
HAL Id: hal-00809832
https://hal.science/hal-00809832

Preprint submitted on 9 Apr 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

2-Stack Sorting is polynomial
Adeline Pierrot, Dominique Rossin

To cite this version:

Adeline Pierrot, Dominique Rossin. 2-Stack Sorting is polynomial. 2013. �hal-00809832�

https://hal.science/hal-00809832
https://hal.archives-ouvertes.fr

2-Stack Sorting is polynomial ∗

Adeline Pierrot Dominique Rossin

April 10, 2013

In this article, we give a polynomial algorithm to decide whether a given permutation σ is
sortable with two stacks in series. This is indeed a longstanding open problem which was first
introduced by Knuth in [1]. He introduced the stack sorting problem as well as permutation
patterns which arises naturally when characterizing permutations that can be sorted with
one stack. When several stacks in series are considered, few results are known. There are
two main different problems. The first one is the complexity of deciding if a permutation
is sortable or not, the second one being the characterization and the enumeration of those
sortable permutations. We hereby prove that the first problem lies in P by giving a polynomial
algorithm to solve it. This article strongly relies on [3] in which 2-stack pushall sorting is
defined and studied.

1 Notations and definitions

Let I be a set of integers. A permutation of I is a bijection from I onto I. We write
a permutation σ of I as the word σ = σ1σ2 . . . σn where σi = σ(i1) with I = {i1 . . . in}
and i1 < i2 < · · · < in. The size of the permutation is the integer n and if not precised,
I = [1 . . . n]. Notice that given the word σ1σ2 . . . σn we can deduce the set I and the map
σ. For any subset J of I, σ|J denotes the permutation obtained by restricting σ to J . In
particular the word corresponding to σ|J is a subword of the word corresponding to σ.

Let’s recall the problem of sorting with two stacks in series. Given two stacks H and V
in series –as shown in Figure 1– and a permutation σ, we want to sort elements of σ using
the stacks. We write σ as the word σ = σ1σ2 . . . σn with σi = σ(i) and take it as input. Then
we have three different operations:

• ρ which consist in pushing the next element of σ on the top of H.

• λ which transfer the topmost element of H on the top of V .

• µ which pop the topmost element of V and write it in the output.

∗This work was completed with the support of the ANR project ANR BLAN-0204 07 MAGNUM

1

HV

ρ
INPUT

λµ
OUTPUT

Figure 1: Sorting with two stacks in serie

If there exists a sequence w = w1 . . . wk of operations ρ, λ, µ that leads to the identity in
the output, we say that the permutation σ is 2-stack sortable. In that case, we define the
sorting word associated to this sorting process as the word w on the alphabet {ρ, λ, µ}. Notice
that necessarily w has n times each letter ρ, λ and µ and k = 3n. For example, permutation
2431 is sortable using the following process.

2
4 3 1

2
4

3 1
24

3 1
2
3

4
1

24
3

1
2
1

4
3

24
3
1

24
3

1
4
3
2

1
4
3

1 2
4

1 2 3 1 2 3 4

This sorting is encoded by the word w = ρρλρλρλµλµµµ. We can also decorate the word
to specify the element on which the operation is performed. The decorated word for w and
2431 is ŵ = ρ2ρ4λ4ρ3λ3ρ1λ1µ1λ2µ2µ3µ4. Note that we have the same information between
(σ,w) and ŵ. Nevertheless, in a decorated word appears only once each letter ρi, λi or µi.
The decorated word associated to (σ,w) is denoted ŵσ .

Of course not all permutations are sortable. The smallest non-sortable ones are of size 7,
for instance σ = 2435761.

When only one stack is considered, there exists a natural algorithm to decide whether a
permutation is sortable or not. Indeed, there is a unique way to sort a permutation using
only one stack, and a greedy algorithm gives a decision procedure. For two stacks in series,
a permutation can be sorted in numerous ways. Take for example permutation 4321. Each
element can be pushed in either stacks H or V and output the identity at the end. Thus
the decreasing permutation of size n has more than 2n ways to be sorted i.e. more than 2n

sorting words.
Several articles introduce restrictions either on the rules or on the stack structure. For

example, in his PhD-thesis West introduced a greedy model with decreasing stacks [4]. Permu-
tations sortable with this model, called West-2-stack sortable permutations, are characterized
and enumerated.

For our unrestricted case called sometimes in litterature general 2-stack sorting problem,
no characterization of sortable permutations and no polynomial algorithm to decide if a per-
mutation is sortable is known. A common mistake when trying to sort a given permutation
is to pop out the smallest element i as soon as it lies in the stacks. This operation may
indeed move other elements if i is not the topmost element of H. The elements above it
are then transferred into V before i can be popped out. But sometimes, it can be neces-
sary to take some elements of σ and push them onto H or V before this transfer. Take

2

for example permutation 324617985. Trying to pop out the smallest element as soon as it
is in the stacks leads to a dead-end. However, this permutation can be sorted using word
ρ3ρ2λ2ρ4ρ6ρ1λ1µ1µ2ρ7λ7λ6λ4λ3µ3µ4ρ9ρ8ρ5λ5µ5µ6µ7λ8µ8λ9µ9. But we prove that this nat-
ural idea of popping out smallest elements as soon as possible can be adapted considering
right-to-left minima of the permutation.

We saw that a sorting process can be described as a word on the alphabet {ρ, λ, µ}. In
this article, we will also describe a sorting in a different way. Take the prefix of a sorting
word, it corresponds to move some elements from the permutation to the stacks or output
them. At the end of the prefix some elements may be in the stacks. We can take a picture
of the stacks and indeed, we will show that considering such pictures for all the prefixes that
correspond to the entry of a right-to-left (RTL) minima of the permutation in H is sufficient
to decide the sortability. Such a picture is called a stack configuration.

Definition 1. A stack configuration c is a pair of vectors (v,w) of distinct integers such that
the elements of v (resp. of w) corresponds to the elements of V (resp. of H) from bottom to
top.

A stack configuration is poppable if elements in stacks H and V can be output in increasing
order using operations λ and µ.

Conditions for a stack configuration to be poppable have already been studied previously
in [2, 3] and can be characterized by the following Lemma. Recall first that a permutation
π = π1π2 . . . πk is a pattern of σ = σ1σ2 . . . σn if and only if there exist indices 1 ≤ i1 < i2 <
. . . < ik such that σi1σi2σi3 . . . σik is order isomorphic to π.

Lemma 2. A stack configuration c is poppable if and only if :

• Stack H does not contain pattern 132.

• Stack V does not contain pattern 12.

• Stacks (V,H) does not contain pattern |2|13|.

Moreover, there is a unique way to pop the elements out in increasing order in terms of stack
operations.

The first two conditions are usual pattern relation, considering elements in the stack from
bottom to top. The third one means that there do not exist an element i in V and two
elements j, k in H (k above j) such that j < i < k. There is a unique way to output those
elements in increasing order as noticed in [3], so we will denote by outc(I) the word that
consists in the operations necessary to output in increasing order elements of the set of values
I from a stack configuration c.

Notice that a stack configuration has no restriction upon its elements except that they
must be different. Most of the time, a stack configuration will be associated to a permutation
implying that the elements in the stacks are a subset of those of the permutation. In particular
a total stack configuration of σ is a stack configuration in which the elements of the stacks
are exactly those of σ.

