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Abstract

This article is dedicated to the problem of fault detection, isolation and estimation for nonlinear
systems described by a Takagi-Sugeno (T-S) model. One of the interests of this type of models is
the possibility to extend some tools and methods from the linear system case to the nonlinear one.
The principle of the proposed strategy is to transform the problem of simultaneously minimizing the
perturbation effect and maximizing the fault effect, on the residual vector, in a simple problem of
L>-norm minimization. A linear system is used to define the ideal response of the residual signal
to the fault. Then the aim is to synthesize a residual generator that both minimizes the difference
between real and ideal responses and the influence of the disturbance. The minimization problem is
formulated by using the bounded real lemma (BRL) and linear matrix inequality (LMI) formalism.
After studying the general framework, a special case of systems with actuator and sensor faults is
considered where the fault incidence matrix is not full column rank. Simulation examples are given
to illustrate the proposed method. Finally, Polya’s theorem is used to reduce the conservatism of the
proposed result. The obtained relaxation is also illustrated by a numerical example.

Takagi-Sugeno systems, robust fault diagnosis, robust fault estiméti@pproach, LMIs.

1 Introduction

Diagnosis issues are becoming very important to ensure a good supervision of systems and guarantee
the safety of human operators and equipments even if system complexity increases. That is why, in the
last decades, many theories and methods have been developed for linear systems in the fields of fault

diagnosis [32, 11, 7] and fault tolerant control [17, 20, 39]. Unfortunately, the linearity assumption of



a system is generally a local property, i.e. a linear modstiiees the behavior of a real system only
around a single operating point. Furthermore, when a faltics, the operating point of the system may
change, therefore, the considered linear model is no loveget. In order to enlarge the operating range
of the model, it is important to take into account the norditées in the modeling tasks. The obtained
models are more accurate than linear ones but are obviolsshharder to deal with. Indeed, due to this
complexity, no unified results for nonlinear system fauégiiosis or fault tolerant control are available
so far. Consequently, it leads to work on specific model elskr example, Lipschitz systems [45],
switched systems [46], LPV systems, bilinear systems, etc.

Among the several classes of nonlinear systems, Takag®u@l-S) models have been introduced
in [38]. Roughly speaking, a T-S model is made up of a set @&dirsub-models and an interpolation
mechanism based on nonlinear weighting functions. Thedsteof this structure is the property of
“universal approximator”. Any nonlinear behavior can berttapproximated with a given accuracy with
a T-S model. A second important property of this type of medglthe convex sum property of the
weighting functions which allows to extend some of tools arethods developed for linear systems.

The T-S models have been extensively studied in the lasddscaviodeling and identification are
treated in [8, 31, 30]. The principal methods to obtain a T®leh are the linearization of the system
trajectory around different operating points and the usgptifnization techniques to minimize the iden-
tification error. Secondly, for more complex systems, a inealr analytic model is often difficult to
elaborate, so the black box approach has been used in oridlentify the system parameters by differ-
ent optimization methods. Finally, if an analytical modeisés, the sector nonlinearity approach can be
used [42, 43]. The interest of this last method is that thaiobtd model exactly represents the original
nonlinear model. This model may be difficult to study due ®dependence of the weighting functions
on the system state which is often not fully measurable. Nieekess an adequate choice of the model
rewriting can be made in order to ease its use for control agrabsis [26, 27]. In order to reduce the
complexity of T-S models, some works are undertaken regégalding to a reduced order model which
approximates a nonlinear T-S model, in discrete-time doni®i minimizing ant.. criterion [22].

Stability analysis and stabilization of nonlinear T-S eyss$ are studied in [43, 42, 41, 5, 21, 12, 9],
where different approaches are used. Among these appamiecan cite the use of the Lyapunov the-
ory and the formulation of the stability conditions in terofdinear matrix inequalities (LMI). Quadratic
stability, where a common Lyapunov matrix is sought, haststedied in [42] but it may be too con-
servative to obtain a numerical solution. Then, the polggatc and the non-quadratic approaches have
been developed in [40, 19]. These approaches are extendédd 2n 3, 47, 13, 16, 37] to state and
unknown input observer design and filter design. These wvbseare then used for fault diagnosis in
[6, 13, 23, 2, 48, 28, 14].

Several techniques for fault detection and diagnosis haea Iproposed in the literature (for more
details, the reader can refer to the books [11, 17, 7]). Indthr@ain of T-S systems, some approaches

are generalized from linear domain. In [6] (resp. [13])gtiasis for T-S systems is dealt with but only



actuator (resp. sensor) fault was considered and the symigmt was linear. Similar results as those
presented in this paper were established in [36] for lingatesns with structured uncertainties using
the standard{., approach. In the present paper, both actuator and sendts & considered and the
system output is nonlinear with regard to the state and tbgemous signals. In [23, 28], both sensor and
actuator faults are envisaged, but the residual respomse @esigned in order to match a prescribed one.
The shaping of the residual response is treated in [35, 24iffear systems. In [48], A similar problem
is aimed in the discrete time case in stochastic frameworksystems with intermittent measurements.
Here the residual response shaping is proposed for conigniime nonlinear systems.

In this paper, a robust residual generator is proposed ierdacdachieve the tasks of fault detection,
isolation and estimation. The main objective is to exters tiethod of fault diagnosis based &,
control framework, developed for linear systems in [36,3%,including a reference model shaping the
residual signals in order to enhance fault detection, iewaand estimation [24]. First, the problem of
disturbance attenuation and fault influence maximizagoduced to a matching problem. The residual
generator is built to provide a response to the fault thathest the output of a reference model virtually
fed with the fault signal. This reference model correspaondbe desired response of the residual to the
fault. The matching is quantified by th&-gain from the exogenous signals to the difference between
the residual and the output of the reference model. In otleedsy the objective of this work is to provide
a residual generator delivering signals which are semsitivan occurring fault and insensitive to other
faults and perturbations, so, each residual signal deteetsfault, thus, the structured residual vector
provides fault detection and isolation. The minimizatidritos £,-gain can be recast in an optimization
problem under LMI constraints and solved with dedicatedvgre. The detection, isolation and estima-
tion are performed in a unified way by an adequate choice ofdfezence model. The general case is
considered and a particular attention is made for the casanéf condition deficiency which is true in
actuator and sensor fault diagnosis because the faulibdisem matrices are not full column rank).

