Un modèle booléen pour l'énumération des siphons et des pièges minimaux dans les réseaux de Petri - Archive ouverte HAL
Conference Papers Year : 2012

Un modèle booléen pour l'énumération des siphons et des pièges minimaux dans les réseaux de Petri

Faten Nabli
  • Function : Correspondent author
  • PersonId : 939831

Connectez-vous pour contacter l'auteur
François Fages
Thierry Martinez
  • Function : Author
  • PersonId : 939832
Sylvain Soliman

Abstract

Petri-nets are a simple formalism for modeling concurrent computation. Recently, they have emerged as a powerful tool for the modeling and analysis of biochemical reaction networks, bridging the gap between purely qualitative and quantitative models. These networks can be large and complex, which makes their study difficult and computationally challenging. In this paper, we focus on two structural properties of Petri-nets, siphons and traps, that bring us information about the persistence of some molecular species. We present two methods for enumerating all minimal siphons and traps of a Petri-net by iterating the resolution of a boolean model interpreted as either a SAT or a CLP(B) program. We compare the performance of these methods with a state-of-the-art dedicated algorithm of the Petri-net community. We show that the SAT and CLP(B) programs are both faster. We analyze why these programs perform so well on the models of the repository of biological models biomodels.net, and propose some hard instances for the problem of minimal siphons enumeration.
Fichier principal
Vignette du fichier
jfpc12_version_finale.pdf (317.13 Ko) Télécharger le fichier
Origin Files produced by the author(s)
Loading...

Dates and versions

hal-00810486 , version 1 (10-04-2013)

Identifiers

Cite

Faten Nabli, François Fages, Thierry Martinez, Sylvain Soliman. Un modèle booléen pour l'énumération des siphons et des pièges minimaux dans les réseaux de Petri. JFPC 2012 - Huitièmes Journées Francophones de Programmation par Contraintes, AFPC, May 2012, Toulouse, France. ⟨hal-00810486⟩

Collections

INRIA INRIA2
122 View
106 Download

Altmetric

Share

More