In this article we often use decomposition of permutations into blocks. A block B of a
permutation σ = σ1σ2 . . . σn is a factor σiσi+1 . . . σj of σ such that the set of values {σi, . . . , σj}
forms an interval. Notice that by definition of a factor, the set of indices {i, . . . , j} also forms
an interval. Given two blocks B and B′ of σ, we say that B < B′ if and only if σi < σj for

3

all σi ∈ B, σj ∈ B′. A permutation σ is ⊖-decomposable if we can write it as σ = B1 . . . Bk

such that k ≥ 2 and for all i, Bi > Bi+1 in terms of blocks. Otherwise we say that σ is
⊖-indecomposable. When each Bi is ⊖-indecomposable, we write σ = ⊖[B1, . . . , Bk] and call
it the ⊖-decomposition of σ. Notice that we do not renormalize elements of Bi thus except
Bk, the Bi are not permutations. Nevertheless, Bi can be seen as a permutation by decreasing
all its elements by |Bi+1|+ · · ·+ |Bk|.

The RTL (right-to-left) minima of a permutations are elements σk such that there do not
exist j respecting j > k and σj < σk. We denote by σki the ith right-to-left (RTL) minima of
σ. If σ has r RTL minima, then σ = . . . σk1 . . . σk2 . . . σkr with σk1 = 1 and kr = n.

Take for example permutation σ = 658 7 4 1 3 2. The ⊖-decomposition of σ is σ =
⊖[6 5 8 7, 4, 1 3 2]. Furthermore σ has 2 RTL-minima which are σ6 = 1 and σ8 = 2.

Definition 3. We denote σ(i) = {σj | j < ki and σj > σki} the restriction of σ to elements
in the upper left quadrant of the ith right-to-left (RTL) minima σki . The ⊖i-decomposition

of σ is the ⊖-decomposition of σ(i) = ⊖[B
(i)
1 , . . . , B

(i)
si]. In the sequel si always denote the

number of blocks of σ(i) and B
(i)
j the jth block in the ⊖i-decomposition.

There are two key ideas in this article. First, among all possible sorting words for a 2-stack
sortable permutation, there always exists a sorting word respecting some condition denoted
P. More precisely we prove that if a permutation σ is sortable then there exists a sorting
process in which the elements that lie in the stacks just before a right to left minima ki enters
the stacks are exactly the elements of σ(i). A formal definition is given in Definition 16.

The second idea is to encode the different sortings of a permutation respecting P by a

sequence of graphs G(i) in which each node represents a stack configuration of a block B
(i)
j

and edges gives compatibility between the configurations. The index i is taken from 1 to the
number of right-to-left minima of the permutation.

Section 2 study general properties on two-stack sorting and states which elements can
move at each moment of a sorting process. Section 3 introduces the sorting graph G(i) which
encode all the sortings of a permutation at a given time ti and gives an algorithm to compute
this graph iteratively for all i from 1 to the number of right-to-left minima. Last section
focusses on complexity analysis.

2 General results on two-stack sorting

2.1 Basic results

We saw that a sorting process can be described as a word on the alphabet {ρ, λ, µ}. However
not all words on the alphabet {ρ, λ, µ} describe sorting processes.

Definition 4 (stack word and sorting word). Let α ∈ {ρ, λ, µ} and w a word on the alphabet
{ρ, λ, µ}. Then |w|α denotes the number of letters α in w.

A stack word is a word w ∈ {ρ, λ, µ}∗ such that for any prefix v of w, |v|ρ ≥ |v|λ ≥ |v|µ.
A sorting word is a stack word w such that |w|ρ = |w|λ = |w|µ.
For any permutation σ, a sorting word for σ is a sorting word encoding a sorting process

with σ as input (leading to the identity of size |σ| as output).

Intuitively, stack words are words describing some operations ρ, λ, µ starting with empty
stacks and an arbitrarily long input and they may be some elements in the stacks at the end

4

of these operations, whereas sorting words are words encoding a complete sorting process
(stacks are empty at the beginning and at the end of the process).

Definition 5 (subword). Let I be a set of integers.
For any decorated word u we define u|I as the subword of u made of letters ρi, λi, µi with

i ∈ I. For example, if u = ρ3µ5λ3ρ6ρ7λ6 then u|{5,6} = µ5ρ6λ6.
We extend this definition to stack words: given a permutation σ and a stack word w, w|I

is the word of {ρ, λ, µ}∗ obtaining from ŵσ
|I by deleting indices from letters ρi, λi, µi.

Intuitively, w|I is the subword of w made of the operations of w that act on integers of I

Lemma 6. For any stack word (resp. sorting word) w, w|I is also a stack word (resp. sorting
word).

Proof. As w is a stack word, for all i from 1 to |σ|, ρi appears before λi which itself appears
before µi in ŵσ

|I . Therefore for any prefix v of w|I , |v|ρ ≥ |v|λ ≥ |v|µ. If moreover w is a

sorting word, let α ∈ {ρ, λ, µ}, then for any letter αi in ŵσ
|I , ρi, λi and µi appear each exactly

once in ŵσ
|I thus |w|I |ρ = |w|I |λ = |w|I |µ.

Now we turn to stack configurations, beginning with linking stack words to stack config-
urations.

Definition 7 (Action of a stack word on a permutation). Let w be a stack word. Starting
with a permutation σ as input, the stack configuration reached after performing operations
described by the word w is denoted cσ(w). A stack configuration c is reachable for σ if there
exists a stack word w such that c = cσ(w). In other words a stack configuration is reachable
for σ if there exists a sequence of operations ρ, λ, µ leading to this configuration with σ as
input.

Lemma 8. If σ = ⊖[B1, . . . Bk] then in any poppable stack configuration c reachable for σ,
elements of Bi are below elements of Bj in the stacks for all i < j (see Figure 2).

Proof. Notice that by definition of a stack, elements of H are in increasing order from bottom
to top for the indices. Moreover elements of V are in decreasing order from bottom to top for
their value since from Lemma 2 they avoid pattern 12. This leads to the claimed property.

B1

B2

Bk

B1

B2

Bk

Figure 2: Poppable stack configuration reachable for ⊖[B1, . . . Bk].

Lemma 9. Let σ be a 2-stack sortable permutation and w = uv be a sorting word for σ. As-
sume that after performing operations of u, elements 1 . . . i−1 have been output and elements
i . . . j are at the top of the stacks. Then there exists a sorting word w′ = uu′u′′ for σ such that
u′ consists only in moving elements i . . . j from the stacks to the output in increasing order
without moving any other elements.

5

I = [i . . . j]
i(i + 1) . . . j

Proof. We claim that u′ = v|[i...j] and u′′ = v|![i...j] satisfy the desired property, where ![i . . . j]
is the set of integers [1 . . . |σ|] \ [i . . . j]. This can be checked using decorated words associated
to w and w′ and noticing that v|[i...j] = outcσ(u)([i . . . j]) and v|![i...j] = v|>j since by hypothesis
after performing operations of u, elements 1 . . . i−1 have been output and elements i . . . j are
at the top of the stacks.

The stack configurations for a sorting process encode the elements that are currently in
the stacks. But some elements are still waiting in the input and some elements have been
output. To fully characterize a configuration, we define an extended stack configuration of a
permutation σ of size n to be a pair (c, i) where i ∈ {1, . . . n + 1} and c is a poppable stack
configuration made of all elements within σ1, σ2, . . . , σi−1 that are greater than a value p. The
elements σi, . . . , σn are waiting to be pushed and elements σj < p, j < i have already been
output. Notice that we don’t need the configuration to be reachable.

Definition 10. Let σ be a permutation and (c, i) be an extended stack configuration of σ.
Then the extended stack configuration (c′, j) of σ is accessible from (c, i) if the stack config-
uration (c′, j) can be reached starting from (c, i) and performing operations ρ, λ and µ such
that moves µ perfomed output elements of c ∪ {σi . . . σn} in increasing order.