This paper is organized as follows. The second section igaled to the problem statement; some
notations are also introduced. The main result is givenarthird section and a particular case of actuator
and sensor faults where the distribution fault matrix of thgput equation is not full column rank is
treated. Two examples are given to illustrate and to dists®ffectiveness of the proposed strategy
for fault diagnosis. In the fifth section, the conservatishthe previously proposed LMI conditions is
reduced with the help of the Polya’s theorem. This consisvateduction is illustrated by a numerical

example. The last section is devoted to some conclusionfutune works.



2 Problem statement

Nonlinear systems are generally modeled in the followirrgifo
1)

wherex(t) € R" is the state vectoy(t) € R™ is the control input ang(t) € R™ represents the system
output vector. The functiont andh are generally nonlinear. This mathematical model can seprteany
nonlinear behavior but its main disadvantage is its conityl@nd therefore it is not always adapted to
design a controller or an observer. As explained in the pre/section, the T-S formalism is suitable for
observer and/or controller design for nonlinear systems.

Using identification, linearization, or the so-called seatonlinearity transformation, a T-S model

for the model (1) may be obtained under the form:

() = 3 (E(0) (Ax(D) + Bult)

r @
Yt = 3 H(EW) (Cx(D) + D)

whereA € R™", B ¢ R™™", G € RY*", D; € R, The weighing functiongs; are nonlinear and
depend on the decision variabigt) which can be measurable likgt) or y(t) or not measurable like
the system statg(t). It can also be an external signal. The weighting functicatssfy the following

so-called convex sum property:

O< (&) <1, W, Vi=1,...r
()

3 WED) =1,

The multiple model structure is known to be a universal apipnator since it can represent, with a given
accuracy, any nonlinear behavior according to an adequateerr of submodels (chap 14 of [43]).
Moreover, the multiple model structure provides a mean toegaize the tools developed for linear
systems to nonlinear systems due to the properties (3) ahe fmearity of the submodels.

In this paper, the objective is to design a robust residuaéggor for nonlinear systems in order to
detect, and under specific hypothesis, to isolate the fafiésting a system. Thus, the study is dedicated
to the problem of fault detection, isolation and estimafarmonlinear systems described by continuous-
time T-S models. Besides the faulté) affecting the system, it may also be subject to disturbad@gs

thus the system is now modified as follows:

(0) = 3 W(E(0) (AX(T)+ Biu(D) + Eid(t) + R (1) “
|:r 4
V) = 3 W& (D) (©X(0) +Diu) + Gl + R (1)



whereE; € R™", F € R™" andG; € R™*™, andR; € R™*" . In the following, the decision variable
(1) is assumed to be measurable. With this representatiomuidive noted that both the fault and the
disturbance affect the dynamic equation of the system akasghe measurement equation. However,
depending on the structures of the matriEeandR,; it is possible to consider specific faults affecting the
dynamic part and others affecting only the static part. Thidd be easily obtained when some columns
of the previous matrices are filled up with null elements.

The input signald (t) andd(t) belong toL, set. TheL,-norm ofu(t) € L5 is given by

e 1/2
Ju(®)l; = ( / uT<t>u<t>dt) ©)

0

Given the system (4) affected by a fault and a disturbaneediaagnosis task consists in generating a
signal, namely aresidual, that is mainly affected by thét fmd thus can be used as a fault indicator. This
residual should be made as sensitive as possible to thexfhilét insensitive to the disturbance in order
that the fault diagnosis is robust. Ideally, in multiplelfaicase, the residual vector should be structured
to allow fault isolation. This later point can be addresdeithé transfer from the fault to the residual
matches a desired response. In fact residual generatiohecaiewed as,-control, since the residual
generator is designed by minimizing tiie-gain from the exogenous signals (fault and disturbance) to

the error between the desired and the obtained respondas i@sidual signal.

3 Residual generator design

The residual generator design for nonlinear systems destiy a Takagi-Sugeno model is addressed
in this section. When synthesizing a residual generatotjcpéar detection performances are desired.
A natural way for that is to define these performances usingfertence model describing the desired
behavior of the residuals in regard to the faults.

Let consider the T-S nonlinear system subject to disturbsmeensor and actuator faults modeled by
(4). An observer-based residual generator is proposectifottowing form where the residual is defined

by a linear combination of the output estimation errors

(0) = 3 H(EO) (AR + BuD) +Liy(O) ~3(1))
3(t) = 3 W(E D)X+ Diult) ©)
r(t) =M(y(t) —y(t))
wherex(t) € R" is the estimated state vector arft) € R™ is the residual signal. The matricess R™"Y
andM € R™ " are the residual generator gains. Since the measuregyfténin (4) is sensitive to the

fault and the disturbance, it is clear that the residualgs aknsitive to these quantities. Thus, in order

to detect the fault despite the presence of the disturbdaheegbjective is to design the gaihsandM



in order to minimize the transfer from the disturbandég and to maximize the transfer from the faults
f(t) to the residual signal(t). Let us define the state estimation eredr) = x(t) — X(t). Its dynamics is

deduced from (4) and (6) as follows

{ e(t) = Acgelt) +Eed(V) + Fec 1) -

((t) = Ceelt) + Ged(t) + Re (1)

where:
Agg = i;glui(f)uj(f)(Ai—LiCj) @)
Ege = i_r ;ui(f)uj(é)(Ei—LiGj) 9)
Fee = i_r JZlui(é)luj(é)(l:.—LiR,-) (10)
e - Zuﬁ(amci (11)
G = Zm(f)MGi (12)
Re = 3 HEMR 13)

