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Abstract: In this note we consider the estimation of an unknown function
f for weakly dependent data (α-mixing) in a general setting. Our contri-
bution is theoretical: we prove that a wavelet hard thresholding estimator
attains a sharp rate of convergence under the mean integrated squared er-
ror (MISE) over Besov balls without imposing too restrictive assumptions
on the model. Applications are given for two types of inverse problems: the
deconvolution density estimation and the density estimation in a GARCH-
type model, both improve existing results in this dependent context.
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1. Introduction

A general nonparametric problem is adopted: we aim to estimate an unknown
function f via n random variables V1, . . . , Vn from a strictly stationary stochastic
process (Vt)t∈Z. We suppose that (Vt)t∈Z has a weak dependence structure;
the α-mixing case is considered. This kind of dependence naturally appears
in numerous models as Markov chains, GARCH-type models and discretely
observed diffusions. See, e.g., Doukhan (1994), Carrasco and Chen (2002) and
Bradley (2007). The problems where f is the density of V1 or a regression
function have received a lot of attention. A partial list of related works includes
Robinson (1983), Roussas (1987, 1990), Truong and Stone (1992), Tran (1993),
Masry (1996a,b), Masry and Fan (1997), Bosq (1998) and Liebscher (2001).

For an efficient estimation of f , many methods can be considered. The most
popular of them are based on kernels, splines and wavelets. In this note we deal
with the wavelet methods. They has been introduced in a i.i.d. setting by Donoho
and Johnstone (1994, 1995) and Donoho et al. (1995, 1996). Among their inter-
ests, they enjoy remarkable local adaptivity against discontinuities and spatially
varying degree of oscillations. Complete reviews and discussions on wavelets in
statistics can be found in, e.g., Antoniadis (1997) and Härdle et al. (1998). In the
context of α-mixing dependence, various wavelet methods have been elaborated
for a wide variety of nonparametric problems. Recent developments can be found
in, e.g., Leblanc (1996), Tribouley and Viennet (1998), Masry (2000), Patil and
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Truong (2001), Doosti et al. (2008), Doosti and Niroumand (2009), Doosti et al.
(2010), Cai and Liang (2011), Niu and Liang (2011), Chesneau (2012, 2013a,b),
Chaubey and Shirazi (2013) and Abbaszadeh and Emadi (2013).

In the general dependent setting described above, we provide a theoretical
contribution to the performance of a wavelet estimator based on a hard thresh-
olding. This nonlinear wavelet procedure has the features to be fully adaptive
and efficient over a large class of functions f . See, e.g., Donoho and Johnstone
(1994, 1995), Donoho et al. (1995, 1996) and Delyon and Juditsky (1996). Fol-
lowing the spirit of Kerkyacharian and Picard (2000), we determine necessary
assumptions on (Vt)t∈Z and the wavelet basis to ensure that the considered es-
timator attains a fast rate of convergence under the MISE over Besov balls.
The obtained rate of convergence often corresponds to the near optimal one
in the minimax sense for the standard i.i.d. case. The originality of our result
is to be general and sharp; it can be applied for nonparametric models of dif-
ferent natures and improves some existing results. This fact is illustrated by
the consideration of the density deconvolution estimation problem and the den-
sity estimation problem in a GARCH-type model, improving (Chesneau, 2012,
Proposition 5.1) and (Chesneau, 2013a, Theorem 2) respectively.

The organization of this note is as follows. In the next section we describe
the considered wavelet setting. The wavelet hard thresholding estimator and its
theoretical performances are presented in Section 3. Applications of our general
result are given in Section 4. The proofs are carried out in Section 5.

2. Wavelets and Besov balls

In this section we introduce some notations corresponding to wavelets and Besov
balls.

2.1. Wavelet basis

We consider the wavelet basis on [0, 1] constructs from the Daubechies wavelets
db2N with N ≥ 1 (see, e.g., Daubechies (1992)). A brief description of this basis
is given below. Let φ and ψ be the initial wavelet functions of the family db2N.
These functions have the particularity to be compactly supported and to belong
to the class Ca for N > 10(a + 1). For any j ≥ 0, we set Λj = {0, . . . , 2j − 1}
and, for k ∈ Λj ,

φj,k(x) = 2j/2φ(2jx− k), ψj,k(x) = 2j/2ψ(2jx− k).

With appropriated treatments at the boundaries, there exists an integer τ
such that, for any integer ℓ ≥ τ , B = {φℓ,k, k ∈ Λℓ; ψj,k; j ∈ N − {0, . . . , ℓ −

1}, k ∈ Λj} is an orthonormal basis of L2([0, 1]) =

{

f : [0, 1] → R; ||f ||2 =
(

∫ 1

0
|f(x)|2dx

)1/2

<∞

}

.

