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Using the matching method formalism, this work presents the transmission and reflection coefficients of 
coherent phonons which propagate through a 1D quantum waveguide perturbed by the presence of reticular 
defects as interstitial impurities. Our waveguide model consists of two infinite atomic chains. The implied 
interactions refer only to the bonding strengths between nearest and next nearest close neighbours. .Numerical 
results show that the transmission spectra exhibit Fano-like resonance features which result from degeneracy of 
localized-impurity states and propagating continuum modes. In addition, the scattering by multiple impurities 
induces interferences between diffused and reflected waves in the defect region giving birth to Fabry-Pérot 
oscillations. This interference phenomenon could provide an interesting alternative to investigate structural 
properties of materials. The results could be also useful for the design of phonon devices. 

1  Introduction 
The survey of scattering and localization phenomena in 

the disordered mesoscopic systems interested the 
researchers at all times [1-3] because of the numerous 
applications found in classic metallurgy, in 
electrochemistry, in catalysis and in electronics.

Our present knowledge of the related phenomena has 
been given by the work of Landauer [4], in which the 
studied sample is represented by a set of scatterers (reticular 
defects) inserted in bulk or on surface of crystalline 
structure. He showed that the conductance of a quantum 
wire is bound directly to the scattering properties of such 
system, considered as a waveguide perturbed by defects.  
His approach has stimulated many researchers [5-10] to 
look for the effects of quantum coherence, most of the time 
by numerical methods, in dc transport particularly. Actually 
these phenomena are of renewed interest owing to advances 
in nanotechnologies, the basic motivation being to 
understand the limitations that reticular disorder may have 
on mechanical and vibrational properties of crystalline 
materials. 

In the present work, we study the phonon's scattering by 
an interstitial impurity localized in an infinite double atomic 
chain. We analyze the behaviour of a plan wave which 
propagates throughout this crystal which is assimilated to a 
quasi-planar crystallographic waveguide. We concentrate in 
calculating the reflected and transmitted parts of the 
incidental wave, the phononic conductance as well as the 
displacements of the irreducible atoms composing the 
perturbed region. We are also interested by the 
determination of the localized induced impurity states 
especially important for transmission spectra interpretation. 
Different defect configurations are considered. The 
mathematical treatment of the problem resorts to the 
matching method [7,11] in the harmonic approximation 
framework [12-14] while using scattering boundary 
conditions.  

2 Structural model 
The considered model consists in two linear parallel 

periodic chains of masses, assimilated to a quasi-one-
dimensional planar waveguide in which are incorporated 
interstitial impurities. The parallel chains are composed of 
specific masses aligned along the direction of propagation 
(x axis). The situation is depicted in Figure 1. Each mass is 
linked to its nearest and next nearest neighbours by 
harmonic springs of stiffness constants 1k  and 2k . The 
additional constants as lvK , lk and vk , are represented 
on the figure. To simplify, the distances between adjacent 
masses are considered equal in the two Cartesian directions 
x and y of the plan. Also, to take account of the 
modification of the bonding strength field in the perturbed 
region (grey area M), we introduce a proportionality 
factor  which indicates the ratio of the different force 
constants between the defect zone masses and those of the 
perfect lattice areas G (left) and D (right-hand side) located 
in sites separated by equivalent distances. 

3 Matching method principle 
Initiated by Feuchtwang in the sixties then revisited by 

Szeftel and al. in the eighties, the matching method returns 
account in a satisfactory way for the phonons dispersion 
curves [7-9] and for surface resonances. It gives also a more 
general definition of the resonance concept and allows a 
more transparent analysis of the displacements behaviour in 
the vicinity of the Van Hove singularities [15]. However, its 
execution requires the crystal subdivision in three distinct 
regions having all the same periodicity along the surface. 
The procedure was described in details in references [8].
We will just present the necessary stages to the 
comprehension of the results analysis.
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3.1 Perfect lattice dynamics 
For an atom occupying the site (l) and vibrating at the 

frequency , the equations of motion can be written, using 
the harmonic approximation framework [14], in the 
following form: 

ll
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llk
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2

',

2,2

                                                                              (1) 

where  and  represent the yx,  directions of the plan; 
mlm  indicates the atom mass located at site l ; r  is 

the component of the relative position vector between sites 
l  and 'l , d  the distance separating them and ', llk  the 
bonding strength constant between the two atomic sites.  