For example, if σ = 231 6 5 8 4 7 then (6
5

8 , 7) is accessible from (3
2

, 4) by the sequence

of operations µ2µ3ρ6ρ5ρ8λ8. But (63
2

, 5) is not accessible from (32
1

, 4).
Indeed notice that the question of whether a permutation is 2-stack sortable can be refor-

mulated as :
Is (, n+ 1) accessible from (, 1) ?

To solve this problem is the main goal of this article and is somehow hard, however some
special cases are easier to deal with. The following Lemma give conditions on the involved
configurations under which the compatibility decision problem is linear and can by solved
by the isAccessible procedure given in Algorithm 1. In the last sections, we show how more
general cases can be solved using this Lemma.

Lemma 11. Let σ be a permutation of size n and (c, i), (c′, j) two extended stack configura-
tions of σ with i < j. Let E be the set of elements of c and F those of c′.

• If there exists k, ℓ ∈ {1 . . . n} such that E = {σm | m ≤ k} and F = {σm | σm ≥ ℓ}

• If moreover E ∪ F = σ

Then we can decide in linear time whether (c′, j) is accessible from (c, i) using Algorithm 1.

Proof. We prove by case study that there is no choice between operations ρ, λ, µ at each time
step. This is illustrated by Algorithm 1. We first prove its correctness before studying its
complexity.

6

We start with configuration curr = c. By studying specific elements of the current con-
figuration curr, we prove that we can always decide which operation should be performed
to transform curr into c′. If at any step this operation is forbidden then c′ is not accessible
from curr. Thus repeating the following process will eventually lead to decide whether c′ is
accessible from c.

Notice that by definition, c and c′ are poppable thus curr has to be poppable, hence to
avoid the three patterns of Lemma 2. Let p be the next element to be output, i.e. the smallest
element of c ∪ {σi . . . σn}. Let σH (resp. σV) be the topmost element of H (resp. of V) and
σq be the element waiting in the input to be pushed onto H (σq may not exist and in that
case σq = ∅; at the beginning σq = σi).

F

k

E
ℓ

∅

σq · · · σn
x
ρ

x
λ

x
µ

1 · · · p− 1
σV...

σH...

• If σV = p then we perform µ thanks to Lemma 9.

• Otherwise operation µ is forbidden. We have to chose between ρ and λ. Moreover p /∈ V
as V is in decreasing order from bottom to top.

1. Suppose that σH < ℓ. This means that σH 6∈ F i.e. σH 6∈ c′. Notice that by
definition of p, p ≤ σH thus p 6∈ c′. Moreover p /∈ V thus p ∈ H. If p = σH then,
by Lemma 9, we can pop out p. Thus we perform λ. If σH 6= p, then we will prove
that all elements x such that p ≤ x ≤ σH form an interval at the top of the stacks.
Those elements are all in the stacks by definition of ℓ and p. As V is decreasing,
the elements of [p . . . σH] belonging to V are at the top of it. Consider now the
position of those elements in H.

Suppose that it is not an interval. Then it exists an element x in H such that
x < σH and there is an element y > σH between x and σH . But in that case,
elements xyσH form the pattern 1 3 2 and curr is not poppable so any movement
is allowed here ρ, λ or µ because we will never reach c′.

Suppose now that the elements [p . . . σH] form an interval in H and V . Then as
p ∈ H is the smallest element, by Lemma 9, we want to pop out elements [p . . . σH],
hence we perform λ.

In conclusion, if σH < ℓ we perform λ.

2. If not, then σH ≥ ℓ and thus σH ∈ c′. Once again there are different cases:

(a) If H = ∅ then λ is forbidden, thus we perform ρ.

(b) If σH ∈ H(c′), it must stay in H thus λ is forbidden and we perform ρ.

(c) Else σH ∈ V (c′).

– If σq ∈ H(c′) then ρ is forbidden because σq would prevent σH from mov-
ing. Thus we perform λ.

– Else σq ∈ V (c′). If σH > σq, as σH ∈ V (c′), ρ is forbidden otherwise we
cannot put σq above σH in V . Thus we perform λ.

– Otherwise σH , σq ∈ V (c′) and σH < σq. λ is forbidden otherwise we cannot
put σH above σq in V . Thus we perform ρ.

7

We have proved that at each step of the algorithm, we know which move we have to do if we
want to reach c′. Moreover while q < j or p < ℓ or σH ∈ V (c′), it is impossible that curr = c′

so we have to continue. Conversely if q ≥ j and p ≥ ℓ and σH /∈ V (c′) then ρ and µ and λ
are forbidden and we have to stop. Then if curr = c′, c′ is accessible from c, otherwise c′ is
not accessible from c.

Finally there are at most 3n steps since at each step of the algorithm we perfom a move
ρ, λ or µ. Moreover each step takes a constant time, therefore the algorithm runs in linear
time.

Algorithm 1: isAccessible
(

(c, i), (c′, j), σ
)

Data: σ a permutation and (c, i), (c′, j) two stack configurations of σ respecting
conditions of Lemma 11

Result: true or false depending whether the configuration c′ is accessible from c
begin

Put configuration c in the stacks H and V ;
p← the smallest element of c ∪ {σi . . . σn} (next element to be output);
q ← i (next index of σ that must enter the stacks);
while q < j OR p < ℓ OR σH ∈ V (c′) do

if σV = p then

Perform µ; p← p+ 1;
else

if σH < ℓ then
Perform λ;

else

if H = ∅ OR σH ∈ H(c′) then
Perform ρ; q ← q + 1;

else

if σq ∈ H(c′) OR σH > σq then

Perform λ;
else

Perform ρ; q ← q + 1;

Return (H,V) == c′;

In the sequel of this article, we do not compute all possible stack configurations during
a sorting process of a given permutation σ but indeed focus on specific steps of the sorting.
We study the possible stack configurations at each time step ti corresponding to the moment
just before the right to left minimum σki is pushed onto stack H. Those configurations are

configurations (c, ki) accessible from (, 1).
We will prove that we can add two different restrictions on these configurations. First,

(c, ki) must be a pushall stack configuration of σ(i) (see below). Second (c, ki) must be an
evolution of some configuration (c′, ki−1) between time ti−1 and ti.

Definition 12 (pushall configuration). A stack configuration is a pushall stack configuration
of σ if it is poppable, total and reachable for σ.

8

2.2 From time ti to time ti+1

Thanks to the previous decomposition into different time steps corresponding to each moment
a right-to-left minima is pushed onto H and our previous work [3] on 2-stack pushall sortable
permutations, we can give a polynomial algorithm deciding whether a permutation is 2-stack
sortable. Indeed, we will prove that it is enough to consider configurations such that for each
ti the only elements in the stacks are exactly those of σ(i). But σ(i) is a permutation that ends
with its smallest element such that a sorting consists in pushing all elements into the stacks
then popping all elements out. Those possibilities are described in [3] where Proposition 4.8
gives all possible pushall stack configurations. When a permutation is ⊖-indecomposable,
Theorem 4.4 of [3] states that the number of possible pushall stack configurations is linear
in the size of the permutation. This will ensure that our algorithm runs in polynomial time.
Using this result, we now have the possible total stack configurations at time t1.

The key idea for computing possible stack configurations at time ti relies on Lemma 15.
Informally, it is possible to decide whether a configuration at time ti can evolved into a
specific configuration at time ti+1. Moreover, during this transition, only a few moves are
undetermined. Indeed the largest elements won’t move, the smallest one will be pushed
accordingly to [3] and the remaining ones form a ⊖-indecomposable permutation that will
allow us to exhibit a polynomial algorithm.