For any integer ℓ ≥ τ and f ∈ L
2([0, 1]), we have the following wavelet expan-
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sion:

f(x) =
∑

k∈Λℓ

cℓ,kφℓ,k(x) +
∞
∑

j=ℓ

∑

k∈Λj

dj,kψj,k(x), x ∈ [0, 1],

where cj,k and dj,k denotes the wavelet coefficients of f defined by

cj,k =

∫ 1

0

f(x)φj,k(x)dx, dj,k =

∫ 1

0

f(x)ψj,k(x)dx. (2.1)

Technical details can be found in, e.g., Cohen et al. (1993) and Mallat (2009).
In the main result of this study, we will investigate the performances of the

proposed estimator by assuming that the unknown function of interest f belongs
to a wide class of functions: the Besov class. Its definition in terms of wavelet
coefficients is presented below.

2.2. Besov balls

We say that f ∈ Bs
p,r(M) with s > 0, p, r ≥ 1 and M > 0 if and only if there

exists a constant C > 0 such that the wavelet coefficients of f given by (2.1)
satisfy

2τ(1/2−1/p)

(

∑

k∈Λτ

|cτ,k|
p

)1/p

+







∞
∑

j=τ






2j(s+1/2−1/p)





∑

k∈Λj

|dj,k|
p





1/p






r





1/r

≤ C,

with the usual modifications if p = ∞ or r = ∞. Note that, for particular choices
of s, p and r, Bs

p,r(M) contains the classical Hölder and Sobolev balls. See, e.g.,
Meyer (1990) and Härdle et al. (1998).

Remark 2.1. We have chosen a wavelet basis on [0,1] to fix the notations;
wavelet basis on another interval can be considered in the rest of the study.

3. Statistical framework, estimator and result

3.1. Statistical framework

As mentioned in Section 1, a nonparametric estimation setting as general as
possible is adopted: we aim to estimate an unknown function f ∈ L

2([0, 1]) via
n random variables (or vectors) V1, . . . , Vn from a strictly stationary stochastic
process (Vt)t∈Z defined on a probability space (Ω,A,P). We suppose that (Vt)t∈Z

has a α-mixing dependence structure with exponential decay rate, i.e., there
exist two constants γ > 0 and θ > 0 such that

sup
m≥1

(

eθmαm

)

≤ γ,
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where αm = sup(A,B)∈FV
−∞,0×FV

m,∞
|P(A ∩B)− P(A)P(B)|, FV

−∞,0 is the σ-

algebra generated by the random variables (or vectors) . . . , V−1, V0 and FV
m,∞

is the σ-algebra generated by the random variables (or vectors) Vm, Vm+1, . . ..
The α-mixing dependence is reasonably weak; it is satisfied by a wide variety

of models including Markov chains, GARCH-type models and discretely ob-
served diffusions. See, for instance, Bradley (2007), Carrasco and Chen (2002),
Doukhan (1994) and Genon-Catalot et al. (2000).

The considered estimator for f is presented below.

3.2. Estimator

We define the hard thresholding wavelet estimator f̂ by

f̂(x) =
∑

k∈Λj0

ĉj0,kφj0,k(x) +

j1
∑

j=j0

∑

k∈Λj

d̂j,k1{|d̂j,k|≥κλj}ψj,k(x), (3.1)

where

ĉj,k =
1

n

n
∑

i=1

q(φj,k, Vi), d̂j,k =
1

n

n
∑

i=1

q(ψj,k, Vi), (3.2)

1 is the indicator function, κ > 0 is a large enough constant, j0 is the integer
satisfying

2j0 = [τ(lnn)ν ], (3.3)

where [a] denotes the integer part of a, j1 is the integer satisfying

2j1 =

[

(

n

(lnn)3

)1/(2ρ+1)
]

(3.4)

and

λj = 2ρj
√

lnn

n
. (3.5)

Here it is supposed that there exists a function q : L2([0, 1])× V1(Ω) → R such
that

(H1) for γ ∈ {φ, ψ}, any integer j ≥ j0 and k ∈ Λj ,

E (q(γj,k, V1)) =

∫ 1

0

f(x)γj,k(x)dx,

where E denotes the expectation,
(H2) there exist three constants, C > 0, ρ ≥ 0 and ν ≥ 0, satisfying, for

γ ∈ {φ, ψ}, for any integer j ≥ j0 and k ∈ Λj ,
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(i) supx∈V1(Ω) |q(γj,k, x)| ≤ C2ρj2j/2,

(ii) E

(

(q(γj,k, V1))
2
)

≤ C22ρj ,

(iii) for any m ≥ 1,

Cov (q(γj,k, Vm+1), q(γj,k, V1)) ≤ C22ρj(lnn)ν−12−j ,

where Cov denotes the covariance.