Taking into account the problem symmetry and 
applying the scattering boundary conditions for which we 
get plan wave solutions, the perfect lattice atom equation of 
motion (1) rewrites itself in following matrix system: 

                       02,2 urZDI                        (2)                                       

where 1
2 km  is the dimensionless frequency, I

the identity matrix, )2,( rZD the )33(  dynamical matrix 

of the perfect lattice and u  the vector displacement. The 

2r  parameter denotes the force constants ratio between 
nearest and next-nearest neighbours. 

The scattering problem in presence of defects imposes 
the knowledge of both propagating modes ( 1Z ) and 

evanescent ones ( 1Z ) of the perfect waveguide. In 
other words, for a given frequency, all solutions are 
necessary even those whose module is lower than unity. 
These solutions can be obtained by increasing the 
eigenvectors basis: 

                8,,5;)(1)( lu
Z

lv .             (3) 

We then rewrite equation (4) in the Z eigenvalue 
problem form, 

            )(
)(

with)( lv
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WWBZWA ,         (4)

where A  and B  are (4 4) matrices coming from the basis 
change. Let us note that the dimension of this generalized 
eigenvalue problem is twice as large as the original 
problem. 

3.2 Coherent phonons scattering at defects 
Since the perfect waveguides do not couple between 

different eigenmodes, we can treat the scattering problem 
for each vibratory eigenmode separately. Generalization to 
every combination of these modes does not pose a 
particular problem. For an incoming wave from the left of 
Figure 1 in the eigenmode ,

                             uiZi
inV )( , 1i                    (5)

where Z  is the attenuation factor of the entering mode, 

u  its eigenvector;  the superscript )1(i indicates the 
site occupied by the atom with respect to the direction of 
propagation. 

The resulting scattered waves are composed of a 
reflected and transmitted parts, which can be expressed as a 
superposition of the eigenmodes of the perfect waveguide at 
the same frequency, i.e.,         

           )1(.1.
Z
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where r  and t  indicates the reflection and 
transmission coefficients normalized beforehand by group 
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Figure 1: Schematic representation of a planar quasi-1D waveguide made up of 
two linear infinite chains perturbed by interstitial defects. The grey area M 
indicates defect region, G and D two semi infinite perfect waveguides. 
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velocities (slopes of the dispersion curves in Figure 2) of 
the plan wave, set equal to zero for the evanescent modes.  
The evanescent modes are needed for a complete 
description of scattering in presence of defect, although 
they do not contribute at all to the energy transport. 

With the definitions (6) and (7), we can rewrite the 
dynamical equations for the perturbed double chain. Since 
there are perfect waveguides in regions G and D, we only 
need to solve Eqs. (1) for the masses inside the perturbed 
zone M and in the boundary columns (-1) and (2), which 
are matched to the rest of the perfect waveguide by Eqs. (6) 
and (7). Isolating the inhomogeneous terms describing the 
incidental wave, we obtain an inhomogeneous system of 
linear equations 

          inVZrfDXRZrfD ),2,(),,2,(         (8)

where ),,2,( ZrfD  indicates the dynamical defect 

matrix, X  the vector gathering all the problem unknowns, 

inV  the incidental vector and R  the matching matrix.  (8) 

As example, for an isolated defect we obtain a 

dynamical matrix 2618~D ; from where a matching 

matrix 1826R  is deduced. Then the vector X  will be 
composed of eighteen unknowns including the ten 
displacements )(lu  of the irreducible atoms, the four 
transmission coefficients and four reflection ones. 

4 Numerical results and discussion 
4.1 2D and 3D dispersion curves 

For aqieZ , the resolution of the equation (2) 
determines the eigenfrequencies  as well as the 
corresponding eigenvector u . The propagating modes 

correspond to the solutions 1Z . They are usually given 
in terms of q, with q running over the first Brillouin 

zone a a . In the case of the double chain, we 

obtain two acoustic modes with 0  when 0q . The 
two remaining modes are optical with 0  for any q.
Figure 2 shows the curves of dispersion )(q for 

5.0,1 21 rk  and 1m . Contrary to the electronic case 
where the curves are parallel sinusoids, we do not have here 
any hope to find a usable analytical expression. It will thus 
be necessary to resort to purely numerical methods to 
integrate this dispersion relation in the general problem in 
presence of defect. 

The analysis of the eigenvectors indicates that the 
waveguide eigenmodes are either symmetric or 
antisymmetric relatively to the central axis confused with 
the propagation direction. The results show that there is one 
acoustic and one optic mode for each symmetry. Moreover, 
the anticrossing behaviour between the symmetric acoustic 
and optic modes observed in Figure 2 is due to the fact that 
the dispersion curves belonging to the same symmetry 
interact and therefore do not cross. Note further that the 

antisymmetric transverse acoustic mode has 2q dispersion 
for 0q [16]. This behaviour is a consequence of the 
finite extension of the waveguide in y direction. 

