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Wave propagation through an isotropic host medium containing a large number of randomly and uniformly 
located scatterers is considered at low frequency and for low concentrations of spheres, and the dispersion 
relation of the coherent waves is obtained. The same problem had been addressed by Lloyd and Berry for 
spheres in an ideal fluid, and more recently by Linton and Martin for cylinders in an ideal fluid, and by Conoir 
and Norris for cylinders in an elastic solid. Here, the dispersion relation is derived in the case of spheres, and 
extended to that of cylinders, from the comparison of the 3d and 2d cases in an elastic solid. The host medium 
considered may support the propagation of P different types of bulk waves, as for example a thermo-visco-
elastic medium or a poro-elastic medium (P=3). As in the previous works mentioned above, the hole correction 
of Fikioris and Waterman is taken into account, along with the quasi-crystalline approximation. The method 
follows exactly that used by Conoir and Norris.  

1 Introduction 
This paper summarizes some of the results obtained in 

Refs.[1,2] on the propagation of coherent waves in 
homogeneous media that contain distributions of either 
spherical (d=3) or cylindrical (d=2) inhomogeneities acting 
as scatterers. It is focused on the low frequency and low 
concentration approximations of the dispersion equation of 
the coherent wave associated with the “fastest wave” in the 
host medium (more precisely, the wave which has the 
smallest modulus of all complex wave numbers). In a poro-
visco-elastic medium obeying Biot’s theory, for example, 
that would be the fast longitudinal wave. 

The method used to obtain the equations that govern the 
coherent fields follows that of Fikioris and Waterman’s 
paper [2]. A harmonic plane wave propagating in the host 
medium is supposed to be normally incident upon some 

semi-infinite region ( ) 0dx >  hosting a uniform 
concentration of scatterers. In case of spherical scatterers, 
x(3) will be equal to z, while in case of infinitely long 
cylinders, x(2) will be equal to x, and the axis of the 
cylinders will be parallel to the z axis, so that the problem 
will be of dimension d=2. This harmonic plane wave gives 
rise to a multiple scattering process and to scattered waves 
of different polarization types denoted by a natural number 
p. When averaged over all possible locations of the 
scatterers, the total field of a given type p represents the 
coherent wave of type p. For a low enough concentration of 
scatterers, the coherent waves are supposed to be plane 

waves that propagate in the same direction ( )dx as the 
original incident plane wave. 

In the following, we suppose that the host medium 
supports the propagation of P different types of waves (P=1 
in an ideal fluid, P=2 in an elastic solid, P=3 in a thermo-
visco-elastic medium or a poroelastic solid); they are 
numbered from p=1 to p=P, and their complex wave 
numbers at the given angular frequency ω are kp, with  

11, pp k k∀ ≠ < , (1) 

so that the coherent we shall focus on in the last section 
corresponds to p=1. We shall also suppose, with no loss of 
generality but in order to simplify the d=3 dimensional 

problem, that the original incident plane wave, ( )p
incϕ , is also 

of type p =1, i.e. a longitudinal wave. An e-iωt time 
dependence of all fields, while supposed, will be omitted 
everywhere for the sake of brevity : 

( )
( )

1 , , 0, 0
d

pik xp
inc p p p p p pe k k ik k kϕ δ ′ ′′ ′ ′′= = + > ≥ . (2) 

2 Coherent fields in the framework 
of the Fikioris and Waterman theory 

The waves are described by scalar displacement 
potentials. In the d=3 dimensional problem, these are the 
Debye potentials [4] of the longitudinal and shear waves : 
the Debye potentials of transverse waves are not taken into 
account for symmetry reasons linked to the longitudinal 
nature of the incident wave of Eq.(2), as explained in 
Ref.[2]. In the d=2 dimensional case, the scalar potentials 
are the displacement potential of the longitudinal waves and 
the z-component [5] of the vector potential of the shear 
waves. 