For well-known nonparametric models in the i.i.d. setting, wavelet hard thresh-
olding estimators and important results can be found in, e.g., Donoho and John-
stone (1994, 1995), Donoho et al. (1995, 1996), Delyon and Juditsky (1996),
Kerkyacharian and Picard (2000) and Fan and Koo (2002).

The assumption (H1) ensures that (3.2) are unbiased estimators for cj,k and
dj,k given by (2.1), whereas (H2) is related to their good performance. See
Proposition 5.1 below. These assumptions are not too restrictive. For instance,
if we consider the standard density estimation problem where (Vt)t∈Z are i.i.d.
random variables with bounded density f , the function q(γ, x) = γ(x) satisfies
(H1) and (H2) with ρ = 0 and ν = 0 (note that, thanks to the independence
of (Vt)t∈Z, the covariance term in (H2)-(iii) is zero). The technical details are
given in Donoho et al. (1996).

In the α-mixing context, f̂ defined by (3.1) is a general and improved version
of the estimator considered in Chesneau (2012, 2013a). The main differences
are the presence of the tuning parameters ν and ρ, and the global definition of
the function q offering numerous possibilities of applications. Two of them are
explored in Section 4.

3.3. Result

Theorem 3.1 below determines the rate of convergence attained by f̂ under the
MISE over Besov balls.

Theorem 3.1. We consider the general statistical setting described in Subsec-
tion 3.1. Let f̂ be (3.1) under (H1) and (H2). Suppose that f ∈ Bs

p,r(M) with
r ≥ 1, {p ≥ 2 and s ∈ (0, N)} or {p ∈ [1, 2) and s ∈ ((2ρ + 1)/p,N)}. Then
there exists a constant C > 0 such that

E

(

‖f̂ − f‖22

)

≤ C

(

lnn

n

)2s/(2s+2ρ+1)

.

The rate of convergence “((lnn)/n)
2s/(2s+2ρ+1)

” is often the near optimal
one in the minimax sense for numerous statistical problems in a i.i.d. setting.
See, e.g., Härdle et al. (1998) and Tsybakov (2004). Moreover, note that Theo-
rem 3.1 is flexible; the assumptions on (Vt)t∈Z, related to the definition of q in
(H1) and (H2), are mild. In the next section, this flexibility is illustrated for
two sophisticated nonparametric estimation problems: the density deconvolu-
tion estimation problem and the density estimation problem in a GARCH-type
model.
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4. Applications

4.1. Density deconvolution

Let (Vt)t∈Z be a strictly stationary stochastic process such that

Vt = Xt + ǫt, t ∈ Z, (4.1)

where (Xt)t∈Z is a strictly stationary stochastic process with unknown density
f and (ǫt)t∈Z is a strictly stationary stochastic process with known density g.
It is supposed that ǫt and Xt are independent for any t ∈ Z and (Vt)t∈Z is a
α-mixing process with exponential decay rate (see Subsection 3.1 for a precise
definition). Our aim is to estimate f via V1, . . . , Vn from (Vt)t∈Z. Some related
works are Masry (1993), Kulik (2008), Comte et al. (2008) and van Zanten and
Zareba (2008).

We formulate the following assumptions:

(G1) The support of f is [0, 1].
(G2) There exists a constant C > 0 such that

sup
x∈R

f(x) ≤ C <∞.

(G3) Let u be the density of V1. We suppose that there exists a constant C > 0
such that

sup
x∈R

u(x) ≤ C.

(G4) For any m ∈ Z, let u(V1,Vm+1) be the density of (V1, Vm+1). We suppose
that there exists a constant C > 0 such that

sup
m∈Z

sup
(x,y)∈R2

u(V1,Vm+1)(x, y) ≤ C.

(G5) For any integrable function γ, we define its Fourier transform by

F(γ)(x) =

∫ ∞

−∞

γ(y)e−ixydy, x ∈ R.

We suppose that there exist three known constants C > 0, c > 0 and
δ > 1 such that, for any x ∈ R,

• the Fourier transform of g satisfies

| F(g)(x)| ≥
c

(1 + x2)δ/2
,

• for any ℓ ∈ {0, 1, 2}, the ℓ-th derivative of the Fourier transform of g
satisfies

|(F(g)(x))(ℓ)| ≤
C

(1 + |x|)δ+ℓ
.
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We are now in the position to present the result.

