
HAL Id: hal-00810585
https://hal.science/hal-00810585

Submitted on 23 Apr 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

�Listen to the Picture!�. The StatSon Sound Sonification
System, using VST and DSP

Martin Heath, Gordon Hunter

To cite this version:
Martin Heath, Gordon Hunter. �Listen to the Picture!�. The StatSon Sound Sonification System,
using VST and DSP. Acoustics 2012, Apr 2012, Nantes, France. �hal-00810585�

https://hal.science/hal-00810585
https://hal.archives-ouvertes.fr

”Listen to the Picture!”. The StatSon Sound
Sonification System, using VST and DSP

M. D. Heatha and G. Hunterb

aKingston University, 229 Boston Road, Hanwell, W7 2AA London, UK
bFaculty of Science, Engineering and Computing, Kingston University, Penrhyn Road,

KT1 2EE Kingston Upon Thames, UK

martin.dh@o2.co.uk

Proceedings of the Acoustics 2012 Nantes Conference 23-27 April 2012, Nantes, France

3861

StatSon is a proof-of-concept C++ plugin for a VST host (for example, the Cubase music production software
suite) using Digital Signal Processing (DSP). Its inputs are an audio signal that is converted to the frequency
domain using a Phase Vocoder and an image that is analysed statistically. Selected statistics for the image can

frequency. Arbitrary input can be rounded to the closest semitone, scalar tone or tone from a selection of three or
four note chords, allowing integration with existing music. A wavetable synthesizer converts the transformed
frequency to a monophonic sinusoidal output, changing typically every 10ms, producing an outcome which is
sometimes reminiscent of granular synthesis. The output is able to track the input and change recognisably in
response to altering
of the current image. The aim of the work was to create an audio effect for use live or in the studio, whilst
exploring this technology and the field of image sonification.

1 Introduction
Sonification is the aural equivalent of visualisation.

Kramer et al. [1] identified three aspects: research into
perception, tools and applications. Tools are general
purpose software modules used in sonification, such as a
music synthesis engine. A sonification application is the
combination of tools and possibly further bespoke software
into a system involving data and users, producing
measurable results. This project is intended to be
somewhere between a sonification tool and a sonification
application, with the potential to develop into a full
application.

VST is an industry standard audio plug-in framework by
the audio company Steinberg GmbH. VST originated in the
Cubase music production environment and is used to create
digital effects and instruments. This project is a VST effect
as it manipulates an incoming digital waveform, typically a
piece of music, modified using components associated with
Digital Signal Processing (DSP). These include wavetable
synthesis [2], the Fast Fourier Transform (FFT) [3] and the
Phase Vocoder [4] (pp. 557-577).

Various summary statistics are used to provide an
the RGB and brightness components of

images; the arithmetic mean, mode, median and harmonic
mean. The user is able to use these statistics to modify the
incoming music by changing its pitch using semitone, scale
and chord rounding transformations.

This paper is based upon a Master of Science
dissertation, from which more details can be obtained [5].

2 Sonification
2.1 What is sonification?

A simple and general definition of sonification was
given in [1] -speech audio to convey

[6]:

sound signals (eventually in response to optional additional
excitation or triggering) may be called sonification, if and
only if: (i) the sound reflects objective properties or
relations in the input data. (ii) The transformation is
systematic. This means that there is a precise definition
provided of how the data (and optional interactions) cause
the sound to change. (iii) The sonification is
reproducible: given the same data and identical interactions
(or triggers) the resulting sound has to be structurally
identical. (iv) The system can intentionally be used with
different data, and also be used in repetition with the same

If the two definitions are combined, the intent of

sense) from data and to display it as audio, without using
speech. Note that the second definition does not preclude
the use of speech, but it would have to be triggered by some
form of data analysis.

Sonification combines multiple disciplines, primarily
psychology (auditory perception), acoustics, music,
statistics and computer science. Hermann [6] provides a
breakdown of organized sound and shows the location of
sonification within this framework. According to this
classification, this current project is part of the intersection
of sonification and music ((b) in Figure 1).

