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Introduction

The Arm theory [START_REF] Arm | The Arm Theory[END_REF] gives a developpment on any p-th power function basis in changing of variable in the Arm formula. But for functions in C[(u(z) -z 0 ) p ], p ∈ N * there is an other way (the p-Arm formula) to make this developpment : instead of changing the variable at the p-th powers, you can also derivate p times which will finally give the same result. This is the main idea behind the p-Arm theory.

The exponential function is the function which leaves invariant the operator in the Taylor formula i.e. :

∂e x ∂x = e x (0.1)

So in constructing the p-Arm theory, we see that we need a "p-exponential" e x p function which leaves the operator of the p-Arm formula invariant : for 1 ≤ k < p. The answer to the question (0.2) is the definition of the p-exponential as follow :

e x p = ∞ k=0
x pk (pk)! (0.3)

The p-Arm formula is not so much interesting itself because we already have the developpment by the Arm-theory, but this formula give rise to the p-exponential which is very interesting to study.

In studying the derivate of the p-exponential, we see that this operator acts like a shift operator on the p-exponential and we need a generalization of the "p-exponential" to also include its derivate. This generalized exponential function is :

e x p,µ = ∞ k=0 x pk+µ (pk + µ)! (0.4)
for p, µ ∈ N * . I know that there is already a generalized exponential function in the theory of the fractional calculus (see [START_REF] Bologna | Short Introduction to Fractional Calculus[END_REF]) which is given by

E y µ ≡ ∞ k=0 t k-µ Γ(k + 1 -µ) (0.5)
but which one I introduce here is more generalized because (0.4) has a multiplication and a shift whereas (0.5) has only a shift.

In the first section, we give the equivalent of the Arm formula for the p-Arm theory which we naturally call the p-Arm formula for function in C[(u(z) -z 0 ) p ].

In the second section, we give the equivalent shifted Arm formula for the p-Arm theory which we call the shifted p-Arm formula.

In the third section, we give the definition of the generalized exponential function. Next, we draw the six first real p-exponentials which is a beautiful graph. In effect, we explain why the p-th derivate of the p-exponential is itself. In this case, we calculate the derivate of the p-exponential. Thereby, we give the relation between the p-exponential and the traditional exponential. This is why we use this result to show that every function solving that its p-th derivate is itself can be expressed as a linear combination of p-exponential and we give the example of p = 2. Then defining the complex pexponential, we give its real part called the p-cosinus and we draw the six first p-cosinus. Furthermore, we define the p-sinus which is the imaginary part of the complex p-exponential and we draw the six first of it. Finally, we define the p-tangent and we draw the six first p-tangent.

The p-Arm Formula

First we introduce the generalization to each basis u(z) of the well known Taylor formula which is written in the basis u(z) = z for each basis of the space

C[(u(z) -z 0 ) p ] =span{1, (u(z) -z 0 ) p , (u(z) - z 0 ) 2p , ...} Theorem 1. ∀u(z) ∈ C(C) if ∃z ∈ C such that u(z) = z 0 ∈ C then ∀f (z) ∈ C[(u(z) -z 0 ) p ] f (z) = ∞ k=0 1 (pk)! lim z→u -1 (z 0 ) ∂z ∂u ∂ ∂z pk f (z) u(z) -z 0 pk (1.6) Proof : It's enough to show this formula on the basis (u(z) -z 0 ) pr r∈N . If k < r : 1 (pk)! lim z→u -1 (z 0 ) ∂z ∂u ∂ ∂z pk u(z) -z 0 pr = 1 (pk)! lim z→u -1 (z 0 ) ∂ pk u(z) u(z) -z 0 pr = 1 (pk)! lim z→u -1 (z 0 ) (pr)! (p(r -k))! u(z) -z 0 p(r-k) 1 (pk)! lim z→u -1 (z 0 ) ∂z ∂u ∂ ∂z pk u(z) -z 0 pr = 0 (1.7) If k > r : 1 (pk)! lim z→u -1 (z 0 ) ∂z ∂u ∂ ∂z pk u(z) -z 0 pr = 1 (pk)! lim z→u -1 (z 0 ) ∂ ∂u(z) pk u(z) -z 0 pr = 1 (pk)! lim z→u -1 (z 0 ) ∂ p(k-r) u(z) (pr)! 1 (pk)! lim z→u -1 (z 0 ) ∂z ∂u ∂ ∂z pk u(z) -z 0 pr = 0 (1.8) If k = r : 1 (pk)! lim z→u -1 (z 0 ) ∂z ∂u ∂ ∂z pk u(z) -z 0 pr = lim z→u -1 (z 0 ) (pr)! (pk)! 1 (pk)! lim z→u -1 (z 0 ) ∂z ∂u ∂ ∂z pk u(z) -z 0 pr = 1 (1.9)
So we can see that :