Theorem 4.1. We consider the model (4.1). Suppose that (G1)-(G5) are sat-

isfied. Let f̂ be defined as in (3.1) with the function q : L2([0, 1]) × V1(Ω) → R

defined by

q(γ, x) =
1

2π

∫ ∞

−∞

F (γ)(y)

F(g)(y)
e−iyxdy, (4.2)

where F (γ)(y) denotes the complex conjugate of F (γ) (y), ν = 1 and ρ = δ
(appearing in (G5)).

Suppose that f ∈ Bs
p,r(M) with r ≥ 1, {p ≥ 2 and s ∈ (0, N)} or {p ∈ [1, 2)

and s ∈ ((2δ + 1)/p,N)}. Then there exists a constant C > 0 such that

E

(

‖f̂ − f‖22

)

≤ C

(

lnn

n

)2s/(2s+2δ+1)

.

Theorem 4.1 improves (Chesneau, 2012, Proposition 5.1) in terms of rate of
convergence; we gain a logaritmic term.

Moreover, it is established that, in the i.i.d. setting, “((lnn)/n)
2s/(2s+2δ+1)

”
is

• exactly the rate of convergence attained by the wavelet hard thresholding
estimator,

• the near optimal rate of convergence in the minimax sense.

The details can be found in Fan and Koo (2002). Thus Theorem 4.1 can be
viewed as an extension of this existing result to the weak dependent case.

4.2. GARCH-type model

We consider the strictly stationary stochastic process (Vt)t∈Z where, for any
t ∈ Z,

Vt = σ2
tZt, (4.3)

(σ2
t )t∈Z is a strictly stationary stochastic process with unknown density f and

(Zt)t∈Z is a strictly stationary stochastic process with known density g. It is
supposed that σ2

t and Zt are independent for any t ∈ Z and (Vt)t∈Z is a α-
mixing process with exponential decay rate (see Subsection 3.1 for a precise
definition). Our aim is to estimate f via V1, . . . , Vn from (Vt)t∈Z. Some related
works are Comte et al. (2008) and Chesneau (2013a).

We formulate the following assumptions:

(J1) There exists a positive integer δ such that

g(x) =
1

(δ − 1)!
(− lnx)δ−1, x ∈ [0, 1].

Let us remark that g is the density of
∏δ

i=1 Ui, where U1, . . . , Uδ are δ
i.i.d. random variables having the common distribution U([0, 1]).
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(J2) The support of f is [0, 1] and f ∈ L
2([0, 1]).

(J3) Let u be the density of V1. We suppose that there exists a constant C > 0
such that

sup
x∈R

u(x) ≤ C.

(J4) For any m ∈ Z, let u(V1,Vm+1) be the density of (V1, Vm+1). We suppose
that there exists a constant C > 0 such that

sup
m∈Z

sup
(x,y)∈R2

u(V1,Vm+1)(x, y) ≤ C.

We are now in the position to present the result.

Theorem 4.2. We consider the model (4.3). Suppose that (J1)-(J4) are sat-

isfied. Let f̂ be defined as in (3.1) with

q(γ, x) = Tδ(γ)(x), (4.4)

where, for any positive integer ℓ, T (γ)(x) = (xγ(x))′ and Tℓ(γ)(x) = T (Tℓ−1(γ))(x),
ν = 1 and ρ = δ (appearing in (J1)).

Suppose that f ∈ Bs
p,r(M) with r ≥ 1, {p ≥ 2 and s ∈ (0, N)} or {p ∈ [1, 2)

and s ∈ ((2δ + 1)/p,N)}. Then there exists a constant C > 0 such that

E

(

‖f̂ − f‖22

)

≤ C

(

lnn

n

)2s/(2s+2δ+1)

.

Theorem 4.2 significantly improves (Chesneau, 2013a, Theorem 2) in terms
of rate of convergence; we gain an exponent 1/2.

Conclusion

Considering the weak dependent case on the observations, we prove a general
result on the rate of convergence attains by a hard wavelet thresholding estima-
tor under the MISE over Besov balls. This result is flexible; it can be applied for
a wide class of statistical models. Moreover, the obtained rate of convergence is
sharp; it can correspond to the near optimal one in the minimax sense for the
standard i.i.d. case. Some recent results on sophisticated statistical problems
are improved. Thanks to its flexibility, the perspectives of applications of our
theoretical result in other contexts are numerous.

5. Proofs

5.1. Intermediary result

Proposition 5.1 below proves probability and moments inequalities satisfied by the
estimators (3.2).
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Proposition 5.1. Let α̂j,k and β̂j,k be defined as in (3.2) under (H1) and (H2), j0
be (3.3) and j1 be (3.4).