The total potential associated with a wave of type p is 
due to the incident wave, if of the same type, and to all the 
scattered waves of type p, so that, considering a given 
number N of scatterers, 

( ) ( ) ( ) ( ) ( )1
1

1

;
N

p p
p inc S k

k

r r rϕ δ ϕ ϕ
=

= +∑
� � ��

. (3) 

Here, as in Ref.[1], ( ) ( );p
S kr rϕ

� ��

 represents the wave (of 

type p) that is scattered by a scatterer centered at kr
��

 and 

observed at r
�

. Letting ( ) ( );p
E kr rϕ

� ��

 denote the field (of type 

p) that is exciting a scatterer centered at kr
��

 and observed at 

r
�

, the following equation defines the linear scattering 

operators ( ) ( )qp
kT r
��

 of the scatterers  

( ) ( ) ( ) ( ) ( ) ( )
1

; ;
P

p qp q
S k k E k

q

r r T r r rϕ ϕ

=

=∑
� �� �� � ��

. (4) 

The exciting field acting on the k-th scatterer is the sum 
of the incident field and the scattered waves from all the 
other scatterers: 

( ) ( ) ( ) ( ) ( ) ( ) ( )1
1

1 1

; ;
P N

p qp q
E k p inc j E j

q j
j k

r r r T r r rϕ δ ϕ ϕ
= =

≠

= +∑∑
� �� � �� � ��

,(5) 

and the average exciting field on the 1st scatterer (supposed 
fixed), within the quasi-crystalline approximation, is given 
by 
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( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1
1 1

1
1

;

, ;

p
E p inc

P
qp q

j j j E j
q

r r r

d r n r r T r r r

ϕ δ ϕ

ϕ
=

= +

∑∫

� �� �

�� �� �� �� � ��
, (6)  

with the integration performed over the whole region that 

hosts the centers of the scatterers and ( )1,jn r r
�� ��

, the 

conditional number density of scatterers at jr
��

 if one is 

known to be at 1r
��

, given by the “hole correction” [3] : 

( ) 0 for
,

0 otherwise

j
j

n r r b
n r r

− >

=

� ��

� ��

with b>2a. (7) 

The effective potentials are expressed as infinite series 
that respect the symmetries of both the incident wave and 
the scatterers (see section II.B in Ref.[2]), 

( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )

0

3,

; cos

2,

; j

p p
E j n j n p j n j

n

inp p
E j n j n p j

n

d

r r A r j k P

d

r r A r J K e
θ ρ

ϕ ρ θ ρ

ϕ ρ

+∞

=

+∞

=−∞

=

=

=

=

∑

∑
���

� �� �� ���

� �� ��

,(8) 

with j jr rρ = −

��� � ��

 and ( ) ( )j jArgθ ρ ρ=

��� ���

 in both cases, 

and we assume the coherent waves obey the Snell-

Descartes laws of refraction, i.e. they propagate in the ( )dx
direction : 

( ) ( ) ( ) ( )

( ) ( ) ( )

1

1

3, 2 1

2,

k j

k j

P
i Xp pkn

n j n
k

P
i Xp pkn

n j n
k

d A r i n A e

d A r i A e

ξ

ξ

=

=

= = +

= =

∑

∑

��

��

. (9) 

Determination of the system of equations the ( )pk
nA

amplitudes obey involves the decomposition of the incident 
plane wave, Eq.(2), into either spherical or cylindrical 
functions, the writing of the wave scattered by one scatterer 
as a sum of waves incident on the other scatterers via an 
addition theorem [6,7], and leads (see Refs.[1,2] for 
details), for identical scatterers,  to  

{ } { }

( )

( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )

0
2 2

1 0 0

0
2 2

1

1,2,... , 1,2,...