1 (pk)! lim z→u -1 (z 0 ) ∂z ∂u ∂ ∂z pk u(z) -z 0 pr = δ k,r (1.10) 2 The Shifted p-Arm Formula If you have a function f ∈ C[(u(z -z 0 ) -p ] ⊕ C[(u(z) -z 0 ) p ]
, you can know it if the coefficients on the negative basis are zeros before the infinity.

Theorem 2. ∀u(z) ∈ C(C) if ∃z ∈ C such that u(z) = z 0 ∈ C then ∀f (z) ∈ C[(u(z) -z 0 ) p ] ⊕ C[(u(z) -z 0 ) -p ] f (z) = ∞ k=-mp(u,f ) 1 (p(k + m p (u, f )))! lim z→u -1 (z 0 ) ∂z ∂u ∂ ∂z p(k+mp(u,f )) (u(z)-z 0 ) pmp(u,f ) f (z) u(z)-z 0 pk (2.
11) where the integer m p (u, f ) ∈ N is given by :

m p (u, f ) = lim z→u -1 (z 0 ) - ln(f (z)) p ln(u(z) -z 0 ) < ∞ (2.12) Proof : Let f (z) has the decomposition f (z) = ∞ k=-mp(u,f ) α pk (u(z) -z 0 ) pk = ∞ k=0 α p(k-mp(u,f )) (u(z) -z 0 ) pk (u(z) -z 0 ) -pmp(u,f ) (2.13)
where α pk =< f, (u(z) -z 0 ) pk >. Pratically, we determine m p in calculating lim

z→u -1 (z 0 ) - ln(f (z)) p ln(u(z) -z 0 ) = lim z→u -1 (z 0 ) - ln( ∞ k=-m(u,f ) α k (u(z) -z 0 ) k ) p ln(u(z) -z 0 ) = lim z→u -1 (z 0 ) - ln(α -m(u,f ) (u(z) -z 0 ) -m(u,f ) ) p ln(u(z) -z 0 ) lim z→u -1 (z 0 ) - ln(f (z)) p ln(u(z) -z 0 ) = m(u, f ) (2.14)
Inserting (2.13) in (1.6), we deduce

(u(z)-z 0 ) pmp(u,f ) f (z) = ∞ k=0 1 (pk)! lim z→u -1 (z 0 ) ∂z ∂u ∂ ∂z pk (u(z)-z 0 ) pmp(u,f ) f (z) u(z)-z 0 pk (2.15) from which we deduce (2.11) in changing k = k -m p (u, f ).
Remark 1. If you consider the shifted p-Arm formula (2.11) for p = 2, u(z) = e iz and z 0 = 0, you will check that :

cos 2 (z) = e 2iz + 2 + e -2iz 4 (2.16)
with m 2 (e iz , cos 2 ) = 1.

The shifted p-Arm formula gives rise to a new mathematical function which make one the limit in the formula (2.11).

3 The p-exponential Definition 1. We define the generalised exponential function :

e x p,µ = ∞ k=0 x kp+µ (kp + µ)! (3.17)
for p, µ ∈ N * .

In the rest of this paper, we will call e x p,0 = e x p the "p-exponential". Now because we want see what are these new function, we draw the 6 first real p-exponentials : for each 1 ≤ l < p.