(a) There exists a constant C > 0 such that, for any j ∈ {j0, . . . , j1} and k ∈ Λj ,

E
(

(ĉj,k − cj,k)
2) ≤ C22ρj

1

n

and

E

(

(

d̂j,k − dj,k
)2
)

≤ C22ρj
1

n
.

(b) There exists a constant C > 0 such that, for any j ∈ {j0, . . . , j1} and k ∈ Λj ,

E

(

(

d̂j,k − dj,k
)4
)

≤ C24ρj .

(c) Let λj be defined as in (3.5). There exists a constant C > 0 such that, for any
κ large enough, j ∈ {j0, . . . , j1} and k ∈ Λj , we have

P

(

|d̂j,k − dj,k| ≥ κλj/2
)

≤ C
1

n4
.

Proof of Proposition 5.1.

(a) Using (H1) and the stationarity of (Vt)t∈Z, we obtain

E
(

(ĉj,k − cj,k)
2) = V (ĉj,k)

=
1

n2

n
∑

i=1

V(q(φj,k, Vi)) +
2

n2

n
∑

v=2

v−1
∑

ℓ=1

Cov(q(φj,k, Vv), q(φj,k, Vℓ))

=
1

n2

n
∑

i=1

V(q(φj,k, Vi)) +
2

n2

n−1
∑

m=1

(n−m)Cov(q(φj,k, Vm+1), q(φj,k, V1))

≤ 1

n

(

E
(

(q(φj,k, V1))
2)+ 2

n−1
∑

m=1

|Cov(q(φj,k, Vm+1), q(φj,k, V1))|
)

.

(5.1)

By (H2)-(ii) we get

E
(

(q(φj,k, V1))
2) ≤ C22ρj . (5.2)

For the covariance term, note that

n−1
∑

m=1

|Cov(q(φj,k, Vm+1), q(φj,k, V1))| = A+B,

where

A =

[(lnn)/θ]−1
∑

m=1

|Cov(q(φj,k, Vm+1), q(φj,k, V1))|

and

B =

n−1
∑

m=[(lnn)/θ]

|Cov(q(φj,k, Vm+1), q(φj,k, V1))|.
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It follows from (H2)-(iii) and 2−j ≤ 2−j0 < 2(lnn)−ν that

A ≤ C22ρj(lnn)ν−12−j [(lnn)/θ] ≤ C22ρj .

The Davydov inequality described in Lemma 5.1 with p = q = 4, (H2)-(i)-(ii)
and 2j ≤ 2j1 ≤ n give

B ≤ C
√

E
(

(q(φj,k, V1))
4)

n−1
∑

m=[(lnn)/θ]

√
αm

≤ C2ρj2j/2
√

E
(

(q(φj,k, V1))
2)

∞
∑

m=[(lnn)/θ]

e−θm/2

= C22ρj
√
ne−(lnn)/2 ≤ C22ρj .

Thus

n−1
∑

m=1

|Cov(q(φj,k, Vm+1), q(φj,k, V1))| ≤ C22ρj . (5.3)

Putting (5.1), (5.2) and (5.3) together, the first point in (a) is proved. The proof
of the second point is identical with ψ instead of φ.

(b) Thanks to (H2)-(i), we have |d̂j,k| ≤ supx∈V1(Ω) |q(ψj,k, x)| ≤ C2ρj2j/2. It
follows from the triangular inequality and |dj,k| ≤ ||f ||2 ≤ C that

|d̂j,k − dj,k| ≤ |d̂j,k|+ |dj,k| ≤ C2ρj2j/2.

This inequality and the second result of (a) yield

E

(

(d̂j,k − dj,k)
4
)

≤ C22ρj2jE
(

(d̂j,k − dj,k)
2
)

≤ C24ρj2j
1

n
.

Using 2j ≤ 2j1 ≤ n, the proof of (b) is completed.

(c) We will use the Liebscher inequality described in Lemma 5.2. Let us set

Ui = q(ψj,k, Vi)− E(q(ψj,k, V1)).

We have E(U1) = 0 and, by (H2)-(i) and 2j ≤ 2j1 ≤ n/(lnn)3,

|Ui| ≤ 2 sup
x∈V1(Ω)

|q(ψj,k, x)| ≤ C2ρj2j/2 ≤ C2ρj
√

n

(lnn)3
,

(so M = C2ρj
√

n/(lnn)3).

Proceeding as for the proofs of the bounds in (a), for any integer l ≤ C lnn,
since 2−j ≤ 2−j0 ≤ 2(lnn)−ν , we show that

V

(

l
∑

i=1

Ui

)

= V

(

l
∑

i=1

q(ψj,k, Vi)

)

≤ C22ρj(l + l2(lnn)ν−12−j) ≤ C22ρj l.