Figure 1: Sonification in relation to other categories of
sound (after Hermann [6])

2.2 Sonification Middleware
Sonifications involve analysis of source data using an

aural representation, typically by some kind of audio
synthesis. There needs to be a mechanism to communicate
between the two; this is the job of middleware. This section
describes three different types. They perform different
functions and so are applicable in different circumstances.

MIDI messages [7] do not contain sound, they are
instructions that need to be realised by a synthesizer to

message stops it.
OSC [8] is used more for research, audio programming

and composing. It defines some audio message and data
types, but does not attempt to specify what a host
application should do with the data. It supports much faster
communication speeds and higher data rates than MIDI and
allows digital samples to be transmitted as well as
metadata.

VST is a Software Development Kit (SDK) created by
Steinberg Media Technologies GmbH [9] and available free
for download. The licensing conditions include

Map of Sound

Music

&

Media

Arts

(a) (b) Sonification

Functional Sound

Organised Sound

Proceedings of the Acoustics 2012 Nantes Conference23-27 April 2012, Nantes, France

3862

requirements that the source code is not distributed
publicly. This means that VST cannot be combined with
open source code.

VST provides features to enable a host application,
typically music production software (also known as Digital

either create audio (a VST instrument) or process audio (a
VST effect). A GUI interface communicates with a
processor via a host application. There are many VST hosts,
both commercial and non-commercial. KVR Audio [10] is
a useful audio plugin website containing a list of 216 VST
compatible host applications.

All VST plug-ins share a common structure (Figure 2).
One of the advantages of this framework is that the
complexities of the communications between processor and
GUI are hidden from the VST programmer. The processor
can manipulate the audio based on the user input without
any dependencies on the actual input mechanism.

VST Host

Parameter

Controller
Classes written

as part of Plug-In

User Interaction

Program

supporting VST

Plug-Ins

VST

Parameters

Processor

VST

Parameters

Editor

Figure 2: VST Plug-In Structure

2.3 Project Motivation
Kramer et al. [1] created a research agenda identifying a

number of desirable features for sonification tools. These
provide partial motivation for the design
features, the selection of the underlying technologies and
the software employed.

Control: the sound produced must be controllable by
parameters. Mapping: mapping of data to sound
parameters must be easy to understand and use.
Integration: data should be able to be imported from a
variety of formats. Portability: the system should be
portable to different technical environments.
Experimentation: mappings should allow experiments in
perception. Interaction: the interaction with the data
should be in real time. Complexity/Simplicity: both
powerful and easy to use tools are required. Theory:
psychological mappings of data to sound should be
identified. Distribution: the source code should be
maintainable and widely distributed.

3 Synthesis and Analysis Methods
Linear synthesis methods [11] allow sounds to be

reproduced accurately but have an associated computational
penalty. A form of wavetable synthesis is used here; it is an
efficient implementation of the generation of a single
frequency. Eq. (1) gives the computation for an entry of a
single period discrete wavetable, where is the table,
indexed by s, with amplitude A (in this case, set to 1) and of
length L samples.

 (1)

Interpolation must be used when reading the table for
non-integer frequency multiples. The value of L used is
1024, which gives enough entries to make the interpolated
curve seem sufficiently smooth. Additional processing is
needed to vary the frequency over time, to adjust for the
sampling rate and for amplitude scaling; a smoothing
function over 20 samples is used to avoid abrupt jumps and
consequent artefacts.

In order to manipulate incoming sound and music,
StatSon needs to be able to extract the frequency
components. Various standard mechanisms have been used
and the implementation followed a path from DFT, via FFT
and DSTFT to PV. The first two are standard techniques,
but the others warrant brief explanations.

Discrete Short Time Fourier Transform (DSTFT) [4]
(pp. 540-555): In practice, an infinite time period and
unchanging signal are not useful. When the spectrum is
dynamic, i.e. the signal changes over time, a mechanism is
used to isolate short time portions of the signal. The one
that worked well for this project was
- a sinusoidal amplitude window producing output that can
be processed by an FFT. After each stage, the window is

of a quarter of the window size which
produces a continuously changing frequency spectrum.