Thus, with (7), an explicit expression of the residugl) depending only on the faul(t) and the

disturbancel(t) is obtained.
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Figure 1: Scheme of robust residual generation

The problem of simultaneously minimizing the effect of thstarbances and maximizing the effect
of the fault on the residual can be reduced to a single problemtroducing a transfer functioie+ cor-
responding to the desired transfer from the fditt) to the residuat (t). Then robust residual generator

(RRG) reduces to minimize the influence of exogenous sigdél$, f(t)) on the difference between the



desired and the obtained residual, denatgt), defined by
re(s) = r(s) —Wet(s)f(s) (14)

which turns to be arf,-control problem (that is a generalization of thig-control problem to the non-
linear case).

In other words, ifre(t) is minimized, therr(t) will reflect the presence of the faul{t) as described
by Wiet. Obviously, f (t) is not accessible and the filtdfe; cannot be implemented on the faulty system:
the robust residual generation presented as a control sctesrcan be viewed on figure 1) is only used
for the design of RRG. Once the RRG is computed, it is impldeteas described by (6), where it is only
fed with the measured signalgt), y(t) and the known decision variabft). As explained in [35] the
FDI problem depends on the selected structure of the tnansd&rix Wes. Indeed, the fault estimation
problem is obtained whem = nt andWet = I, (or at least an invertible matrix) since in that case the
residualr (t) directly follows the faultf(t); the fault detection problem is considered when= 1 and
Wer € R (with no null entry) since in that case the single residuaiéssitive to all the possible
faults. In additionWes can be chosen as a dynamic system (linear in order to noteaitifi complicate
the FDI procedure). Consider the transfer maifx; = Dyet +C(SI — Aret) 1Bref, With Dy € R™ <M,

defined by:
B
Wior = Avet re f (15)
Cref Dret

Wet € S whereS is the set of stable filters having the following property:
H\Nrefuf = inf (Q(\Nref(jw))) >1 (16)
welR

(see [24] and [25] for more details). The interest of thisdkof filters is that there is no attenuation
of the faults but only an amplification on all frequency rasm@eonstraint (16)) which may improve the
performances of the fault detection method. The detecitsmtation and estimation of the faults can be
obtained by an appropriate choice of the matriégs, Bret, Cret andDres. The FDI problem is then
formulated as the following multi-objective optimizatignoblem. Let us denotee(t) the state of the
system described by the transfer mathix ¢ (15) fed with f (t) (see figure 1).

In order to rewrite the whole model in a state space reprasent let us define the augmented state
vectore(t)" = [e(t)" xef(t)T]. Using (7) and (15), the virtual residual vectgtt) (14) is generated by
the system

{ 8(0) = Agce(t) +Eged(0) )
re(t) = Cs&(t) + Ggd(t)



where the following notations are used

" ror A-LC, O

Asg = 2 leui(f(t))uj(f(t))( 0 J Aref) (18)
Eee = 3 S mEOED [ 0N bR 19)
o i= leul uJ 0 Bref

Ce = ZM(E(U)( MCi —cref) (20)
G = 3 uE)( MG MR- D) @)
oy e(t)

&t) = (Xref (t)) (22)

- [ dw
o - () e

The objective is now to obtain the gaihs and M of the observer minimizing the effects of the per-
turbationsd(t) and the faultsf (t) on the virtual residuate(t). That problem leads to solve a standard
L-control problem where(t) and f (t) are the exogenous signals anr(t) is the controlled output. The
choice of the filteMVet is important because it allows the shaping of the residusdaese in order to
achieve the fault isolation and estimation.

Theorem 1 states the robust fault detection, isolation atichation as a minimization problem under
LMI constraints allowing to design the residual genera@rgnd to give a bound of the transfer from
(d®)" f()N)T tore(t).

Theorem 1. The robust residual generat@6) exists if there exists symmetric and positive definite matri

ces R and B, matrices Kand M and a positive scalay solving the following optimization problem:

s Y (24)

under the following LMI constraints

Xi<0, i=1,..r
, . o (25)
X XX <0, 0 j=1.r 0]



where, for(i, j) € {1,...,r}, X; and®;; are defined by

®j; 0 PiEi - KiGj PiF—KiR; CiTMT
* A;refPZ"‘ PoAret 0 PoBret _C;I;;f
Xij=1 = * —y 0 GTMT (26)
* * * -yl RFMT - D;ref
% ES * * _yl
®;j =A' P14+ PIA — C/ K —K(C; (27)

The residual generator gaing hre obtained by:
L =P K (28)

and M is obtained directly. The attenuation level of exogsmgignals on residuals is given py

Proof. Using the bounded real lemma (BRL) [4], the stability of thstem (17) is ensured whdﬁt) =0

and theL,-gain of the transfer frond(t) to re(t) is bounded byy if the following condition is satisfied

Al P+PA;; PE;; C]

€
% -yl G] | <0 (29)
* * -yl

In order to obtain a more explicit inequality in terms of tteergmatriced; andM, the matrixP is chosen