Therefore

Dm = max
l∈{1,...,2m}

V

(

l
∑

i=1

Ui

)

≤ C22ρjm. (5.4)
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Owing to Lemma 5.2 applied with U1, . . . , Un, λ = κλj/2, m = [
√
κ lnn], M =

C2ρj
√

n/(lnn)3 and the bound (5.4), we obtain

P

(

|d̂j,k − dj,k| ≥ κλj/2
)

≤ C

(

exp

(

−C κ2λ2
jn

Dm/m+ κλjmM

)

+
M

λj
ne−θm

)

≤ C

(

exp

(

−C κ222ρj lnn

22ρj + κ2ρj
√

(lnn)/n[
√
κ lnn]2ρj

√

n/(lnn)3

)

+

√

n/(lnn)3

(lnn)/n
ne−θ[

√
κ lnn]

)

≤ C
(

n−Cκ2/(1+κ3/2) + n2−θ
√
κ
)

.

Taking κ large enough, the last term is bounded by C/n4. This completes the
proof of (c).

This completes the proof of Proposition 5.1.

5.2. Proof of Theorem 3.1

Theorem 3.1 can be proved by combining arguments of (Kerkyacharian and Picard,
2000, Theorem 5.1) and (Chesneau, 2008, Theorem 4.2). It is closed to (Chesneau,
2012, Proof of Theorem 2) by taking θ → ∞. The interested reader can find the
details below.

We consider the following wavelet decomposition for f :

f(x) =
∑

k∈Λj0

cj0,kφj0,k(x) +
∞
∑

j=j0

∑

k∈Λj

dj,kψj,k(x),

where cj0,k =
∫ 1

0
f(x)φj0,k(x)dx and dj,k =

∫ 1

0
f(x)ψj,k(x)dx.

Using the orthonormality of the wavelet basis B, the MISE of f̂ can be express as

E

(

‖f̂ − f‖22
)

= P +Q+R, (5.5)

where

P =
∑

k∈Λj0

E
(

(ĉj0,k − cj0,k)
2) , Q =

j1
∑

j=j0

∑

k∈Λj

E

(

(

d̂j,k1{|d̂j,k|≥κλj} − dj,k
)2
)

and

R =
∞
∑

j=j1+1

∑

k∈Λj

d2j,k.

Let us now investigate sharp upper bounds for P , R and Q sucessively.
Upper bound for P :

The point (a) of Proposition 5.1 and 2s/(2s+ 2ρ+ 1) < 1 yield

P ≤ C
2j0

n
≤ C

(lnn)ν

n
≤ C

(

lnn

n

)2s/(2s+2ρ+1)

. (5.6)

Upper bound for R:
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• For r ≥ 1 and p ≥ 2, we have f ∈ Bs
p,r(M) ⊆ Bs

2,∞(M). Using 2s/(2s+2ρ+1) <
2s/(2ρ+ 1), we obtain

R ≤ C
∞
∑

j=j1+1

2−2js ≤ C

(

(lnn)3

n

)2s/(2ρ+1)

≤ C

(

lnn

n

)2s/(2s+2ρ+1)

.

• For r ≥ 1 and p ∈ [1, 2), we have f ∈ Bs
p,r(M) ⊆ B

s+1/2−1/p
2,∞ (M). The condition

s > (2ρ+ 1)/p implies that (s+ 1/2− 1/p)/(2ρ+ 1) > s/(2s+ 2ρ+ 1). Thus

R ≤ C
∞
∑

j=j1+1

2−2j(s+1/2−1/p) ≤ C

(

(lnn)3

n

)2(s+1/2−1/p)/(2ρ+1)

≤ C

(

lnn

n

)2s/(2s+2ρ+1)

.

Hence, for r ≥ 1, {p ≥ 2 and s > 0} or {p ∈ [1, 2) and s > (2ρ+ 1)/p}, we have

R ≤ C

(

lnn

n

)2s/(2s+2ρ+1)

. (5.7)

Upper bound for Q:
Adopting the notation D̂j,k = d̂j,k − dj,k, Q can be written as

Q =
4
∑

i=1

Qi, (5.8)

where

Q1 =

j1
∑

j=j0

∑

k∈Λj

E

(

D̂2
j,k1{|d̂j,k|≥κλj , |dj,k|<κλj/2}

)

,

Q2 =

j1
∑

j=j0

∑

k∈Λj

E

(

D̂2
j,k1{|d̂j,k|≥κλj , |dj,k|≥κλj/2}

)

,

Q3 =

j1
∑

j=j0

∑

k∈Λj

E

(

d2j,k1{|d̂j,k|<κλj , |dj,k|≥2κλj}
)

and

Q4 =

j1
∑

j=j0

∑

k∈Λj

E

(

d2j,k1{|d̂j,k|<κλj , |dj,k|<2κλj}
)

.