On Figure 3 are represented the functional behaviours 
of the four vibrating modes characterizing the double chain. 
They are obtained by resolving Eq. (4). Common special 
points are knowingly considered in the two 
representations )(q  and )(Z  to facilitate the 
comparison between 2D dispersion curves (Figure 2) and 
the 3D curves (Figure 3). The projection of the curves on 
the complex plan shows that the propagating solutions 
follow the circles of unit radius, equal to the phase factor 
module; whereas the evanescent solutions correspond to the 
curves contained inside the unit circle.  

 The two antisymmetric modes are degenerated at the 
point a ( 0,1Z ). The acoustic mode is propagated up 
to the point f where f  and 1Z . It becomes 
evanescent for larger frequencies.  

Figure 2: Phonons dispersion branches for propagating 
modes for a quasi planar waveguide represented by two 
infinite atomic chains with real q running over the first 
Brillouin zone for 11k , 5.02k  and 1m .
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Figure 3: Functional behaviours )(Z of the vibrational 
modes characterising the double atomic chain. Unit circles 
correspond to propagating modes (dispersion 
curves ,)(q Figure 2) whereas the evanescent modes are 
represented by the parts inside the unit circles. 
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Starting from point a, the other solution is immediately 
evanescent at the low frequencies then follows the optical 
branch of discrepancy between points )1(Zh  and 

)1(Zk  to become evanescent again. For still higher 
frequencies k , the two solutions follow the real 

negative Z axis and remain evanescent when 0Z
and .

For the symmetric modes, the functional behaviour is 
somewhat more complicated. This is essentially due to the 
anticrossing phenomenon of the propagating acoustic and 
optic modes of the same symmetry, which constrained 
phonons to take evanescent paths to jump from a 
propagating branch to the other in the interacting zone, 
surrounded by a dashed circle in Figure 2 [8,9]. The 
solution starting at point a follows the propagating 
acoustical mode up to point c, which corresponds to the 
maximum frequency in this branch. It then joins the 
minimum of the optical branch by taking an evanescent 
path with 1Z . From point d to e, it continues on the 
propagating optical branch, before becoming again 
evanescent with real negative Z. The second solution is 
evanescent for 0 , starting with a real negative value of 
Z. For increasing frequencies, it follows the negative Z axis 
to reach point f in the propagating optical branch, continues 
on this propagating branch up to its maximum frequency at 
point c’ and then joins point d’ on the propagating optical 
branch via an evanescent path. It coincides with the 
propagating optical branch between points d’ and g and 
then becomes evanescent with real positive Z. For higher 
frequencies, both solutions remain evanescent with 0Z
when

4.2 Single impurity scatterer 
Phonons scattered by impurity are analyzed relatively to 

an incidental wave coming from the left of Figure 1, with 
unit amplitude and a zero phase on the border atom (-1) 
located just at the beginning of the defect region M. The 
numerical results for the transmission and reflection 
coefficients in terms of the incident phonon frequency are 
consigned in Figure 4 in the case of light impurity 
mass mm 5.0' .

We notice that the presence of the interstitial defect 
leads to a general decrease of the probability amplitude. As 
expected, the influence of the defect is relatively small in 
the acoustical regime because of the low implied 
frequencies. For 0 , we get 1T ; the subscript
(=1 to 4) refers to the dispersion curves of Figure 2, where 
the modes are numbered from bottom to top. Moreover, the 
transmission spectra are marked by pronounced typical 
Fano-like resonances (indicated by arrows in Figures 4). 
These asymmetric resonances can be attributed to the 
presence of impurity-induced resonant states, whose 
frequency depends on the value of the bonding forces in 
region M. Consequently, these resonances take place at low 
frequencies for heavy defects and inversely for the light 
ones. These findings are in agreement with those of 
Tekman and Bagwell [2], who used a two mode-mode 
approximation. 

Lastly the well known theoretical relation translating the 
conservation of energy principle,  

                              1TR                                (9) 

is fortunately satisfied and always checked for each 
frequency. Besides, this condition constitutes an effective 
control method of the results.  

The results of the conductance )(  are shown on 
Figure 5. In addition to the curves of conductance relating 
to each impurity mass considered previously, we also 
represented that of the perfect lattice (dash-dawned curve).  