Phase Vocoder (PV) [4] (pp. 557-577): the drawback
of the STFT is that it produces output as complex numbers.
The Phase Vocoder transforms these into amplitudes and
frequencies by converting the complex numbers to polar
coordinates, taking the difference between the phases in
successive time periods, bringing the phases back into
range (- appropriately to obtain the
frequencies. The amplitudes are the magnitudes from the
polar conversions.

4 StatSon Functionality

Figure 3 StatSon GUI and Major Control Areas

StatSon is a VST effect. This means it must have an
audio input and output within a host program that supports
VST. In Cubase, it can be used as an an audio

Statistics
Area

VST
Controls

Image
Read Area

Mapping
Buttons

Pitch
Controls

Volume
Control

Volume
Meter

Proceedings of the Acoustics 2012 Nantes Conference 23-27 April 2012, Nantes, France

3863

track. StatSon will receive a mono digital wave signal and
its mono output can go to the mixer.

system using a standard Windows dialogue allowing many
types of image files to be decoded. Images are analysed to
extract the pixel intensities for the three primary colours
(RGB). These and their calculated brightness values are fed
into the summary statistics calculations to create the
statistics display buttons.

The pitch controls consist of two sub-sections, the pitch
creation / manipulation algorithm and pitch rounding. The
first gives the option to select an algorithm and a value (the
Pitch Map parameter) that is used to raise or lower a basis
pitch determined by relative or absolute algorithms.

Relative algorithms use the audio input into StatSon.
For example, a Cubase audio track or a single frequency
sine wave in the test host. This broken up into short time
intervals (typically 10ms for CD quality audio) and each of
these is analysed to find the loudest frequency present.
Absolute algorithms ignore the input and start with a
reference pitch of middle C. This feature is intended more
for testing purposes.

Further options control how the pitch is transformed. If
no Pitch Map parameter has been mapped from image
statistics, the basis frequency will be left unmodified,
irrespective of which relative or absolute option is chosen.
Otherwise, the basis frequency at any point in time will be
modified according to further algorithms given here.

One Octave means that the pitch can be raised or
lowered by up to one octave. The Pitch Map parameter
determines how far up or down to go. Two Octaves is the
same but over a wider span. Piano Range is over the full
range of the piano (A0 = 27.5 Hz to C8 = 4,186 Hz).
Listening tests have indicated there is not much musical
merit in pitches outside of this.

Signed means that the user selectable sign (+ or -) will
be taken into account. For example, Relative Signed 1
Octave means that a Pitch Map value of +100% will raise
the basis pitch by 1 octave, -100% will lower it by an
octave and 0 will leave it unchanged.

If Signed is not present, it means that the sign will not
be used. For example, Relative 1 Octave means that a
Pitch Map value of 100% will raise the basis pitch by 1
octave, 0% will lower by 1 octave and 50% will leave it
unchanged.

Manipulations can result in notes of any frequency, not
just at traditional semitone values. This will not normally
produce usable musical results, so a pitch rounding
mechanism is available. The options are: (i) None - no
rounding, the actual frequencies are used; (ii) Semitone -
rounds up or down to the nearest semitone; (iii) Scalar
Tone - rounds up or down to the nearest scalar tone and (iv)
Chord Tone - a menu allows any basic triad or seventh
chord on any scale degree to be selected via a list of I to vii
and I7 to vii7. The Map option allows the selection of a
chord from an image statistic and a label shows the choice
generated

A menu contains the names of the major scales from C
to B. Sharp keys can be selected via their enharmonic flat
keys, for example G is identical to A . Natural minor keys
can be selected via their relative major, for example A
minor has the same key signature as C major. The Map
option allows selection from an image statistic and a label
shows the actual value generated. 0% would select the first
key, namely C, and 100% would select the last, B.

These pitch transformations can move pitches to levels
outside the range of human hearing (e.g. when moving the
lowest note down an octave). Options control how these are
processed. If Limit is selected, then these notes will be
capped at the highest or lowest notes of human hearing,
taken to be 20 Hz and 20,000 Hz. Final Octave produces a
more natural sounding result. Pitch classes are retained (e.g.
the note A) but notes are moved to the closest in range
octave (high or low, as appropriate).