P= (30)
0 P

The definitions (18-21) and the chosen maRi30) allow to derive from (29) the following inequality

in block diagonal form as follows:

r r
Xee = i;;uu(ﬁ(t))uj(f(t))xj <0 (31)
where:
Pij 0 PE —-PLiG; PFR—-PLR; ~ C'MT
x ALiPo+ PoAf 0 PoBies —Cr,
Xj=1| * * -y 0 G'MT (32)
. * v RIWT-D,
* * * * _yl

and the nonlinear functiong; (¢ (t)) satisfy the convex sum property (3) aXg; defined by (31). As



established in [44], the inequality (31) holds if

Xi <0, i=1,..r
, - - (33)
m>(ll+xlj+le<07 |7J:17"'7r7 I#J

Applying this result and using the change of varial§le= P;L;, the inequality (31) holds if inequalities
(25) with the definitions (26)-(27) are satisfied. Noticett(b) are expressed in LMI formulation re-
garding toPy, P>, Ki andM. Finally, an optimal residual generator is obtained by miming y in order to

minimize the effect ofl(t) on the virtual residualg(t). O

4 Robust fault diagnosis

Due to the presence of exogenous disturbances, the resiguals are different from zero even in the
fault-free case. In the framework of fault detection, ashidd, J,, is generated in a fault-free situation.
A fault detection alarm is generated by comparison betweeh eomponent;(t) of the residual signal
r(t) and the threshold:

(34)

ri(t)| < Jn= no fault
Iri(t)| > Jnh = fault

In order to improve the fault detection and isolation, adeal generator can be constructed for each
fault. Each residual generator is designed to minimize thester from(d(t)T f(t)T)T to rei(t) =
ri(t) —Wer, fi(t), i =1,....ny, fi(t) being thei!" component of the vectof(t) andWer,; a specific filter
corresponding to the desired transfer from the fétt) to the residuat;(t).

As previously mentioned, it is often considered that thétfeector f(t) may have two origins, the
first one denoted,(t) represents the fault vector affecting only the actuatotsclvappears in the state
equation. The second component dendigt) is the fault vector affecting only the sensors. The output
of the system is still given by the second equation of (4) buthat case, the fault incidence matrices

have the following particular structures

F=(F! 0), R=(0 RY) (35)

according to the decomposition 6ft) = (fJ (t) fJ (t))7. As explained in [35] and [24], if the matrices
R defined by (35) (foi € {1,...,r}) are not full column rank, this will have an adverse effecttioa
minimal values ofy. It is well known in theH.,-control framework that the obtainabjds at least equal
to the maximal singular value of the direct transfer from élxegenous signal to the controlled output,
namelyéz defined in (21). From (21), it can be seen thdDjf; is not null, R is useful to minimize the
maximal singular value otfag. As a consequence, column rank deficiency ofRhenatrices will result

in limited performances of the residual generator, quaatibly the minimum obtainable value wf

When the actuator faul,(t) does not affect the output equation of the system, we Rave(o Ril)

10



and clearly these matrices are not full column rank. In a@ipgiroach, in order to avoid this problem, a

perturbation-like terniR? f,(t) is added on the output equation as follows:

Y(t):_iui(f) (CiX—I—DiU+Gid+<R|Q Fﬁ-l) (:azg)) (36)

whereR? are the distribution matrices of the actuator falt) in the output equation and are chosen as
small as possible. Notice that in the context of fault isofatthe introduction of the terR°f,(t) may
generate false alarms. To improve the isolation resultgpnepose to add and subtract the perturbation-
like term. As a consequence, the matri(@’ Ril) are guaranteed to be full column rank (if dign >
dim(f) which is a usual condition). The subtracted term is consii@s a perturbation which influence

is to be minimized. For that purpose, (36) is rewritten as

y(t) =i;ui(f) (cix+ Diu+Gid+R (:28)) (37)

where

_ — — d(t

Gi - <G| bF\D> ; Rl = (R? RI:L) ) d(t) = ( faét)> (38)
whereb is a positive real parameter. Using this second approaelregidual generator is constructed as
explain in section 3 and the threshalg is calculated by using the bound of the new perturbationorect

d(t); thus the fault isolation is improved.

5 Relaxed conditionsfor residual generator design using Polya’stheorem

The proposed result may be conservative in the sense tisatl@rived from the use of a common Lya-
punov matrixP that satisfies the? LMIs (25). Then, solving the optimization problem given et
previous theorem under the LMI constraints may fail to pdeva solution. Recently, in [34, 29], a new
interesting method to reduce the conservativeness of tiiexreammations inequality has been proposed
to study the stability of a matrix polytope with the use ofyRas theorem. The obtained conditions are
sufficient and asymptotically necessary. The Polya’s #mois used, in this section, in order to derive
less conservative LMI conditions.

Due to the convex sum property (3), it is obvious that for aosifive integem, the inequality (31) is

equivalent to p
<kzluk(f(t))> i;;ui(f(t))u;(f(t)mj <0 (39)

In order to write the multi-dimensional summations (39) icompact form, let us consider the notations
used in [34]:
Ip = {i = (i1,i2,....,ip) e NP[1<ij<r Vj=12,...p} (40)

11



Hi=3 > - HigHipHi, (41)

wherei represents a multi-dimensional multi-index, and:
p -
Hi = J_| i, = HigHiy..-Hiy, 1 €Tp (42)
=1

is a multi-dimensional fuzzy summations. Let us defi@) C I, the set of permutations of the multi-

indexi. For example, if:

i=(1,1,22) (43)
then, the permutations sBY(i) is given by:
P(i)=1{(1,1,2,2),(1,2,1,2),(2,1,1,2),(2,1,2,1),(2,2,1,1)} (44)
If:
JEP()= 1 = Ui (45)

these permutations allows to group elements which shareetinei, for instance:

H1134) = HiHats = H1314) = Ha114) = K@141) = - (46)

Using the first result given in [34] in order to solve the pelof state estimation and residual generator

addressed in section 3, less conservative sufficient donditor the negativity oKs¢, defined by

X =3, Jilumat»u,-(s(t)m,- )

are derived from the lemma 1 [34].

Lemma 1. For any functionsy; satisfying(3) and any integer g N, the matrix % (47) is negative
definite if

z Xi1j, <0, Vielp (48)
j€P(i)

As a particular case, setting= 0, the problem reduces to theorem 1. It can be shown that the
solution of this problem for a given valym of p is always solution of the problem with> po, implying

conservatism reduction.