Figure 4: Transmission and reflection coefficients as a 
function of the phonon frequency for an isolated interstitial 
defect in a) acoustic mode 1 and b) optical mode 2 in the 
case of light impurity mass ( mm 5.0' ). The arrows 
indicate the Fano-like resonance peaks; the dotted curve 
shows the good complementarity between the two 
coefficients.
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Figure 5: The total transmission probability vs phonon 
frequency for impurity masses mm 5.0'  (dashed line), 

mm'  (dotted line) and mm 2'  (full line) in the case of 
a single impurity scatterer. The dashed histogram represents 
the total hypothetical phonon transmission capacity of the 
system. 
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In this case, the entering wave is totally transmitted in 
each propagating mode. The conductance of the system 
becomes then more important where the modes overlap. For 
this reason, its value reaches more than unity in the se 
concerned frequencies range. 

Otherwise the conductance spectrum is much more 
affected in the case of light impurity mass (dashed curve). 
In addition to resonance, this influence is translated by a 
less amplitude compared to for bigger masses at weak 
frequencies.

4.3 Extended defect  
The increase of the defect region width doesn't bring 

anything of qualitatively new in relation to the case of the 
single impurity. The addition of impurities results solely in 
the increase of the size of the linear system (6), but the 
matrix D~  keeps its structure. The supplementary blocks 
have the same shape as those characterizing a single defect. 
We have limited our study to only ten interstitial impurities 
which already generates a ( 8072 ) defect matrix 
dimension. The effects described previously in the case of 
isolated step appear, but they are even more difficult to 
isolate because of the biggest number of peak-dip structures 
near in frequencies. It is why we are not going to study in 
details these regions. On the other hand, we will limit 
ourselves to present a more global change of the 
transmission curves, provoked by the Fabry-Pérot 
oscillations issued from interferences between the multiple 
scatterings of propagating states in the perturbed region. 

The phonon scatterings, considered for an extended 
defect composed of several interstitial impurities, are 
presented in Figures 6 and 7 for light mass impurity 
( mm 5.0' ) and a heavy one ( mm 2' ). It can be seen 
that the transmission curves structure became richer of 
several peaks. We observe also a drastic dependence of 
Fabry-Pérot oscillations with the number N of impurities. 
However, the number of main dips remained the same 
corresponding to the total number of lattice parameter a
contained in the width of the perturbed region.  

The fact that their number seems to be lower on the 
figures is simply related to a resolution problem in the 
implied frequency range. Same results are observed by V. 
Pouthier and al. [17] on the transmittance spectrum of a 
nanowire containing a set of linear clusters separated by 
different spacing. Otherwise, the upper level of the Fabry 
Pérot oscillation can merge with the Fano-resonance peak. 
It should be noted that on average the global shape of the 
transmission curves is quite similar to that obtained in the 
case of an isolated impurity (in dashed line on the figures). 

 The transmission curves are turned into a number of 
peak-dip structures, the reason is that the modes will 
interfere with each other due to the multiple reflections of 
the phonon waves in the perturbed region. In general, the 
multiple interferences in the perturbed waveguide imply the 
more complex transmission spectra. These interferences 
between multiply scattered waves result in Fabry–Pérot 
oscillations of increasing amplitudes with the frequency and 
whose number depends intimately of the number N of 
impurities. Similar results are obtained in the study of 
adatomic defects [8,9,16-19] and substitutional defect 
columns [8] in the perturbed double quantum chain. Defects 
are separated by different spacing in both configurations

5 Conclusion 
In this work, we have analyzed the behaviour of 

propagating elastic waves through a quantum waveguide 
perturbed by interstitial impurities. Our calculation resorts 
to the matching procedure based on the Landauer-Büttiker 
approach. The scattering is considered for isolated and 
extended impurities defects. In both configurations, strong 
asymmetrical resonances are observed in the transmission 
spectra; these structures are allotted to the coupling discrete 
continuum-states induced by the defect region M. The 
resonance peaks and their number are determined also by
the width of the perturbed region M, i.e. the number N of 
impurities. Moreover, the transmission spectrum is also 
characterized by other oscillations of Fabry-Pérot type due 
to the interferences between transmitted ant reflected waves 
in the perturbed region. Their number depends closely of 
the defect region width.

 The transmission spectra can thus be used for 
identifying defects of specific structures and then being 

Figure 6: Transmission coefficient as a function of the 
phonon frequency for an extended defect composed of N
defects of light impurity mass mm 5.0' . The dotted curve 
refers to an isolated scatterer having the same mass. 
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Figure 7: As in Figure 6 for a heavy impurity mass 
( mm 2' ).
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used for their characterization. The interference effects are 
of interest for improvements in the design of transducers 
and noise control [20] whereas Fano-type resonances are 
commonly used to build filters [21]. The results could be 
also useful for the design of phonon devices. 
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