First of all we denote by A(i) the common part of the permutations σ(i) and σ(i+1), that
is, A(i) = σ(i)

⋂

σ(i+1) = {σj | j < ki and σj > σki+1
}. This subpermutation A(i) intersects

⊖-indecomposable blocks of σ(i) and σ(i+1). Let p(i) (resp. q(i+1)) be the index such that

B
(i)

p(i)
(resp. B

(i+1)

q(i+1)) contains the smallest value of A(i). Let D(i) = (B
(i)

p(i)

⋃

B
(i+1)

q(i+1))
⋂

A(i).

A(i)

σki

σki+1

B
(i+1)

q(i+1)

B
(i)

p(i)

D(i)

A(i)

σki

σki+1

B
(i+1)

q(i+1)

B
(i)

p(i)

D(i)

A(i)

σki

σki+1

B
(i+1)

q(i+1)

B
(i)

p(i)

D(i)

Lemma 13. For any j < min(p(i), q(i+1)), B
(i)
j = B

(i+1)
j .

Lemma 14. Let σℓ ∈ A(i). During a sorting process of σ, elements σm such that σm > σℓ
and m < ℓ do not move between ti and ti+1.

Proof. Let σm be an element such that m < ℓ and σm > σℓ. As σℓ ∈ A(i), σℓ > σki+1
and

j < ki, so does σm > σki+1
and m < ki. Hence both elements σm, σℓ lie in the stacks between

ti and ti+1 (they cannot be output as σki+1
must be output first). Suppose that σm is in H

at time ti. As m < ℓ, element σℓ is pushed after σm into the stacks, thus either σℓ is above
σm in H or lies in V at time ti and ti+1. So, σm cannot move into V , otherwise σℓ would be
under it in V and V would contain a pattern 12. So, σm stay in H.

Suppose now that σm is in V at time ti. As noticed previously, this element is not output
at time ti+1. So it also lies in stack V at time ti+1, proving the lemma.

9

In the following we study conditions for 2 total pushall stack configurations c and c′

corresponding to stack configuration of σ(i) and σ(i+1) to be accessible one from the other,
that is, if we can move elements starting from c at time ti to obtain c′ at time ti+1.

Lemma 15. Let (c, ki) (resp. (c′, ki+1)) be a total stack configuration of σ(i) (resp. σ(i+1)).
Let π = σ

|B
(i)

p(i)

⋃
B

(i+1)

q(i+1)

then (c′, ki+1) is accessible from (c, ki) for σ iff:

1. (c′|π, |π|+ 1) is accessible from (c|π, ♯(D
(i)

⋃

B
(i)

p(i)
) + 1) for π.

2. ∀j < min(p(i), q(i+1)), c
|B

(i)
j

= c′
|B

(i)
j

.

3. ∀j > q(i+1), c′
|B

(i+1)
j

is a reachable configuration.

Proof. Suppose first that (c′, ki+1) is accessible from (c, ki). This means that we can go from
c to c′ using operations represented by the decorated word ŵ. These operations are stable
that is for all I, c′|I is accessible from c|I . To do so, we just extract operations corresponding

to elements of I. Indeed the decorated word ŵ|I allow to transform c into c′. This proves the
first point of Lemma 15.

Let σℓ ∈ B
(i)
p . Lemma 14 ensures that elements of B

(i)
j with j < p(i) do not move between

ti and ti+1 proving the second point of Lemma 15.

Finally, elements of B
(i+1)
j for j > q(i+1) are pushed iteratively when going from c to c′.

Those elements stay in the stacks as σki+1
which is smaller is pushed after them. Thus they

correspond to a pushall configuration.
Conversely, suppose that we have the 3 different points above, we must prove that (c′, ki+1)

is accessible from (c, ki) for σ. We start by taking the stack configuration c and we will prove
that we can obtain c′ by moving elements. First of all, as c is a pushall stack configuration,
and as elements of Bℓ for ℓ > p are the smallest one and have been pushed last into the stacks
they are at the top of the stacks (see Lemma 8). Thus we can pop them and output them in
increasing order using Lemma 9.

The remaining elements in the stacks don’t move in the preceding operation, thus stay

in the same position than in c. In that configuration, elements of B
(i)

p(i)
are the smallest ones

and have been pushed the latter in the stacks. Hence they lie at the top of the stacks.
Then using point 1 of our hypothesis, we can move those elements together with pushing

elements of B
(i+1)

q(i+1) \ B
(i)

p(i)
so that all those elements (that is elements of π) are in the same

position than in c′. Then, by hypothesis item 3, ∀j > q(i+1), c′
|B

(i+1)
j

is a reachable configura-

tion. Thus we can push its elements into the stacks in the same relative order than in c′ (see
Lemma 8). During these operations we ensure that elements of Bℓ with ℓ ≥ min(p(i), q(i+1)),
c
|B

(i)
j

are in the same position in our configuration than in c′. Point 2 ensures that we indeed

obtain c′.

The preceding Lemma describes exactly which elements can move between ti and ti+1 and
how they move. But the hypothesis of Lemma 15 are restrictive that is configurations c and
c′ must be two total stack configurations of σ(i) and σ(i+1). Thus, we first prove that among
all sortings of a 2-stack sortable permutation, there exists at least one for which the stack
configurations at time ti contains exactly the elements of σ(i) for all i.

10

Definition 16 (Properties (Pi) and (P)). Let σ be a permutation and w a sorting word for
σ. w verifies (Pi) if and only if

(i) ρσki
λσki

µσki
is a factor of w.

(ii) µσj
appears before ρσki

for all σj < σki.

(iii) All operations µσℓ
with σℓ ∈ B

(i)
j and j ∈ [p(i) + 1..si] appear before ρσki+1

in w.

where σki is the ith right to left minima of the permutation and σ(i) = ⊖[B
(i)
1 , . . . , B

(i)
si].

If a word w verifies Property (Pi) for all i then we say that w verifies Property (P).

Lemma 17. If the sorting word encoding a sorting process of σ verifies Property (Pi), then
at time ti the elements currently in the stacks are exactly those of σ(i).

Proof. By definition of time ti (just before σki enters the stacks) each element in the stacks
has an index smaller than ki. Moreover among elements of index smaller than ki, those of
value greater than σki cannot have been output by definition of a sorting, and those of value
smaller than σki have already been output since w satisfies item (ii) of Property (Pi).

Lemma 18. Let w be a sorting word for a permutation σ, r be the number of RTL-minima
of σ and ℓ ∈ [1..r]. If w verifies (Pi) for i ∈ [1..ℓ− 1] then there exists a sorting word w′ for
σ that verifies (Pi) for i ∈ [1..ℓ].

Proof. Consider the sorting process of σ encoded by w. The key idea is to prove that the
smallest elements are at the top of the stacks so that we can transform the word w thanks to
Lemma 9.