12



5.1 Example

Let us consider a simple example where 2, then the system (7) is stableXf; < 0 which is equivalent

to (39). Settingo = 1, a triple summation is obtained, and the inequalify < 0 is equivalent to:
roror
>3 D HigkiphiXii, <0< 5 Xy, <0 (49)
FRNPINE i€Pli)
wherei = (iq,i2,i3) andiy, iz, iz =1,...,2.
e Fori=(1,1,1), it follows: X11 <0
e Fori =(1,1,2), three permutations are possiblg; + Xj2+ Xo1 < 0
e Fori=(1,2,2), three permutations are possibles, + Xo1+ X12 < 0
e Fori=(2,22), it follows: X2 <0

In order to reduce the conservatism of the result in theorethel Polya’s theorem is applied directly
on the inequality (31), with the changes of variabiigs= PiL;, for a suitable value op. Note that the
obtained conditions are only sufficient for guaranteeirggribgativity of (31) and as explained in [34], if
p — o asymptotic necessary and sufficient conditions are olitaimet the number of LMI constraints
can drastically increase. Applying the Polya’s theorenrag@gh as used in [34] to the residual generator

conditions detailed in theorem 1, the following result carstated.

Theorem 2. The robust residual generat@6) exists if there exists symmetric and positive definite matri

ces R and B, matrices Kand M and a positive scalay solution to the following optimization problem:

p i Y (50)
under the constraints:
Z Xj1j, <0, Vielp (51)

jeP(i)
where X, j, is defined by(26) and j, j» belong toP(i) C I, whereP(i) is the set of all permutations of

the multi-index. The gains of the observer are given bybLPglKi and the attenuation level i
Using the Polya’s theorem and settipg= 3, the following theorem 3 is obtained.

Theorem 3. The robust residual generat@6) exists if there exists symmetric and positive definite matri

ces R and B, matrices Kand M and a positive scalar solution to the following optimization problem:

P17rPT2]7II£i],M Y, S.t (52)
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Xi <0

i=1..r

3Xii +Xij + Xji <0
Lj=1..,r i#]

3Xii + Xjj + 3Xij + 3Xji <0
Lj=L..,ni#]

6Xii + 3Xij + 3Xik + 3Xji 4+ 3Xii + Xjk + Xij <0
ibj,k=1,...ri<j<k

3Xii + 3Xjj + 6Xjj + 6Xji + 3Xik + 3Xki + 3Xjk + 3Xj < 0
L, k=1..ri<j<k

3Xii + 3Xjj + 6Xjj + 6Xji + 3Xik + 3Xki + 3Xjk + 3Xj < 0
L, k=1..ri<j<k

6Xii + 6Xij + 6Xi + 6Xik + 6Xii + 6Xii + 6Xii + 3Xjic + 3Xicj + 3Xji + 3Xij + 3Xia + 33Xk < 0
Lj,k=1..ri<j<k<l

6(Xij + Xiji + Xik 4 X + Xt + Xii 4 Xim + Xeni + Xk
+ Xij + Xji + Xij 4 Xjm 4 Xmj + Xt + Xik + Xkm+ Xmk) < 0
LiL,klIm=1..r i<j<k<l<m

where X is defined in(26). The gains of the observer are given Qy-LP,” K; and the attenuation level
is .

Proof. According to theorem 1, the solution of the RRG problem isivtgd by minimizingy under the
constrainty{_, ¥ 4 (& (t))yj (& (1)) Xij < 0, which due to the convex property of the weighting function
is equivalent to

r Pro
<Z uk(é’(t))> ZZUi(E(t))“j(E(t))Xij <0 (53)
k=1 i=1]=I

In the following, for the sake of clarity, the terdit) is omitted. Settingp = 3 and gathering the terms

14



sharing the same combinations of weighting functions,libfes

<2M> le Hik;Xij = Elu. Xi + Z i (3K X+ Xj1)

#]

r r r
3 7 2 7 *
+ U + HH XK M f 1K
SRS ZZK: H
;é] i<j J<k i<j J<k
r r r 2 r r -
+ 2 1 e Xij + Hi M iy MmXijkim < O
izlj— k=1 |= lelkzll rer
|<J j<k k<l |<J j<k k< <l l<m

with

Xij =3Xi + Xjj + 3%;j + 3X;;
Xijk =6%i +3(Xij + Xii + Xik + Xii) + Xjk + X
Xk =3+ 3Xjj + 6%+ 6Xji -+ X + 3K + 3K+ 3
Xija =6(Xi +Xij 4 Xii + X+ X 4 Xit +Xii) + 3(Xjic + Xicj + X1 + X} + Xia + Xik)
Kijiim =6(Xij + Xii + Xik + Xi -+ Xi 4 Xi + Xim + Xeni + Xk
+ X Xj1 X 4 Xjm + Ximj+ X =+ Xk + Xem+ Xk)

what allows to find the constraints listed in theorem 3, wiants the proof.

6 [Illustrativeexample 1

(54)

The proposed algorithm of robust diagnosis is illustratgdih academic example. Let us consider the

nonlinear system (4) defined by

-1 4 1 -3 1 -2 1 3
A= 1 -3 0 [|,A=| 6 -3 0 |,Bi=| 5 |, B=| 1
-2 1 -10 1 2 -4 0.5 -1
0.5 1 2 1
Ei= 1 |, E=]03]|, = 1|, = 31,
1 0.5 1 1

and
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The weighting functiongs; are defined as follows:

{ i (U(D) = 1—tanr((u£t) ~1)/10) -

H2(u(t)) = 1— pa(u(t))

Considering the structure of the matridgsandG;, the disturbance input vectd(t) affects the outputs of
the system and its dynamic. In the other hand, consideriagttiucture of; andR;, the first component

of the vectorf (t) is a sensor fault and the second component is an actuatodé&fired by:

1, if10<t<16
fi(t) = fs(t) = (56)

0, else
1, if4<t<8

fa(t) = fa(t) = (57)
0, else

The initial conditions of the state of the system and thosh@fesidual generators are the sax(®) =
R0)=[2 -2 —1.