5 Development
The main hardware used for project development was a

Windows 7 PC with Intel i7 2.8 MHz (quad core, 8
processor) CPU, 16 Gb RAM and
FireWire audio interface. This is the equivalent of a sound
card and allows recording, playback and some DSP on 8
channels of high resolution audio (24 bit / 96kHz). The
principal Visual Studio
2010, the Visual C++ development language and the VST
software development kit (SDK).

Cubase 6
production software and writing a plug-in for it was one of
the key motivators of this project.

5.1 The VST SDK
The VST SDK provides the following components:

VST documentation: there are some manually written
overview pages along with some possibly automatically
generated detail pages. As a learning tool it could do with
considerable improvements.

Base Modules and VST MA (Module Architecture):
these are independent of VST (despite the name). The base
modules provide a library of C++ classes to handle strings,
templates, containers, etc. The MA is a Microsoft COM
style architecture for a general host and plug-in
environment.

VST 3 API: these are the classes that build on the
above to implement an audio plug-in framework.

Helper Classes: these sit above the VST 3 API to
provide classes that are useful for the creation of real plug-
ins, for example the editor (GUI), parameters, busses etc.

Plug-In Examples: these are working plug-ins such as a
volume control (AGain), a delay effect, a multi-effect plug-
in and a synthesizer. These were extremely useful as
manual code analysis of examples was the main method by
which information was obtained. However, this is not ideal
for when an example of a feature cannot be found. It is also
very time consuming.

Test Applications: these contain the highly useful
VST3PluginTestHost standalone application that provides a
test harness for plug-ins without having to wait for Cubase
to load. It has sample wave form inputs such as white noise
and sine wave. The cumbersome USB security dongle that
all major Steinberg products use is also not needed.

VSTGUI 3.6: this is the current version of the user
interface toolkit and was made open source in May 2003
[12]. It provides classes for controls such as buttons and
menus as well as audio specific controls like a knob and a
volume meter.

The VST framework uses older Microsoft Windows
technologies. There is no reason why more modern controls
could not be created, but somebody would have to do the
work, most likely as part of VSTGUI. There is little

Proceedings of the Acoustics 2012 Nantes Conference23-27 April 2012, Nantes, France

3864

integration into the Visual Studio environment; there are no
drag and drop control features or forms designer. Controls
often need to be created or amended manually. For
example, AGain contains the definition of a button control
which needed to be amended for more flexibility in its
colour handling.

5.2 Pitch Algorithms
The pitch class implements pitch rounding and

frequency to pitch conversion via an 11 octave table. The
frequency of pitches is calculated by reference to the A 440
Hz standard at index 57. The frequency F of any note can
be calculated from an index i by the formula:

 (2)

Applying the inverse transformation, it is possible to
translate from an arbitrary frequency F to a table index i:

 (3)

Semitone rounding is performed for frequencies that do
not map exactly to note pitches by converting to floating
point indices. These show, on a linear scale, how close the
original pitch is to its neighbours. The semitone rounded
index is the input index plus 0.5, truncated to an integer.
Scale and chord rounding work in a similar way but limit
the set of notes that can be selected. The notes of the major
scale can be given by index offsets: {Tonic: 0, Supertonic:
2, Mediant: 4, Sub-Dominant: 5, Dominant: 7, Sub-
Mediant: 9, Leading Note: 11}

Any note in this sequence can have a three or four note
chord built upon it by incorporating a second level of
indexing into this index of major scale notes using: {Root:
0, Third: 2, Fifth: 4, Seventh: 6}

It is important to note that this numbering is not the
same as that used in music theory, where indices start at
one. Some extra refinements are needed in order to ensure
that any input pitch is rounded into the 20 to 20,000 Hz
audible range.