Property (ii) for (Pℓ) states that µσj
should appear before ρσkℓ

for all σj < σkℓ . Suppose
that there still exists an element σj with σj < σkℓ in the stacks just before σkℓ is pushed into
the stacks. We prove that this element can be popped out before σkℓ is pushed. Let σj0 be
the smallest element still in the stacks just before ρσki

. By definition, elements smaller than
σj0 have already been output. Consider interval I = [σj0 , σkℓ − 1]. Those elements are still
in the stacks. If they are at the top of the stacks they can be output using Lemma 9. If
not, there exists in the stacks an element x /∈ I above an element y ∈ I. As V is decreasing,
those elements are in H. Moreover x > σkℓ > y. Then σkℓ cannot be pushed as it will create
a pattern 132 in H with elements x and y. Thus I is at the top of the stacks and we can
output it before σkℓ is pushed onto H: using Lemma 9, we build from w a sorting word w(1)

for σ satisfying (Pi) for i ∈ [1..ℓ − 1] and Property (ii) of (Pℓ). This means that w(1) can be
decomposed as w(1) = uρσkℓ

v such that the stack configuration cσ(u) respects the following
constraint: elements 1, . . . , σkℓ are not in the stacks.

So if we consider the stack configuration cσ(uρσkℓ
), element σkℓ is at the top of H and

since outcσ(uρσkℓ)
(σkℓ) = λσkℓ

µσkℓ
we can use Lemma 9 to change the sorting word w(1) into

a sorting word w(2) = uρσkℓ
λσkℓ

µσkℓ
v′, satisfying Property (i) for (Pℓ).

Now we show considering the stack configuration c = cσ(uρσkℓ
λσkℓ

µσkℓ
) how to transform

the word w(2) into a word w′ = uρσkℓ
λσkℓ

µσkℓ
v(1)v(2) with v(1) = outc(B

(ℓ)

p(ℓ)+1
∪ · · · ∪ B

(ℓ)
sℓ).

This will conclude the proof.
Notice that elements of c are exactly those of σ(ℓ) since the last operations performed are

ρσkℓ
λσkℓ

µσkℓ
and elements are pushed in the stacks in increasing order of indices and output

11

in increasing order of values. Thus outc(B
(ℓ)

p(ℓ)+1
∪ · · · ∪ B

(ℓ)
sℓ) = out(B

(ℓ)
sℓ) . . . out(B

(ℓ)

p(ℓ)+1
) (see

Lemma 8). We show by induction on j from sℓ to p(i) + 1 that we can build a sorting word

for σ of the form uρσkℓ
λσkℓ

µσkℓ
v(1,j)v(2,j) with v(1,j) = out(B

(ℓ)
sℓ) . . . out(B

(ℓ)
j). For j = sℓ that

is a word in which elements of block Bsℓ are output immediately after σkℓ has been output.
By definition of sℓ and because elements of c are exactly those of σ(ℓ), all elements of Bsℓ

lie in the stacks in configuration c, are the smallest elements in this configuration and lie at
the top of the stacks in configuration c (see Lemma 8). Hence, using Lemma 9, there exist a
sorting word w(3) for σ such that w(3) = uρσkℓ

λσkℓ
µσkℓ

out(Bsℓ)v
′′. Repeating this operation

for all blocks Bj with j from sℓ − 1 to p(i) + 1, we have Property (iii).

Notice that Property (P0) is an empty property satisfied by any sorting word. Using
recursively Lemma 18 we can transform any sorting word into a sorting word satisfying
Property (P), leading with Lemma 17 to the following theorem:

Theorem 19. If σ is 2-stack sortable then there exists a sorting word of σ respecting Property
(P). In particular, in the sorting process that this word encodes, the elements currently in the
stacks at time ti are exactly those of σ(i).

Theorem 19 ensures that if a permutation is sortable then there exists a sorting in which at
each time step ti, elements in the stacks are exactly those of σ(i). Thus stack configurations at
time ti and ti+1 satisfy hypothesis of Lemma 15 and we can apply it to decide if a permutation
if 2-stack sortable.

3 An iterative algorithm

3.1 A fisrt näıve algorithm

From Theorem 19 a permutation σ is 2-stack sortable if and only if it admits a sorting
process satisfying Property (P). The main idea is to compute the set of sorting processes of
σ satisfying Property (P) and decide whether σ is 2-stack sortable by testing its emptiness.

Verifying (P) means verifying (Pj) for all j from 1 to r, r being the number of right-to-left
minima (whose indices are denoted kj). The algorithm proceeds in r steps: for all i from 1
to r we iteratively compute the sorting processes of σ≤ki verifying (Pℓ) for all ℓ from 1 to i.
As σ≤kr = σ, the last step gives sorting processes of σ satisfying Property (P).

By “compute the sorting processes of σ≤ki” we mean compute the stack configuration
just before σki enters the stacks in such a sorting process. Note that this is also the stack
configuration just after σki has been output since ρσki

λσki
µσki

is a factor of any word verifying
(P).

Definition 20. We call Pi-stack configuration of σ a stack configuration cσ(w) for which
there exists u such that the first letter of u is ρσki

and wu is a sorting word of σ≤ki verifying
(P) for σ≤ki (that is, verifying (Pℓ) for all ℓ from 1 to i).

Lemma 21. For any i from 1 to r, σ≤ki is 2-stack sortable if and only if the set of Pi-stack
configurations of σ is nonempty. In particular, σ is 2-stack sortable if and only if the set of
Pr-stack configurations of σ is nonempty.

Proof. This is a direct consequence of Definition 20 and Theorem 19.

12

Lemma 22. Any Pi-stack configuration of σ is a pushall stack configuration of σ(i) accessible
from some Pi−1-stack configurations of σ.

Proof. By definition of (P), each Pi-stack configurations of σ is accessible from some Pi−1-
stack configurations of σ (take the prefix of w that ends just before ρσki−1

). Moreover it is a

pushall stack configuration of σ(i) from Lemma 17.

As explained above, the algorithm proceeds in r steps such that after step i we know
every Pi-stack configuration of σ and we want to compute the Pi+1-stack configurations of
σ at step i + 1. As configurations for i + 1 are a subset of pushall stack configurations of
σ(i+1), a possible algorithm is to take every pair of configurations (c, c′) with c being a Pi-
stack configuration of σ (computed at step i) and c′ be any pushall stack configuration of
σ(i+1) (given by Algorithm 5 of [3]). Then we can use Algorithm 1 to decide whether c′ is
accessible from c for σ. This leads to the following algorithm deciding whether a permutation
σ is 2-stack sortable:

Algorithm 2: isSortableNaive

Data: σ a permutation
Result: true or false depending whether σ is 2-stack sortable
begin

E,F two empty sets;

E ← PushallConfigs(σ(1));
for i from 2 to r do

F ← ∅;
for c in E do

for c′ in PushallConfigs(σ(i)) do

if isAccessible((c, ki), (c
′, ki+1), σ) then

F ← F ∪ c′;

E ← F ;

if E is empty then

return false;
else

return true;

Notice that at step i, the set E computed contains all Pi-stack configurations of σ but
may contain some other configurations. However since each configuration of E is a pushall
configuration of σ(i) and is accessible for σ from some pushall configurations of σ(i−1), each
configuration of E indeed corresponds to some sorting procedure of σ≤ki , proving the correct-
ness of Algorithm 2.

But this algorithm is not polynomial. Indeed the number of Pi-stack configurations of σ
is possibly exponential. However this set can be described by a polynomial representation as
a graph G(i) and we can adapt Algorithm 2 to obtain a polynomial algorithm. In this adapted
algorithm, the set E computed at step i is exactly the set of Pi-stack configurations of σ.

13

3.2 Towards the sorting graph

We now explain how to adapt Algorithm 2 to obtain a polynomial algorithm. Instead of
computing all Pi-stack configurations of σ (which are pushall stack configurations of σ(i)), we

compute the restriction of such configurations to blocks B
(i)
j of the ⊖-decomposition of σ(i).