6.1 Fault detection and isolation

The problem of residual generation is stated as designirgy ef Silters that furnish residuals such that
each residual is devoted to detect a particular fault or aicodar set of faults. A bank of three residual
generators is designed (see figure 2) in order to illustreeetfectiveness of the proposed approach in
fault detection and fault isolation. Since a system with tweasured outputs is considered, the fault
isolation may be obtained with two generators where eachioodedicated to a specific fault, or with
a single generator delivering a residual vector such theth ed its entries corresponds to one of the
two faults. The first and the second generat@3' and RG? are dedicated to the isolation of sensor
fault and actuator fault respectively, while the third @@ is built to detect simultaneously both faults.
A comparison between the performances of a global residerargtorRG® and the bank of residual
generatorRG' andRG will be given. The three generators have dynamic charatiesifixed by the

block Al  of the transfer matriy/

les- The problem of fault isolation is performed by residualistaring,

i.e. choosing adequate values of the bl¥gk: to make the residual generator sensitive or insensitive to

a specific fault.
e The first residual generator is designed with a stable filigr (15) defined by

. [ -120] 10
Wees = (58)

1 |10

The aim of this choice is to generate a reference signal sjporeding to the (low-pass filtered)
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u(t) —»{  System > y(t)

.1t
RG! lﬁﬁ): Wl
7e(t)
— (1) )
o e —'E‘): Wi s
re(t)
— R _,ﬁli Wi,
re(t)

Figure 2: Scheme of robust residual generation

\ 4

A

sensor fault. Indeed, with this filte¥Z;, the residual generator 1 generates the residgl which
will be sensitive to the first fault (sensor fault) and insevis to the second one (actuator fault).
After solving the optimization problem of theorem 1 under LL&bnstraints (25), the obtained
attenuation level i34 = 0.5306. The threshold i, = 0.3. The simulation results are depicted
in the figure 3. The residual'(t) clearly allows the detection of the sensor fault and is quite

insensitive to the actuator fault (occurring betwéen4 andt = 8).

‘ —Sensor fault
—Residual detecting the sensor faulj

threshold
1.5- B

0.5+ 4

time

Figure 3: Residual generator 1 : Sensor fault detection

The second residual generator is performed with

2 -90 | 0 1
Wer = (59)
1 01
It is sensitive to the actuator fault and insensitive to thessr fault. As explained in the previous
section, the matriR is not full column rank. By following the proposed strategysolve this

problem withR® = 0.8 andb = 1 a solution is obtained to the optimization problem giverhia

17



theorem 1. It results ip = 0.7363 and), = 0.2. The figure 4 presents the obtained signal. The
residualr?(t) clearly allows the detection of the actuator fault whilertgeinsensitive to the sensor

fault (occurring betweeh= 10 andt = 16).

— Actuator fault
— Residual detecting the actuator faull

threshold
1.5- B

time

Figure 4: Residual generator 2 : Actuator fault detection

e Finally, the last residual generator is designed in ordesirtailtaneously performs fault detection

and fault isolation. For that purpose, the fiMgg  is chosen as:

~120 0 | 1 0
. 0 -9 |01
Wet = T o 1o (60)
0 1 |01

andRi0 = 0.5, b = 1. After designing the residual generator according torémol, the obtained
attenuation level i35 = 0.7637. Each residual signal can detect one fault as illestrat the
figure 5, but it can be noted that the residual signal detgdtie sensor fault is also affected by
the actuator fault. This problem can be solved by using tim s residual generators. Thus, the
obtained results are better than those obtained by thelgledidual generator, designed ngf,

as shown in figure 6.

T T
| | —Sensor fault i
1.57| — Residual detecting the sensor fault Ml
1+ threshold 4
0.5~ 4
0 & v ot "y
~05 | w | . . ; L
0 2 4 6 8 10 12 14 16 18 20
— Actuator fault
1.5~ — Residual detecting the actuator faull
1k threshold
0.5 / ‘ 1
o P, "
had (i taror gt
~0.5 I I I I | | I | |
0 2 4 6 8 10 12 14 16 18 20

time

Figure 5: Residual generator 3 : Fault detection and islaif actuator and sensor faults
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T T
18- — Sensor fault i
" |——Residual detecting the sensor fault
1+ threshold degrepioahTe: 4 B
g
0.5~ 4
Ol _ - ittt
; i il - \ \ i - -
0. 0 2 4 6 8 10 12 14 16 18 20
— Actuator fault
1.5- — Residual detecting the actuator faull
1k threshold
05- / \ B
o) e P —— X - o
~0.5 I I | I I I I I I
"0 2 4 6 8 10 12 14 16 18 20

time

Figure 6: Residual generators 1 and 2 : Fault detection atatisn of actuator and sensor faults

It can be mentioned that the dedicated RRG allow to obtairetdly-gains (i.e.maxyi, y2) < y5)

by splitting the transfer matching constraints into twdetiént problems.

¢ Now, assume that the faulfg(t) and f4(t) may appear simultaneously (foe [6 16 andt € [4 10
respectively). With the same parametwr%f, R? andb used previously, the simulation results are
given in the figure 7. It can be seen that the third residuakgear is able to detect and isolate

simultaneous occurring faults.