Once a basis frequency has been identified from the
input or by using middle C (261.63 Hz), it can be
transformed by the pitch manipulation algorithms. As the
human perception of pitch is on a logarithmic scale, the
general formula to raise or lower a pitch by a given amount
is given by:

 (4)

To implement relative unsigned octave transformations,
the base is 2 and the power must be in the range -1 to +1 to
go down or up an octave. The pitch change parameters as
specified in the GUI are in the range of 0 to 100%, passed
to the processor in the range 0 to 1. To find the required
input pitch change multiplier (as per equation (4)), use:

 (5)

 (6)

Unsigned
50% means no change to pitch, 100% goes to the maximum

frequency (4,186 Hz) and 0% to the minimum frequency
(27.5 Hz). To raise the pitch, rearrange
4,186 to give . To lower the pitch, rearrange

 to give . Use this
new base instead of base 2 in the previous calculations and
recalculate for each input pitch. The degree of translation
between the limits depends on the input; the effect of a
parameter between 0% - 50% on a low pitch is small, but
the effect will be large for values between 50% - 100%.

For signed algorithms, the only difference is that the
unsigned raising range 50% to 100% is replaced by 0% to
+100% and the unsigned lowering range 50% to 0% is
replaced by 0% to -100%. Effectively this adds a sign and
divides the exponent by two.

6 Discussion
[6] definition (discussed in

section 2.1), this project can be thought of as a data
sonification since the output is consistently repeatable from
the input. However, it is probably not what would normally
be expected of a sonification project as there is no attempt
to do any analysis or to reveal any meaning. There is also
no means to limit the area for data analysis by scanning or
probing within the image beyond the current breakdowns
into RGB and brightness. Even so, this does not mean this
project has no sonification abilities. It could easily be
configured to create an aural distinction between red and
green images, for example.

StatSon shows what is possible with a very basic
synthesis technique. Listening to some of the musical
examples produced, it is perhaps surprising that they could
have been created with a single monophonic synthesis
engine. Single frequency sinusoidal input can be tracked
accurately above F1 (43.65Hz). Simple classical guitar
music input creates recognisable output, interspersed with

 which could be harmonics of the
fundamental or noise during the attack phase of the notes.
Music production software like Cubase can use multiple
instances, one per part, with no latency issues. Complex
musical input can result in sounds reminiscent of granular
synthesis [13]. Mappings can be created so that a change of
image results in the output music also changing noticeably.

A difference from previous work is that a sonification as
a VST plug-in using Cubase is an unusual combination and
no evidence has been found of this having been done
elsewhere. One possible cause is that the licensing
requirements prohibit the incorporation of most public
domain software. A further difference from previous
projects is that StatSon is about sonification as a musical
effect. Other projects generally synthesize sound directly;
here existing audio waveforms are modified, although they
are re-synthesized using a wave table oscillator.

An overall assessment of the project can be obtained by
rating it against the possible requirements for sonification
tools, shown in section 2.3 [1]. Five out of nine
requirements have been fulfilled well or to a considerable
extent.

Control: pitch manipulation parameters can control the
modification of the loudest input frequency at rapid, regular
intervals. Mapping: the mapping of data to sound
parameters is easy to understand and use (as it should be in
a comparatively small project). Integration: data can be
imported from all image types supported by the Windows

Proceedings of the Acoustics 2012 Nantes Conference 23-27 April 2012, Nantes, France

3865

Imaging Component (WIC). VST plug-ins can work with
over 200 types of hosts. Interaction: The interaction with
the data is in real time. Complexity / Simplicity: by
necessity, this is an easy to use tool rather than a powerful
one.

7 Possible future work
The main future aim is to include additional features; to

turn StatSon into a more useful sonification tool. These
could include modifications in loudness (amplitude
shaping), spatial location (panning), duration, timbre,
rhythm and tempo, progressing to melody and further
harmonic explorations. The synthesis engine could also be
upgraded to use more advanced forms of synthesis, notably
by incorporating polyphony.

Other possibilities could be to allow processing of
multi-frame bitmaps, leading on to handling video streams.
The ability to save and restore mappings and images
(serialization) enables the use of Cuba
features. These would allow mappings of images and
parameters to be configured manually and then be changed
automatically in real-time as the track is replayed. A longer
term goal is to explore more from the academic image
processing discipline; to identify interesting or meaningful
aspects of images, videos or general data and to be able to
render these as manipulations of existing sound. This would
include the ability to select, analyse and navigate through
areas within the image, video or data.