Proof :

∂ p e x p ∂x p = ∂ p ∂x p ∞ k=0 x pk (pk)! = ∞ k=1 (pk)! (pk -p)! x pk (pk)! = ∞ k=1 x pk-p (pk -p)! = ∞ k=0 x pk (pk)! ∂ p e x p ∂x p = e x p (3.19)
The second part of (3.18) is trivial.

Now, we calculate the derivative of the p-exponential

Proposition 2. The derivate of the p-exponential is given by :

∂e x p ∂x = e x p,p-1 (3.20)
where p ∈ N * .

Proof : Proposition 3. The link between the p-exponential and the usual exponential is given by :

∂e x p ∂x = ∂ ∂x ∞ k=0 x pk (pk)! = ∞ k=1 (pk) x pk-1 (pk)! = ∞ k=1 x pk-1 (pk -1)! = ∞ k=0 x pk+p-1 (pk + p -1)! ∂e x p ∂x = e
p-1 µ=0 ∂ µ ∂x µ e x p = e x (3.24)
or equivalently :

p-1 µ=0 e x p,µ = e x (3.25) Proof : p-1 µ=0 
∂ µ ∂x µ e x p = e x p + ∂ ∂x e x p + ... + ∂ p-1 ∂x p-1 e x p = ∞ k=0 x pk (pk)! + ∂ ∂x ∞ k=0 x pk (pk)! + ... + ∂ p-1 ∂x p-1 ∞ k=0 x pk (pk)! = ∞ k=0 x pk (pk)! + ∞ k=1 x pk-1 (pk -1)! + ... + ∞ k=1 x pk-p+1 (pk -p + 1)! = ∞ k=0 x pk (pk)! + ∞ k=0 x pk+p-1 (pk + p -1)! + ... + ∞ k=0 x pk+1 (pk + 1)! = e x p + e x p,p-1 + ... + e x p,1 p-1 µ=0 ∂ µ ∂x µ e x p = e x (3.26)
Now we introduced the p-exponential, we can use it to solve somes differential equations. In fact, this is why I created it, the exponential solve the limit of the first order differential equation in the traditional Taylor formula whereas the p-exponential solve the limit of the pth order differential equation in (1.6). Proof :

∂ p u(x) ∂x p = p k=1 α k ∂ p ∂x p e ω k p x p = p k=1 α k ∂(ω k p x) ∂x ∂ ∂(ω k p x) p e ω k p x p = p k=1 α k ω pk p e ω k p x p ∂ p u(x) ∂x p = u(x) (3.29) 

Example :

As an example of (3.27), we solve the well-know case :

∂ 2 u(x) ∂x 2 = u(x) (3.30)
The formula (3.28) gives the solution :

u(x) = α 1 e x 2 + α 2 e -x 2 u(x) = α 1 cosh(x) + α 2 cosh(-x) (3.31)
where α 1 , α 2 ∈ C depend on the initial conditions. In addition I also search for the value of the module of the p-exponential but it seems to not have a fixed valued on the graph. So on the graph, it seems to be : 
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 11 Figure 1 -The six first p-exponentials

Remark 3 .

 3 We see that because of (3.20), we have :∂ k e x p ∂x k = ex p,p-k (3.23) for 1 ≤ k ≤ p. So the derivation acts like a shift operator on the p-exponential. Now we show an interesting relation which link the p-exponential with the traditional exponential.

Proposition 4 .

 4 Let the differential equation∂ p u(x) ∂x p = u(x) (3.27)∃α 1 , ..., α p such that the solution of (3.27) can be expressed as :whereω p = e 2iπ pis the p-th root of unity.
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 23 Figure 2 -The six first p-cosinus

lim x→∞ cos 2 p

 2 (x) + sin 2 p (x) = ∞ (3.37)for p ≥ 3. There is an exception for p = 2 because e 2 = cosh and we have that :|e ix 2 | = cos(x) (3.38)For now, I didn't find yet the inverse function of the p-exponential or of the generalized exponential function. I tried finding an expression for the derivate of the "p-logarithm" :∂ ln p (x)∂x we need a relation between the p-exponential e x p and its derivate e x p,p-1 other than the derivation relation itself.