4
3,

1 2 1 0, | 0, | ,

2
2,

pk
n

k p

P
qp qk p

k
q

P
pk qp qk p

n m m m n k
q mk p

p P k P

n b
d A

k

T A N G n

n
d A T A N

K

ν ν

ν

π

ξ

ν ξ ν

π
ξ

ξ

+∞ +∞

= = =

+∞

−

= =−∞

∀ ∈ ∀ ∈

= =
−

− +

= =
−

∑∑∑

∑ ∑

�

�

�

�

 (10) 

with 

( )( ) ( ) ( )( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( ) ( )

1 1

1 1

3,

2,

p
k k k p p k p

p
m k k m k m p p m k m p

d

N bj b h k b k bj b h k b

d

N bJ b H k b K bJ b H k b

ξ ξ ξ ξ

ξ ξ ξ ξ

=

′ ′= −

=

′ ′= −

� � � � �

 (11) 

and the Gaunt coefficients ( )0, | 0, |G nν �  defined from  

( ) ( ) ( ) ( )
0

cos cos 0, | 0, | cosnP P G n Pνθ θ ν θ
+∞

=

=∑ �

�

� , (12) 

and ( )qpT
ν

 the modal coefficient associated with the 

scattering of a type q incident wave ( )q
iϕ ,  

( ) ( ) ( ) ( )

( ) ( )

0

3, 2 1 cos

2,

q n
i n qr n

n

q n in
i n q

n

d i n j k P

d i J k r e θ

ϕ θ

ϕ

+∞

=

+∞

=−∞

= = +

= =

∑

∑

, (13) 

into a type p wave ( )qp
ϕ ,  

( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )( )

1

0

1

3,

2 1 cos

2,

qp qpn
n n p n

n

qp qpn in
n n p

n

d

i n T h k r P

d

i T H k r e θ

ϕ θ

ϕ

+∞

=

+∞

=−∞

=

= +

=

=

∑

∑

, (14) 

by a single scatterer centered at x=y=z=0. 

3 Low frequency and low 
concentration approximation for all 
coherent wave dispersion equations 

The low frequency approximation corresponds to small 

values of pk b , whatever that of p. In the low concentration 

approximation, it is assumed that pξ  and kp are close 

enough for the expansion of 2 2
p pkξ −  in terms of powers of 

n0 to be accurate enough at order 2: 

{ }

( ) ( ) ( ) ( )2 2 2 3
1 0 2 2 0 0

1

1,2,3 ,

P
d d d

p p p p pq
q
q p

p

k d n d d n O nξ
=

≠

∀ ∈

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜− = + + +⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠

∑
.(15) 

Equations.(11) are infinite linear and homogeneous 

systems of equations for the unknown amplitudes ( )pk
nA ; 
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setting their determinants to zero provides the dispersion 
equations of the p-type coherent wave (once again, see 
Ref.[2] for details), which, under both assumptions of low 
concentration and low frequency, leads to  

( ) ( ) ( )3 3
1

0

4 2 1 pp
p p n

n

d i k n Tπ

+∞

=

=− +∑ , (16) 

( )

( )( ) ( ) ( ) ( )

( )

( )

( )( ) ( ) ( ) ( )

3 2 6
2

0 0 0

9
3 2

2 2 2
0 0 0

8

2 1 2 1 0, | 0, |

16

2 1 2 1 0, | 0, |

p p
n m

pp pp
n m

p
pq

n mq p q

qp pq p
n m

q

d k

m n T T G m n

k
d

k k k

k
m n T T G m n

k

ν

ν

ν

π

ν ν

π

ν

+∞ +∞ +∞

= = =

+∞ +∞ +∞

= = =

=−

+ +

=−
−

⎛ ⎞⎟⎜ ⎟⎜+ + ⎟⎜ ⎟⎟⎜⎜⎝ ⎠

∑∑∑

∑∑∑
(17) 

for the spherical case, and to  

( ) ( )2 2
1 4 pp

p p n
n

d ik T
+∞

=−∞

=− ∑ , (18) 

( ) ( ) ( )

( ) ( ) ( )

2 4
2

6
2

2 2 2

8

16

pp pp
p p n m

n m

m n

qp pqp p
pq n m

n mp q q

d k m nT T

k k
d T T

k k k

+∞ +∞

=−∞ =−∞

−
+∞ +∞

=−∞ =−∞

=− −

⎛ ⎞⎟⎜ ⎟⎜=− ⎟⎜ ⎟⎟− ⎜⎜⎝ ⎠

∑ ∑

∑ ∑

,(19) 

for the cylindrical case. 