By Lemma 8, those configurations are stacked one upon the others. The stack configurations

of any block B
(i)
j are labeled with an integer which is assigned when the configuration is

computed. Those pairs configurations / integer will be the vertices of the graph G(i) which we
call a sorting graph, the edges of which representing the configurations that can be stacked
one upon the other. Vertices of the graph G(i) are partitioned into levels corresponding to

blocks B
(i)
j . To ensure the polynomiality of the representation, we will prove that a given

integer label could only appear once per level of the graph G(i). As those numbers are
assigned to configurations when they are created, each integer corresponding to a pushall
stack configuration, from [3] there exists only a polynomial number of disctincts integers thus
of vertices. This will be explained in details in the next section. The integer indeed can be
seen as the memory of the configuration that encodes its history since it has been created: two
configurations which have the same label come from the same initial pushall configuration.

More precisely a sorting graph G(i) for a permutation σ of size n and an index i verifies
the following properties:

• Vertices of G(i) are partitioned into si subsets V
(i)
j with j ∈ [1 . . . si].

• For any j ∈ [1 . . . si], |V
(i)
j | ≤ 9n + 2.

• Each vertex v ∈ G(i) is a pair (c, ℓ) with c a stack configuration and ℓ an index
called configuration index.

• All configuration indices are distinct inside a graph level V
(i)
j

• (c, ℓ) ∈ V
(i)
j ⇒ c is a pushall stack configuration of B

(i)
j accessible for σ.

• There are edges only between adjacent blocks V
(i)
j , V

(i)
j+1.

• Paths between vertices of V
(i)
1 and V

(i)
si corresponds to stack configurations of σ(i). More

precisely such paths are in one-to-one correspondence with Pi-stack configurations of
σ (that is, stack configurations corresponding to a sorting of σ≤ki respecting (P) just
before σki is pushed onto H).

• For any vertex v of G(i), there is a path between vertices of V
(i)
1 and V

(i)
si going through

v.

Though the definition of sorting graph is complex, its use will be quite understandable
and easy. Look for example at the permutation σ = 4321. There is only one right to left
minimum which is 1. Compute all possible stack configurations just after 1 enters H. At this
time, all elements are in the stacks since the first element which must be output is 1. More
formally, we are looking at the pushall stack configurations of σ with 1 in H.

There are 8 different such configurations which are:

14

4
3
2
1

4
3
1

2 4
2
1

3 3
2
1

4 2
1

4
3

3
1

4
2

4
1

3
2

14
3
2

The ⊖-decomposition of σ is σ = ⊖[4, 3, 2, 1]. We build a graph with 4 levels, each level
corresponding to pushall stack configurations of a block.

1 7 1 8

2 5 2 6

3 3 3 4

4 1 4 2

Stack configurations of B4 = 1

Stack configurations of B3 = 2

Stack configurations of B2 = 3

Stack configurations of B1 = 4

Figure 3: Graph encoding pushall stack configurations of σ = 4321.

Then the 8 configurations are found taking each of the 8 different paths going from any

configuration of B1 to configuration 1 of B4. In Figure 3, the thick path gives the stack

configuration 3
1

4
2

by stacking the selected configuration of B4 above the configuration of
B3 and so on.

But in the last level B4 we only consider configuration 1 so this level is useless. The
sorting graph G(1) for σ = 4321 encodes pushall stack configurations of σ(1) = 432, corre-
sponding to stack configurations just before 1 enters H (and not after as above).

There are 8 different such configurations which are:

4
3
2

4
3

2 4
2

3 3
2

4 24
3

34
2

43
2

4
3
2

As the ⊖-decomposition of σ(1) is σ(1) = ⊖[4, 3, 2], the sorting graph G(1) has 3 levels.

15

2 5 2 6

3 3 3 4

4 1 4 2

Stack configurations of B3 = 2

Stack configurations of B2 = 3

Stack configurations of B1 = 4

Figure 4: Sorting graph G(1) of σ = 4321.

Then the 8 configurations are found taking each of the 8 different paths going from any
configuration of B1 to any configuration of B3. In Figure 4, the thick path gives the stack

configuration 34
2

by stacking the selected configuration of B3 above the configuration of
B2 and so on.

We transform Algorithm 2 to a polynomial algorithm by computing at step i not all Pi-
stack configurations of σ, but instead the sorting graph G(i) encoding them. The graph G(i)

is computed iteratively from the graph G(i−1) for any i from 2 to r. The way G(i) is computed
from G(i−1) depends on the relative values of p(i) and q(i+1). By definition of a sorting graph
given p.14, if at any step G(i) is empty, it means that σ≤ki is not sortable (from Theorem 19)
and so is σ thus the algorithm returns false. This is summarized in Algorithm 3.

Algorithm 3: isSortable

Data: σ a permutation
Result: true or false depending whether σ is 2-stack sortable
begin

G ← ComputeG1;
for i from 2 to r do

if p(i) = q(i+1) then
G ← iteratepEqualsq(G) or return false

else

if p(i) < q(i+1) then
G ← iteratepLessThanq(G) or return false

else
G ← iteratepGreaterThanq(G) or return false

return true

In the next subsections we describe the subprocedures used in our main algorithm isSortable(σ).

3.3 First step: G(1)

In this subsection, we show how to compute the P1-stack configurations of σ, that is, the
stack configurations corresponding to time t1 for sorting words of σ≤k1 that respect (P) for
σ≤k1 .

From Lemma 22, such a stack configuration is a pushall stack configuration of σ(1). Con-

16

versely since σk1 = 1, σ(1) = σ<k1 and each sorting word of σ≤k1 respects (P1) for σ≤k1 . Thus
the set of P1-stack configurations of σ is the set of pushall stack configurations of σ(1).

By Proposition 4.7 of [3], these stack configurations are described by giving the set of
stack configurations for each block of the ⊖-decomposition of σ(1). More precisely, with σ(1) =

⊖[B
(1)
1 , . . . , B

(1)
s1] there is a bijection from pushallConfigs(B

(1)
1)×· · ·×pushallConfigs(B

(1)
s1)

onto pushallConfigs(σ(1)) by stacking configurations one upon the other (as in Lemma 8). As

a consequence, from Lemma 21 σ≤k1 is not sortable if and only if a set pushallConfigs(B
(1)
j)

is empty.
Moreover it will be useful to label the configurations computed so that we attach a distinct

integer to each stack configuration when computed.
At this point, we have encoded all configurations corresponding to words respecting P up

to the factor ρ1λ1µ1.
The obtained graph is G(1). This step is summarized in Algorithm 4.

Algorithm 4: ComputeG1

Data: σ a permutation, num a global integer variable
Result: false if σ≤k1 is not sortable, the sorting graph G(1) otherwise.
begin

E = ∅;

Compute σ(1) and its ⊖-decomposition ⊖[B
(1)
1 , . . . , B

(1)
s1];

for j from 1 to s
(1)
1 do

V
(1)
j ← ∅;

S = pushallConfigs(B
(1)
j);

if S = ∅ then

return false;
else

for s ∈ S do

V
(1)
j ← V

(1)
j

⋃

{(s, num)};

num← num+ 1;

if j > 1 then

E = E
⋃

{(s, s′), s ∈ V
(1)
j , s′ ∈ V

(1)
j−1}

return G(1) = (
⋃

j∈[1..s
(1)
1]

V
(1)
j , E)

3.4 From step i to step i+ 1

After step i we know the graph G(i) encoding every Pi-stack configuration of σ and we want
to compute the graph G(i+1) encoding Pi+1-stack configurations of σ at step i + 1. From
Lemma 22 we have to check the accessibility of pushall stack configuration of σ(i+1) from
Pi-stack configurations of σ. We want to avoid to check every pair of configurations (c, c′)
with c being a Pi-stack configuration and c′ be a pushall stack configuration of σ(i+1) because
the number of such pair of configurations is possibly exponential. Thus our algorithm focuses

not on stack configurations of some σ(ℓ) but on sets of stack configurations of blocks B
(ℓ)
j ,