Upper bound for Q1 +Q3 :
Owing to the inequalities 1{|d̂j,k|<κλj , |dj,k|≥2κλj} ≤ 1{|D̂j,k|>κλj/2}, 1{|d̂j,k|≥κλj , |dj,k|<κλj/2} ≤

1{|D̂j,k|>κλj/2} and 1{|d̂j,k|<κλj , |dj,k|≥2κλj} ≤ 1{|dj,k|≤2|D̂j,k|}, the Cauchy-Schwarz

inequality, the points (b) and (c) of Proposition 5.1, we have

Q1 +Q3 ≤ C

j1
∑

j=j0

∑

k∈Λj

E

(

D̂2
j,k1{|D̂j,k|>κλj/2}

)

≤ C

j1
∑

j=j0

∑

k∈Λj

(

E

(

D̂4
j,k

))1/2 (

P

(

|D̂j,k| > κλj/2
))1/2

≤ C
1

n2

j1
∑

j=j0

2j(1+2ρ) ≤ C
1

n
≤ C

(

lnn

n

)2s/(2s+2ρ+1)

. (5.9)
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Upper bound for Q2 :
It follows from the point (a) of Proposition 5.1 that

Q2 ≤
j1
∑

j=j0

∑

k∈Λj

E

(

D̂2
j,k

)

1{|dj,k|≥κλj/2}

≤ C
1

n

j1
∑

j=j0

22ρj
∑

k∈Λj

1{|dj,k|>κλj/2}.

Let us now introduce the integer j∗ defined by

2j∗ =

[

( n

lnn

)1/(2s+2ρ+1)
]

. (5.10)

Note that j∗ ∈ {j0, . . . , j1} for n large enough.
Then Q2 can be bounded as

Q2 ≤ Q2,1 +Q2,2,

where

Q2,1 = C
1

n

j∗
∑

j=j0

22ρj
∑

k∈Λj

1{|dj,k|>κλj/2}

and

Q2,2 = C
1

n

j1
∑

j=j∗+1

22ρj
∑

k∈Λj

1{|dj,k|>κλj/2}.

On the one hand we have

Q2,1 ≤ C
lnn

n

j∗
∑

j=j0

2j(1+2ρ) ≤ C

(

lnn

n

)2s/(2s+2ρ+1)

.

On the other hand,

• for r ≥ 1 and p ≥ 2, the Markov inequality and f ∈ Bs
p,r(M) ⊆ Bs

2,∞(M) yield

Q2,2 ≤ C
lnn

n

j1
∑

j=j∗+1

22ρj
1

λ2
j

∑

k∈Λj

d2j,k ≤ C
∞
∑

j=j∗+1

∑

k∈Λj

d2j,k

≤ C
∞
∑

j=j∗+1

2−2js ≤ C

(

lnn

n

)2s/(2s+2ρ+1)

.

• for r ≥ 1, p ∈ [1, 2) and s > (2ρ + 1)/p, the Markov inequality, f ∈ Bs
p,r(M)

and (2s+ 2ρ+ 1)(2− p)/2 + (s+ 1/2− 1/p+ ρ− 2ρ/p)p = 2s imply that

Q2,2 ≤ C
lnn

n

j1
∑

j=j∗+1

22ρj
1

λp
j

∑

k∈Λj

|dj,k|p

≤ C

(

lnn

n

)(2−p)/2 ∞
∑

j=j∗+1

2jρ(2−p)2−j(s+1/2−1/p)p

≤ C

(

lnn

n

)(2−p)/2

2−j∗(s+1/2−1/p+ρ−2ρ/p)p ≤ C

(

lnn

n

)2s/(2s+2ρ+1)

.
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Therefore, for r ≥ 1, {p ≥ 2 and s > 0} or {p ∈ [1, 2) and s > (2ρ+ 1)/p}, we have

Q2 ≤ C

(

lnn

n

)2s/(2s+2ρ+1)

. (5.11)

Upper bound for Q4 :
We have

Q4 ≤
j1
∑

j=j0

∑

k∈Λj

d2j,k1{|dj,k|<2κλj}.

Let j∗ be the integer (5.10). Then Q4 can be bound as

Q4 ≤ Q4,1 +Q4,2,

where

Q4,1 =

j∗
∑

j=j0

∑

k∈Λj

d2j,k1{|dj,k|<2κλj}, Q4,2 =

j1
∑

j=j∗+1

∑

k∈Λj

d2j,k1{|dj,k|<2κλj}.