8 Conclusion
A significant amount of bespoke software was written

for this project; over 4,200 lines of C++ code. However,
public domain FFT software [3], Microsoft software
components (WIC and GDIplus), helpful reference material
[2][4][11], and the VST SDK [9] were all used to speed up
the development process.

On the sonification side, although this project complies

[1] more meaning-based definition is applied (see section
2.3), it can be seen that the information imparted by
sonification in this project is very low. Indeed, it may be
only at the level of saying that one image is different to
another. Even this is not always possible as two images can
quite conceivably have the same or very similar mapped
summary statistics, especially in the current system where
only three mappings are available. The transformation of
the input signal into the frequency domain can also be

there is similarly little meaning imparted.
This project provides a framework for further

exploration of sonification via image statistics. To enable
effective sonifications, these statistics should also be
meaningful. However, is it possible to quantify the
emotional content of an image? For example, an aggressive
man with a knife should score highly on terror, a sunset
over a beach framed by palm trees should rate well on
desirability or beauty. However, an unexpected
demonstration of the power of sonification was its
successful application during debugging of the program
code. Waveform discontinuities, partially filled in output
buffers and incorrect windowing all have audible
consequences! The first two created buzzing sounds and the

last resulted in poor pitch resolution and excessive noise.
Sonification has therefore provided both the motivation for
this project and a useful resource in helping to debug DSP
code, which could ultimately be a genuine practical
application for sonification, worthy of future exploration.

References

[1] Kramer, G., Walker, B., Bonebright, T., Cook, P.,
Flowers, J., Miner, N.; Neuhoff, J., Bargar, R., Barrass,

Handel, S., Kaper, H., Levkowitz, H., Lodha, S.,
Shinn-Cunningham, B., Simoni, M., Tipei, S. The
Sonification Report: Status of the Field and Research
Agenda. Report prepared for the National Science
Foundation by members of the International
Community for Auditory Display. ICAD, Santa Fe,
NM, USA (1999).

[2] Loy, G. Musimathics: The Mathematical Foundations
of Music. Volume 1. The MIT Press, Cambridge,
Massachusetts, USA (2006).

[3] Chernenko, S. Fast Fourier transform FFT.
[Internet] Available at
http://www.librow.com/articles/article-10 (Accessed
3/10/2011).

[4] Boulanger, R. and Lazzarini, V. (eds.) The Audio
Programming Book. The MIT Press, Cambridge,
Massachusetts, USA (2011).

[5] Heath, M. D. StatSon: Statistical Sonification using
VST and DSP, MSc dissertation, Kingston University,
U.K. (2012).

[6] Hermann, T. Taxonomy and Definitions for
Sonification and Auditory Display. In. Proc. 14th Int.
Conference on Auditory Display (ICAD), June 24-27,
Paris, France (2008).

[7] White, P. Crash Course MIDI. SMT an imprint of
Sanctuary Music Publishing Limited, London (2004).

[8] Freed, A. and Schmeder A. Features and future of
Open Sound Control version 1.1 for NIME.
Proceedings of the Conference on New Interfaces for
Musical Expression (NIME), Pittsburgh, PA, USA
(2009).

[9] Steinberg 3rd Party Developer Area. [Internet]
Available at
http://www.steinberg.net/en/company/developer.html
(Accessed 2/10/2011).

[10] KVRAudio Can Host VST Plug-ins | Windows.
[Internet] Available at:
http://www.kvraudio.com/get.php?mode=results&s=11
&st=q (Accessed 4/10/2011).

[11] Loy, G. Musimathics: The Mathematical Foundations
of Music. Volume 2. The MIT Press, Cambridge,
Massachusetts, USA (2007).

[12] Sourceforge, VSTGUI, [Internet] Available at
http://sourceforge.net/projects/vstgui/ (Accessed
6/1/2012).

[13] Roads, C. Microsound. MIT Press, Cambridge, MA,
USA (2001).

Proceedings of the Acoustics 2012 Nantes Conference23-27 April 2012, Nantes, France

3866