17

making use of Lemma 15. Using Lemma 22, Lemma 15 can be rephrased as:

Lemma 23. Let c′ be a total stack configuration of σ(i+1), p = p(i) and q = q(i+1). Then c′

is a Pi+1-stack configuration of σ if and only if:

• For any j ≤ q, c′
|B

(i+1)
j

is a pushall stack configuration of σ
|B

(i+1)
j

, and

• There exists a Pi-stack configuration c of σ such that :

– c′
|B

(i)
min(p,q)

∪···∪B
(i)
q

is accessible from c
|B

(i+1)
min(p,q)

∪···∪B
(i+1)
p

for σ
|B

(i)
p

⋃
B

(i+1)
q

and

– c′
|B

(i+1)
1 ∪···∪B

(i+1)
min(p,q)−1

= c
|B

(i)
1 ∪···∪B

(i)
min(p,q)−1

Recall that a Pi-stack configuration of σ is encoded by a path in the sorting graph G(i),

corresponding to the ⊖-decomposition of the permutation σ(i) into blocks B
(i)
j . The last point

of Lemma 23 ensures that the first levels (1 to min(p(i), q(i+1)) − 1) are the same in G(i+1)

than in G(i). The first point of Lemma 23 ensures that the last levels (> q(i+1)) of G(i+1) form
a complete graph whose vertices are all pushall stack configurations of corresponding blocks.
So the only unknown levels for G(i+1) are those between min(p(i), q(i+1)) and q(i+1) and we
can compute them by testing accessibility.

There are differents cases depending on the relative values of p(i) and q(i+1). To lighten
the notations in the following, we sometimes write p (resp. q) instead of p(i) (resp. q(i+1)).

3.4.1 Case p(i) = q(i+1)

If p(i) = q(i+1) then B
(i+1)

q(i+1) ∩A(i) = B
(i)

p(i)
∩A(i) (see Figure 5).

σki

σki+1

B
(i+1)

q(i+1)

B
(i)

p(i)

σki

σki+1

B
(i+1)

q(i+1)

B
(i)

p(i)

σki

σki+1

B
(i+1)

q(i+1)

B
(i)

p(i)

Figure 5: Block decomposition of σ(i) and of σ(i+1) when p(i) = q(i+1)

We have the sorting graph G(i) encoding all Pi-stack configurations of σ and we want to
compute the sorting graph G(i+1) encoding all Pi+1-stack configurations of σ assuming that
p(i) = q(i+1) = min(p(i), q(i+1)).

In this case, from Lemma 23 we only have to check accessiblity of pushall configurations

of B
(i+1)
q from configurations of B

(i)
p belonging to level p of G(i). Indeed from the definition

of a sorting graph given p.14, for any vertex v of G(i) there is a path between vertices of V
(i)
1

and V
(i)
si going through v, and such a path corresponds to a Pi-stack configuations of σ. Thus

18

for any configurations x of B
(i)
p belonging to a vertex v of level p of G(i), there is at least one

Pi-stack configurations c of σ such that c
|B

(i)
p

= x, and c
|B

(i)
1 ∪···∪B

(i)
min(p,q)−1

is encoded by a

path from v to level p of G(i) (which go through each level < p).

If there is no pushall configuration of B
(i+1)
q accessible from some configurations of B

(i)
p

belonging to level p of G(i), or if σ(i+1) has no pushall configuration, then σ has no Pi+1-stack
configuration and σ≤ki+1

is not sortable (from Lemma 21).
This leads to the following algorithm:

Algorithm 5: iteratepEqualsq(G(i))

Data: σ a permutation and G(i) the sorting graph at step i
Result: false if σ≤ki+1

is not sortable, the sorting graph G(i+1) otherwise.
begin

G an empty sorting graph with si+1 levels;

G′ ← ComputeG1(σ(i+1)) (pushall sorting graph of σ(i+1)) or return false;
Copy levels q + 1 . . . si+1 of G′ into the same levels of G;

for (c, ℓ) in level p of G(i) do
H the subgraph of G(i) induced by (c, ℓ) in levels < p;

for (c′, ℓ′) in level q of G′ do
if isAccessible(c, c′, σ

|B
(i)
p

⋃
B

(i+1)
q

) then

Add (c′, ℓ′) in level q of G (if not already done);

Merge H in levels ≤ q of G with (c′, ℓ′) as origin;

if level q of G is empty then

return false;

for (c′, ℓ′) in level q of G do

Add all edges from (c′, ℓ′) to each vertex of level q + 1 of G;

return G

3.4.2 Case p(i) < q(i+1)

If p(i) < q(i+1) then B
(i+1)

q(i+1) ∩A(i) B
(i)

p(i)
∩A(i) (see Figure 6).

σki

σki+1

B
(i+1)

q(i+1)

B
(i)

p(i)

σki

σki+1

B
(i+1)

q(i+1)

B
(i)

p(i)

σki

σki+1

B
(i+1)

q(i+1)

B
(i)

p(i)

Figure 6: Block decomposition of σ(i) and of σ(i+1) when p(i) < q(i+1)

19

Again, Lemma 23 ensures that the first p− 1 levels of G(i+1) come from those of G(i) and

the levels > q are all pushall stack configurations of the blocks B
(i+1)
>q of σ(i+1). The difficult

part is from level p to level q. As in the preceding case, by Lemma 23, we have to select
among pushall stack configurations of blocks p, p + 1, . . . , q of σ(i+1) those accessible from a

configuration of B
(i)
p that appears at level p in G(i). We can restrict the accessibility test

from configurations of B
(i)
p appearing in graph G(i) to pushall stack configurations of B

(i+1)
q .

Indeed, Lemma 14 ensures that elements of blocks B
(i+1)
j for j from p to q − 1 are in the

same stack at time ti and at time ti+1. Thus configurations of B
(i+1)
j for j from p to q − 1

are restrictions of configurations of B
(i)
p . We keep the same label in the vertex to encode that

those configurations of B
(i+1)
p , B

(i+1)
p+1 , . . . , B

(i+1)
q−1 come from the same configuration of B

(i)
p and

we build edges between vertices of B
(i+1)
j+1 and B

(i+1)
j that come from the same configuration of

B
(i)
p . It is because of this case p = q that we have to label configurations in our sorting graph.

Indeed two different stack configurations c1 and c2 of B
(i)
p may have the same restriction to

some block B
(i+1)
j but not be compatible with the same configurations, thus we want the

corresponding vertices of level j of G(i+1) to be distinct, that’s why we use labels.
More precisely we have the following algorithm.

Algorithm 6: iteratepLessThanq(G(i))

Data: σ a permutation and G(i) the sorting graph at step i
Result: false if σ≤ki+1

is not sortable, the sorting graph G(i+1) otherwise.
begin

G an empty sorting graph with si+1 levels;

G′ ← ComputeG1(σ(i+1)) (pushall sorting graph of σ(i+1)) or return false;
Copy levels q + 1, . . . , si+1 of G′ into the same levels of G;

for (c, ℓ) in level p of G(i) do

H the subgraph of G(i) induced by (c, ℓ) in levels < p;

for (c′, ℓ′) in level q of G′ do
if isAccessible(c, c′, σ

|B
(i)
p

⋃
B

(i+1)
q

) then

Add (c′, ℓ′) in level q of G (if not already done);
for j from q − 1 downto p do

Add (c
|B

(i+1)
j

, ℓ) in level j of G;

Add an edge between (c
|B

(i+1)
j

, ℓ) and (c
|B

(i+1)
j+1

, ℓ) in G.