In both cases, the first order terms ( )3
1pd  and ( )2

1pd , that 

involve no mode conversion, do not depend on the 
complexity of the host medium. The second order terms 
that exhibit as well no mode conversions had been given by 
Lloyd and Berry for spheres in an ideal fluid [8,9], and by 
Linton and Martin for cylinders [10,1]. The coupling term 

for cylinders, ( )2
2 pqd ,was obtained by Conoir and Norris [1]. 

In Ref.[2], we used the matrix formalism developed by the 
latter to obtain its spherical counterpart. 

While Eqs.(15-19) are the most suitable for numerical 
computations, the dispersion equations are most often 
presented in terms of the far-field scattering functions of the 
scatterers. This is the object of next section. 

4 Low frequency and low 
concentration approximation of the 
dispersion equation of the fastest 
coherent wave in terms of far-field 
scattering functions 

Equations.(20) define the far-field scattering functions 
( )( )d
pqf θ  from the expression of scattered fields as in 

Eq.(14) at a large distance r from a single scatterer centered 
at x=y=z=0 : 

( )( )
( )

( )( )

( )( )
( )

( )( )

3

2
/ 4

1/ 2

3,

,

2,

2
,

q

q

ik r
pq pq

r q

ik r
pq pqi

r q

d

fe
r i

r k

d

fe
r e

kr
π

θ
ϕ θ

θ
ϕ θ

π

→+∞

−

→+∞

=

−

=

�

�

. (20) 

with, in case of a circular cylinder, ( )2
pqf  an even function of 

θ if p and q are associated both to either  longitudinal or 
shear waves, and an odd function if only one is associated 
with a longitudinal (or shear) wave. 

While ( ) ( )
1 2, ,d d

p pd d  and ( )2
2 pqd  have all been written [8-

10,1] in terms of the far field form functions defined by 

Eq.(20), we have not managed to do the same for ( )3
2 pqd , 

unless p=1 and obeys Eq.(1) ; this is the reason why we 
focus now on the coherent wave that is associated with the 
fastest longitudinal wave p=1. We found indeed [2] : 

( )
( )( ) ( )( )

( )

2 22
3 1 1

21 3/ 22 2
0

8
sin

2 cos

q q
q

p p q p q

f f
d d

k k k k k

π

θ θπ
θ θ

θ

=

+ −
∫ ,(21) 

while the equivalent term in the d=2 case was [1] : 

( )
( )( ) ( )( ) ( )( ) ( )( )2 2 2 2

2 1 1 1 1
21 2 2

1 10

8

2 cos
q q q q

q
q q

f f f f
d d

k k k k

π

θ θ θ θ
θ

π θ

− + −
=

+ −
∫ .  

 (22) 

Reducing the d=2 case to circular cylinders whose far 
field functions have the parity properties afore mentioned, 

and defining vectors �
1 1k k X=
��

, qk
���

 such that 

1 1. cosq qk k k k θ=
�� ���

, and 1 1q qk k k= −
��� �� ���

, the dispersion 

equation of the coherent p=1 wave may be recast from 
Eqs.(15-22) into 

( ) ( )

( )

( )
( )

2 2 2
211 0 0 0

11 212 2
21 1 1 1 1

1
d

dP
d d dq

d d d
q d

n n n
d

k k k k k
Ω

δξ
δ δ Ω

=

= + + + ∑∫ ,   

 (23) 

with ( )d
Ω  the solid angle in the d-dimensional space.  