T T T T T T T
18- ‘ — Sensor fault— Residual detecting the sensor fault - threshold| |
1 ad v b
ool ™
0.5- 4
0 BN T T
_0.5! | L | I I | I | |
0. 0 2 4 6 8 10 12 14 16 18 20
15 ‘—Actuator fault — Residual detecting the actuator fault- - threshold
1- 4
0.5~ f \‘ 4
0 Lt and o Vo A
~05 I I | I I I I I I
0 2 4 6 8 10 12 14 16 18 20

Figure 7: Residual generator 3 : Simultaneous actuator emsbs fault detection and isolation

In order to illustrate the enhancement offered by the r@lac@nditions using Polya’s theorem, in
figure 8 the real faultd,(t) and fs(t) are represented by blue lines, while the residuals obtdigetie
approach in theorem 1 are depicted in black lines and theoapprusing Polya’s theorem wifh= 3
gives residuals illustrated by red lines. It is clear thalyR's theorem provides more accurate results. It
is due to the fact that the attenuation levels for each resigenerator are less than those obtained using

the method proposed in theorem 1.

6.2 Fault estimation

Another simulation is run in order to illustrate the faultiesmtion of both actuator and sensor faults

with the bank of residual generatoRG! and RG?. To do that, let us consider the paramétés; =
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Figure 8: Residual generator comparison : approach of ¢inedr(black) and Polya’s theorem approach
(red)

l2x2 (an identity matrix). With the parameteR® = 0.5 andb = 1, the solution of the optimization
problem provides the attenuation leygk= 0.5548 for the first residual generator apd= 0.7133 for the
second residual generator. The simulation results ardagisg in the figure 9. It can be noticed that the

estimation of the faults are acceptable for both actuatdrsansor.

T T T T T T
‘ — Sensor fault— Residual estimating the sensor fau't

= 4
:

1+ w NJ 4

I I I I I I I I I
0 2 4 6 8 10 12 14 16 18 20

T T T T T T
— Actuator fault — Residual estimating the actuator fauli

0.5+ q

I I | I I I I I
0 2 4 6 8 10 12 14 16 18 20
time

Figure 9: Actuator and sensor fault estimation

Remark 1. In order to enhance the residual generator robustness vegfard to disturbances(d), it is
possible to introduce agnorder stable weighting transfer functionr‘é/;/as shown in the figure 10. This
transfer function can take into account a possible knowdedlg the frequency range distribution of the
disturbance d¢t). The procedure is the same as that used for fault detectidnisoiation by including
the reference filter Y;. Then the goal is to design the residual generator in ordentke each residual
signal as sensitive as possible to a particular fault or sefanlts and as insensitive as possible to the

disturbances ¢) in the considered frequency range.

7 Illustrative example 2

In this second example, an application of the proposed égatdfnosis algorithm is illustrated by a flexible
one link robot represented in the figure 11. The model of thgesn is described by the following

equations borrowed from [33]
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Figure 10: Scheme of robust residual generation

Torsional Spring

\ m

DC MOTOR [0 ﬁ i

B I

Optical Shaft Encoders

Figure 11: Flexible one link robot

Om(t) = cwm(t)
Gn(t) = 35 (B(1) = Bm(1)) = Froom(t) + 5Eu(t) (61)
() =alt

where 6y(t) and wn(t) denote the angular position and velocity of the motéirt) and w (t) are the
angular position and velocity of the link. The input sigr&lijt) = sin(t). Assume that two fault$,(t)
and fs(t) affect, respectively the state equation of the system aadtiiput equation with respect to
distribution matrice$ andR. Furthermore, it is assumed that the system is subject torarperturba-
tion d(t), with maximal magnitude 1, affecting both the state and thput equations. Then, the state

representation of the faulty perturbed system is

AX(t) + @(X(t)) + Bu(t) + F £ (t) + Ed(t)
Cx(t) + Rf(t) + Gd(t)

e
< -
~~ ~~
— —
I
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where;:

0 1 0 o0
| —486 —125 486 o
0 0 0o 1
195 0 195 0
Orn(t) 00
t 10
xty= | Y| g CE-
a(t) 10
w (t) 00
01
G=
01

» F(©)

(

0
0
, O(x) =
0
—3.33sinxs)
0010 (oo
1000/ 01/’

fa(t)
fs(t)

|

f(t) is vector containing a first component denofg@) which affects only the state equation and a sec-
ond one denotedk(t) which is a fault affecting the sensor measurka(t). By using a sector nonlinearity
transformation approach [42], a multiple model repredeniaof the system described above is given by

(4) with

0 1 0 0 0 1 0 0
—486 —-125 486 O —486 —-125 486 O
A = , Ag=
0 0 0 1 0 0 0 1
195 0 —2283 0 195 0 —-1877 0
B;=B,=B
0.2172
pa(2t) = 255"
ba(2(t) = T
wherez(t) = %&()t)) The results presented in the theorem 1 are used to desipnst residual generator

with the same filter as that used in the first example for fatlteation. In order to overcome the problem
of rank deficiency of the matriceds and R, we choose the paramet@fJ = 0.254. After solving the

optimization problem under LMI constraints, the obtainethg of the residual generator are

—0.0363 00869 —0.0363 00869

B 4.0080 —0.0633 B 39603 —0.0563 B 34390 —0.0002
3.6853 —-0.0179 36469 -0.0123 —0.9333 09983
—0.2219 -0.0055 0.0725 —-0.0267
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The optimized parameter ys= 0.6090. The figure 12 illustrates the fauftgt) andfs(t) (blue solid lines)
and the corresponding residuals (red dashed lines). InefiiBrfa(t) and fs(t) affecting, respectively,
the state and the output equations are assumed to be tiyiagydaults (oscillatory signals). It appears
that the residual generator is able to provide satisfadtorly estimates. Furthermore, as shown in figures
12 and 13, in the time intervdB0O 39, the system is subjected to simultaneous faéits) and fs(t).
One can clearly observe that the first residual is only seasio the faultf,(t) and the second one is
only sensitive tofs(t). This is the result of maximizing of the effect &(t) (resp. fs(t)) with respect to

the first (resp. second) residual signal when minimizingetfiect of fs(t) (resp. fa(t)) on that residual
signal.