Merge H in levels ≤ p of G with (c
|B

(i+1)
p

, ℓ) as origin;

if level q of G is empty then

return false;

for (c′, ℓ′) in level q of G do

Add all edges from (c′, ℓ′) to each vertex of level q + 1 of G;

return G;

Note that in Algorithm 6, before calling isAccessible(c, c′, σ
|B

(i)
p

⋃
B

(i+1)
q

) we extend con-

figuration c′ to D(i)
⋃

B
(i+1)
q by assigning the same stack than in c to points of D(i) \B

(i+1)
q .

20

This is justified by Lemma 14.

21

3.4.3 Case p(i) > q(i+1)

If p(i) > q(i+1) then B
(i)

p(i)
∩A(i) B

(i+1)

q(i+1) ∩A(i) (see Figure 7).

σki

σki+1

B
(i+1)

q(i+1)

B
(i)

p(i)

σki

σki+1

B
(i+1)

q(i+1)

B
(i)

p(i)

σki

σki+1

B
(i+1)

q(i+1)

B
(i)

p(i)

Figure 7: Block decomposition of σ(i) and of σ(i+1) when p(i) > q(i+1)

Algorithm 7: iteratepGreaterThanq(G(i))

Data: σ a permutation and G(i) the sorting graph at step i
Result: false if σ≤ki+1

is not sortable, the sorting graph G(i+1) otherwise
begin

G an empty sorting graph with si+1 levels;

G′ ← ComputeG1(σ(i+1)) (pushall sorting graph of σ(i+1)) or return false;
Copy levels q + 1, . . . , si+1 of G′ into the same levels of G;

for (c, ℓ) in level p of G(i) do

for (c′, ℓ′) in level q of G′ do
if isAccessible(c, c′, σ

|B
(i)
p

⋃
B

(i+1)
q

) then

if there is a path (c, ℓ)↔ (c′
|B

(i)
p−1

, ℓ1)↔ . . .↔ (c′
|B

(i)
q

, ℓk) in G(i) then

Add (c′, ℓ′) in level q of G (if not already done);

H the subgraph of G(i) induced by (c′
|B

(i)
q

, ℓk) in levels < q;

Merge H in levels ≤ q of G with (c′, ℓ′) as origin;

if level q of G is empty then

return false;

for (c′, ℓ′) in level q of G do

Add all edges from (c′, ℓ′) to each vertex of level q + 1 of G;

return G;

This case is very similar to the preceding one except that B
(i)
p is not cut into pieces

but glued together with preceding blocks. As a consequence, when testing accessibility of a

configuration of B
(i+1)
q , we should consider every corresponding configuration in G(i), that is

every configuration obtained by stacking configurations at level q, q + 1, . . . , p in G(i). Unfor-

22

tunately this may give an exponential number of configurations, but noticing that by Lemma

14 elements of blocks B
(i)
q , B

(i)
q+1 . . . B

(i)
p−1 are exactly in the same stack at time ti and at time

ti+1, it is sufficient to check the accessibility of a pushall configuration c′ of B
(i+1)
q from a

configuration c of B
(i)
p and verify afterwards whether the configuration c has ancestors in G(i)

that match exactly the configuration c′. This leads to the Algorithm 7.
Note that in Algorithm 7, before calling isAccessible(c, c′, σ

|B
(i)
p

⋃
B

(i+1)
q

) we extend con-

figuration c to D(i)
⋃

B
(i)
p by assigning the same stack than in c′ to points of D(i) \B

(i)
p . This

is justified by Lemma 14.
Now that we have described all steps of our algorithm, we turn to the study of its com-

plexity.

4 Complexity Analysis

In this section we study the complexity of our main algorithm: isSortable(σ) (Algorithm 3).
The key idea for the complexity study relies on a bound of the size of each graph G(i), as
described in the following lemma.

Lemma 24. For any i ∈ [1..r], the maximal number of vertices in a level of G(i) is 9n + 2
where n is the size of the input permutation.

Proof. From Theorem 4.4 of [3], the maximal number of pushall stack configurations of a
⊖-indecomposable permutation π is 9|π|+ 2.

By definition of G(1), the vertices of a level correspond to pushall stack configurations of
a given block of the ⊕1-decomposition of the input permutation σ. Thus the cardinality of
a level is bounded by 9k + 2 where k is the size of the corresponding block. As k ≤ n, the
result holds for i = 1 .

Suppose now that the result is true for a given G(i), we show that it is then true for G(i+1).
The graph G(i+1) is build from G(i) using Algorithm 5, 6 or 7. In each case for a level j of
G(i+1) we have:

If j > q(i+1) then vertices of the level j of G(i+1) are the pushall stack configurations

corresponding to the block B
(i+1)
j of the ⊕i+1-decomposition of σ. Thus Theorem 4.4 of [3]

ensures that the cardinality of level j is bounded by 9n+ 2.
If j = q(i+1) then vertices of the level j of G(i+1) are a subset of the pushall stack config-

urations corresponding to the block B
(i+1)
j of the ⊕i+1-decomposition of σ. Again Theorem

4.4 of [3] ensures that the cardinality of level j is bounded by 9n + 2.
If j < p(i) then vertices of the level j of G(i+1) are a subset of vertices of the level j of G(i).

By induction hypothesis the cardinality of level j is bounded by 9n+ 2.
If p(i) ≤ j < q(i+1) then vertices of the level j of G(i+1) are restrictions of a subset of

vertices of the level j of G(i). By induction hypothesis the cardinality of level j is bounded
by 9n+ 2, concluding the proof.

Lemma 25. For any i ∈ [1..r], the number of vertices of G(i) is O(n2) and the number of
edges of G(i) is O(n3), where n is the size of the input permutation.

Proof. The result follows from Lemma 24 as there are at most n levels and there are edges
only between consecutives levels.

23

Theorem 26. Given a permutation σ, Algorithm 3 isSortable(σ) decides whether σ is sortable
with two stacks in series in polynomial time w.r.t. |σ|.

Proof. Algorithm 3 involves four other subroutines: ComputeG1 (Algorithm 4), iterate-
pEqualsq (Algorithm 5), iteratepLessThanq (Algorithm 6) and iteratepGreaterThanq (Algo-
rithm 7).

Each for-loop in these algorithms is executed at most a linear number of time by Lemma
24.

Moreover each included operation is polynomial by Lemmas 25 and 11.

Notice that a more precise analysis of complexity leads to an overall complexity of O(n5).

References

[1] D. E. Knuth. The Art of Computer Programming, Volume III: Sorting and Searching.
Addison-Wesley, 1973.

[2] M. M. Murphy. Restricted permutations, anti chains, atomic classes and stack sorting.
Phd thesis, University of St Andrews, 2002.

[3] A. Pierrot and D. Rossin. 2-stack pushall sortable permutations, 2013, arXiv:1303.4376.

[4] J. West. Sorting twice through a stack. Theor. Comput. Sci., 117(1&2):303–313, 1993.

24

	Notations and definitions
	General results on two-stack sorting
	Basic results
	From time ti to time ti+1

	An iterative algorithm
	A fisrt naïve algorithm
	Towards the sorting graph
	First step: G(1)
	From step i to step i+1
	Case p(i) = q(i+1)
	Case p(i) < q(i+1)
	Case p(i) > q(i+1)

	Complexity Analysis