The first order terms and the uncoupling 2nd order terms 
are, as given in Refs.[8-10] (in Ref.[1], all integrals 

corresponding to ( )2
2 pδ  should extend from 0 to π, instead of 

2π) : 

( ) ( )( )
( ) ( )( )

3 3
11 11

2 2
11 11

4 0

4 0

i f

if

δ π

δ

=−

=−

, (24) 
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( ) ( )( )( )

( )( )( ) ( )( )( )

( ) ( )( )( )

23 32
21 11

0

2 2
3 32

11 11

22 2
21 11

0

1
4

sin
2

4 0

8
cot

2

d
f d

d

f f

d
f d

d

π

π

δ π θ θ
θ θ

π π

θ
δ θ θ

π θ

=
⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠

⎡ ⎤
+ −⎢ ⎥

⎢ ⎥⎣ ⎦

⎛ ⎞⎟⎜= ⎟⎜ ⎟⎟⎜⎝ ⎠

∫

∫

, (25) 

and the second order coupling terms may be written, from 
Eqs.(21-23), in a way that exhibits the similarities of the 
spherical and circular cylindrical cases : 

( )
( )( ) ( )( )

( )
( )( ) ( )( )

3 3
3 1 1

21
1 1

2 2
2 1 1

21 1/ 2 1/ 2
1 1

4

2 2
4

q q
q

d d

q q
q

d d

f f

k k

f f

k k

θ θ
δ π

θ θ
δ

π π

−

=

−

=

. (26) 

Looking back at Eqs.(24,16), one can only wonder if it 
is possible to write Eq.(25) in a similar way, such as  

( )

( )

( ) ( )( ) ( ) ( ) ( )

( )

( )

( ) ( )( ) ( ) ( ) ( )

3

2

3 3 3 3
21 11 11

2 2 2 2
21 11 11

4

2 2
4

x f f d

x f f d

Ω

Ω

δ π θ θ θ Ω

δ θ θ θ Ω
π π

′=

′=

∫

∫
.(27) 

References  
[1] J.M. Conoir, A.N. Norris, “Effective wavenumbers and 

reflection coefficients for an elastic medium containing 
random configurations of cylindrical scatterers”, Wave 
Motion 47, 183-197 (2010) 

[2] F. Luppé, J.M. Conoir, A.N. Norris, “Efective wave 
numbers for thermo-viscoelastic media containing 
random configurations of spherical scatterers”, J. 
Acoust. Soc. Am. 131(2), 1113-1120 (2012) 

[3] J.G. Fikioris and P.C. Waterman, “Multiple scattering 
of waves. II ‘hole corrections’ in the scalar case”, J. 
Math. Phys. 5(10), 1413-1420 (1964) 

[4] D. Brill, G. Gaunaurd, H. Überall, “Resonance theory 
of elastic shear-wave scattering from spherical fluid 
obstacles in solids”, J. Acoust. Soc. Am. 67(2), 414-424 
(1980) 

[5] J.J. Faran, “Sound Scattering by Solid Cylinders and 
Spheres”, J. Acoust. Soc. Am. 23(4), 405–418 (1951). 

[6] O.R. Cruzan, “Translational addition theorems for 
spherical vector wave functions”, Q. Appl. Math. 20, 
33-40 (1962) 

[7] M. Abramowitz, I. Stegun, Handbook of Mathematical 
Functions with Formulas, Graphs, and Mathematical 
Tables, Dover, New York (1974) 

[8] P. Lloyd, M.V. Berry, “Wave propagation through an 
assembly of spheres. IV Relations between different 
multiple scattering theories”, Proc. Phys. Soc. 91, 678-
688 (1967) 

[9] CM Linton, P.A. Martin, “Multiple scattering by 
multiple spheres: a new proof of the Lloyd-Berry 
formula for the effective wavenumber”, SIAM J. Appl. 
Math. 66, 1649-1668 (2006) 

[10] C.M. Linton, P.A. Martin, “Multiple scattering by 
random configurations of circular cylinders: second-
order corrections for the effective wavenumber”, J. 
Acoust. Soc. Am. 117(6), 3413-3423 (2005) 

Proceedings of the Acoustics 2012 Nantes Conference 23-27 April 2012, Nantes, France

3627