‘ - - residual detecting the faul f(t) _faultfa(t)‘
1.5 T T T T T T

I I | I I I I I I

5 10 15 20 25 30 35 40 45 50
- .- residual detecting the fault fs(t) _faultfs(t)‘

1.5 T T T T T T

I I I I I I I I I
0 5 10 15 20 25 30 35 40 45 50
time

Figure 12: Fault estimation

‘ - - residual detecting the fault £(t) _faultfa(t)‘

1 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50

‘_faultfs(t) - - residual detecting the fault fs(t)‘
T T T T T T

Figure 13: Time-varying fault estimation

8 Illustrative example 3

In order to illustrate the relaxation introduced with Pddyieorem, consider the Takagi-Sugeno system
(4) defined by:
159 -7.29 —a —4.33

1= ) A2 =
0.01 0 0 005
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(el erein s

Di=D;=0,G; =G,=05 R=1 Ry=2

wherea andb are scalar parameters for which different values will béhker considered. In this simula-

tion, the focus is made on the relaxation introduced by Rdlyeorem, that is why only one RRG design
is studied, namely the fault estimation case, With; = 1. For that purpose, considering the inequality
(31) and using the Polya’s theorem, the following ineqieditire obtained with respect to different values

of p (i.e. the number of summations):

e Forp=1
Xi <0, i=12 (62)
Xi+Xij+Xi<0, i,j=12, i#] (63)

e Forp=2
Xi <0,i=1,2 (64)
2Xi +Xj +Xi <0, i,j=1, 2,i#] (65)
Xi +Xjj+2Xj +2X; <0, i,j=1,2, i< (66)

e Forp=3
Xi <0,i=1,2 (67)
3Xi +Xij +Xji <0, i,j=21,2, i#]j (68)
3Xii + Xj; +3%i; +3Xi <0, i,j=1,2, i< (69)

Figure 14, shows the solution set, with the parameter$8.5,10] andb € [5, 7], obtained with a classical
approach requiring the negativity of all the terdggsfor all values ofi and j and the solution set obtained
with using Polya’s theorem witp = 1. Note that, in this example= 2, then, the LMIs obtained using
Polya’s theorem wittp = 1 are the same with those obtained with Tuan’s lemma [44]epitesl in the
first theorem. It can be concluded from this example that Ballga’s theorem and Tuan’s lemma provide
a less conservative LMI conditions compared to the classithod.

A second simulation of the same example (witk 2) is performed in order to illustrate that the
Tuan’s relaxation scheme [44] is a special case of Polyasrdm and to compare the solutions obtained
using Polya’s theorem witlp € {1,2,3}. For T-S systems with large number of sub-models, Polya’s

theorem provides less conservative LMI conditions due éofélet that in Tuan’s relaxation scheme, the
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Figure 14: Solution sets for classical approashand Polya’s theorem with =1 (.)

first term in the second inequality of (25) is divided fy— 1), furthermore, with Polya’s theorem if
there is no solution for a givep, it could be obtained by increasing the valuepof The results are
depicted in the figure 15. Note that for some couples of tharpetersa andb, the Tuan’s approach
don't provide a solution but with the approach based on Polygeorem, there exist solutions for the
LMI constraints. Indeed, in this example, as can be seenuatemqs (62)-(69), fop = 1, the number
of LMIs to solve is 4 and fop = 2,3 it becomes 5. The number of variables is the same for pddi
scalar variables in this example). If we consider a TS syst#im3 sub-models, the number of LMIs for
p=1is9and forp= 2 is 12 but the number of scalar variables to solve remainsahe for allp which
consist, in the case of fault estimation problem, on the aorepts of the matriceB;, L;, M andy. As

a conclusion, by increasing the parametehe conservatism decreases. However, the number of LMIs
to solve increases and the number of scalar variables in ltbtipms remains the same for all With
recent high-performance computers, it is possible to salyeeat number of LMIs, this will not be affect

the residual generator since the LMIs are solved offline.

9 Conclusion

This paper is dedicated to the design of residual genertdofault detection, isolation and estimation,
in nonlinear systems described by Takagi-Sugeno model® nfdin idea is the extension of th®

formalism developed for nonlinear system control and eiion to the nonlinear robust fault diagnosis.
The residual generator is designed to minimize the seitgitiv the perturbations and to maximize the

sensitivity to the faults. This min/max optimization prebi is turned into a simple matching problem by
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Figure 15: Solution sets using Polya’s theorem vgta 1 (0), p=2 (x), p=3 (+)

introducing a reference transfer from the fault to the nesidwhich can be a constant matrix or a stable
filter. Furthermore, the adequate choice of this referecameter allows to shape the residual response
to fault and achieves fault detection, fault isolation arf@stimation. By using the bounded real lemma
(BRL) for this residual generator optimization problem éstablished constraints are expressed in terms
of linear matrix inequalities. The diagnosis proceduredsda on the definition of a threshold in the
fault-free situation. An academic example is given in odetustrate the proposed diagnosis strategies
for actuator and sensor fault detection, isolation andregion. The second part of this paper deals with
the conservativeness reduction of the first proposed retlding Polya’s theorem, more relaxed LMI
conditions are then given, allowing to decrease the attemukevel and obtain a more accurate diagnosis.
It can be noticed from the simulation results that the predoslaxation, significantly improves the
obtained results.

For future works, two issues are envisaged, the first onededl with the extension of this approach
to nonlinear Takagi-Sugeno systems with unmeasurableipeerariables. The second one will concern
the LMI reduction in order to reduce the complexity of theimization problem. An application of this

residual generator for sensor fault tolerant control sehbas been already published in [15].
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