On the one hand, we have

Q4,1 ≤ C

j∗
∑

j=j0

2jλ2
j = C

lnn

n

j∗
∑

j=j0

2j(1+2ρ) ≤ C

(

lnn

n

)2s/(2s+2ρ+1)

.

On the other hand,

• for r ≥ 1 and p ≥ 2, since f ∈ Bs
p,r(M) ⊆ Bs

2,∞(M), we have

Q4,2 ≤
∞
∑

j=j∗+1

∑

k∈Λj

d2j,k ≤ C

∞
∑

j=j∗+1

2−2js ≤ C

(

lnn

n

)2s/(2s+2ρ+1)

.

• for r ≥ 1, p ∈ [1, 2) and s > (2ρ + 1)/p, owing to the Markov inequality,
f ∈ Bs

p,r(M) and (2s+ 2ρ+ 1)(2− p)/2 + (s+ 1/2− 1/p+ ρ− 2ρ/p)p = 2s, we
get

Q4,2 ≤ C

j1
∑

j=j∗+1

λ2−p
j

∑

k∈Λj

|dj,k|p

= C

(

lnn

n

)(2−p)/2 j1
∑

j=j∗+1

2jρ(2−p)
∑

k∈Λj

|dj,k|p

≤ C

(

lnn

n

)(2−p)/2 ∞
∑

j=j∗+1

2jρ(2−p)2−j(s+1/2−1/p)p

≤ C

(

lnn

n

)(2−p)/2

2−j∗(s+1/2−1/p+ρ−2ρ/p)p ≤ C

(

lnn

n

)2s/(2s+2ρ+1)

.

So, for r ≥ 1, {p ≥ 2 and s > 0} or {p ∈ [1, 2) and s > (2ρ+ 1)/p}, we have

Q4 ≤ C

(

lnn

n

)2s/(2s+2ρ+1)

. (5.12)
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Putting (5.8), (5.9), (5.11) and (5.12) together, for r ≥ 1, {p ≥ 2 and s > 0} or
{p ∈ [1, 2) and s > (2ρ+ 1)/p}, we obtain

Q ≤ C

(

lnn

n

)2s/(2s+2ρ+1)

. (5.13)

Combining (5.5), (5.6), (5.7) and (5.13), we complete the proof of Theorem 3.1.

5.3. Proof of Theorem 4.1

The proof of Theorem 4.1 is a direct application of Theorem 3.1: under (G1)-(G5), the
function q defined by (4.2) satisfies (H1), see (Fan and Koo, 2002, equation (2)) and
(H2): (i) see (Fan and Koo, 2002, Lemma 6), (ii) see (Fan and Koo, 2002, equation
(11)) and (iii) see (Chesneau, 2012, Proof of Proposition 6.1).

5.4. Proof of Theorem 4.2

The proof of Theorem 4.2 is a consequence of Theorem 3.1: under (J1)-(J4), the
function q defined by (4.4) satisfies (H1) and (H2): (i)- (ii) see (Chesneau, 2013a,
Proposition 1) and (iii) see (Chesneau and Doosti, 2012, equation (26)).

Key lemmas

In this section we present two lemmas which have been used in the proofs.
Lemma 5.1 below shows a sharp covariance inequality under the α-mixing condition.

Lemma 5.1 (Davydov (1970)). Let (Wt)t∈Z be a strictly stationary α-mixing process
with mixing coefficient αm, m ≥ 0, and h and k be two measurable functions. Let p > 0
and q > 0 satisfying 1/p+1/q < 1, such that E(|h(W1)|p) and E(|k(W1)|q) exist. Then
there exists a constant C > 0 such that

|Cov(h(W1), k(Wm+1))| ≤ Cα1−1/p−1/q
m (E(|h(W1)|p))1/p (E(|k(W1)|q))1/q .

Lemma 5.2 below presents a concentration inequality for α-mixing processes.

Lemma 5.2 (Liebscher (2001)). Let (Wt)t∈Z be a strictly stationary process with the
m-th strongly mixing coefficient αm, m ≥ 0, n be a positive integer, h : R → Cov be a
measurable function and, for any t ∈ Z, Ut = h(Wt). We assume that E(U1) = 0 and
there exists a constant M > 0 satisfying |U1| ≤ M . Then, for any m ∈ {1, . . . , [n/2]}
and λ > 0, we have

P

(

1

n

∣

∣

∣

∣

∣

n
∑

i=1

Ui

∣

∣

∣

∣

∣

≥ λ

)

≤ 4 exp

(

− λ2n

16(Dm/m+ λMm/3)

)

+ 32
M

λ
nαm,

where

Dm = max
l∈{1,...,2m}

V

(

l
∑

i=1

Ui

)

.
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