of kB.
The darkest are the line the smallest is the imaginary part.

The sign of the imaginary part is given by the markers
orientation, ’+’ is denoted by � and ’−’ is denoted by �.
The marker (∗) indicates the dispersion curves for the first

mode of the liner alone with p = 0 condition on Γc interface.

modes Bloch wave number are very closed and a shift in the
imaginary part of kB is also observed.

Now, when kB > 0.5, the lattice effects becomes visible.
Around 5 kHz, a band gap reminiscence appears. Band band
gap cannot be present in lossy media but the right and left
traveling waves strongly interact between 5 and 10 kHz and
increase drastically the attenuation of the mode localized in
the liner. Another noticeable behavior associated with nega-
tive group velocity can also be noted between 7.5 and 8 kHz.
This phenomenon seem to be linked with higher order mode
quasi band gap.

.

4 Conclusions and prospects

This work investigates the presence of rigid scatterers
embedded in a porous material liner. It has been shown that
open shape inclusions (e.g. U-shape) are able to enhance
the attenuation when compared with a homogeneous liner.
Moreover, rigid inclusions combined with metal foam is an
interesting way to achieve a compact, efficient acoustic treat-
ment for a harsh environment or when good structural behav-
ior is required. Future works can focus on exploring new in-
clusion shapes and to develop some simplified models through
homogenization procedure.
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