
HAL Id: hal-00809642
https://hal.science/hal-00809642v1

Submitted on 9 Apr 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Orion: A Software Project Search Engine with
Integrated Diverse Software Artifacts

Tegawendé F. Bissyandé, Ferdian Thung, David Lo, Lingxiao Jiang, Laurent
Réveillère

To cite this version:
Tegawendé F. Bissyandé, Ferdian Thung, David Lo, Lingxiao Jiang, Laurent Réveillère. Orion: A
Software Project Search Engine with Integrated Diverse Software Artifacts. 18th IEEE International
Conference on Engineering of Complex Computer Systems (ICECSS 2013), Jul 2013, Singapore, Sin-
gapore. pp.1-4. �hal-00809642�

https://hal.science/hal-00809642v1
https://hal.archives-ouvertes.fr

Orion: A Software Project Search Engine with
Integrated Diverse Software Artifacts

Tegawendé F. Bissyandé1, Ferdian Thung2, David Lo2, Lingxiao Jiang2 and Laurent Réveillère1
1Laboratoire Bordelais de Recherche en Informatique, France

2Singapore Management University, Singapore
bissyande@labri.fr, ferdianthung@smu.edu.sg, davidlo@smu.edu.sg, lxjiang@smu.edu.sg, reveillere@labri.fr

Abstract—Software projects produce a wealth of data that
is leveraged in different tasks and for different purposes: re-
searchers collect project data for building experimental datasets;
software programmers reuse code from projects; developers often
explore the opportunities for getting involved in the develop-
ment of a project to gain or offer expertise. Finding relevant
projects that suit one needs is however currently challenging
with the capabilities of existing search systems. We propose
Orion, an integrated search engine architecture that combines
information from different types of software repositories from
multiple sources to facilitate the construction and execution of
advanced search queries. Orion provides a declarative query
language that gives to users access to a uniform interface
where it transparently integrates different artifacts of project
development and maintenance, such as source code information,
version control systems metadata, bug tracking systems elements,
and metadata on developer activities and interactions extracted
from hosting platforms. We have built an extensible system
with an initial capability of over 100,000 projects collected from
the web, featuring several types of software repositories and
software development artifacts. We conducted an experiment with
10 search scenarios to compare Orion with traditional search
engines, and explore the need for our approach as well as the
productivity of the proposed infrastructure. The results show
with strong statistical significance that users find relevant projects
faster and more accurately with Orion.

I. INTRODUCTION

Software programmers, managers, and researchers often
have the need to search for software projects for various
reasons, such as looking for good pieces of code to reuse,
looking for a good project to join, looking for good subjects
for analysis, etc. However, their activities are often challenged
by the difficulties in identifying appropriate software projects
satisfying their needs. For example, in software engineering
research, developing evidences to validate one’s results often
requires empirical evaluation with real-world datasets that are
collected on the basis that they hold properties relevant to the
evaluation. To this end, researchers usually resort to existing
software project repositories where large amounts of data are
publicly available for use to answer an enquiry like “what
projects produce source code with more than 1,000 test cases
and where more than 10,000 bugs have been reported?”.
Unfortunately, identifying and collecting such data, while
lacking any scientific value, is an obligatory passage which
is commonly recognized to be a tedious exercise [7]–[9].
Indeed, the dispersion of datasets in various repositories as
well as the heterogeneity of their representations complicate
extensive analysis of data from multiple sources. Furthermore,
extracting knowledge from the large sets of information is

challenging as it requires time, computational power, and an
understanding of the correlations that exist among the data.
Consequently, researchers who undertake to collect software
data for their studies usually spend a significant portion of
their time searching across different platforms to look for the
few software systems that meet their requirements. Simplifying
software data collection and manipulation as well as improving
navigation across those data may save much research time
and yield a positive impact on the strength and the validity
of research studies.

The aforementioned challenges also apply to developers
and users. For example, a developer wishing to participate
in collaborative development projects can hardly determine
beforehand which project would benefit the most from his
expertise while being a “friendly” environment for him. It
is indeed challenging to answer, e.g., to the question What
projects are developed in Ocaml by less than 10 people
who have produced over 100,000 lines of code and are still
maintaining the code with a high-bug fixing rate? A user
in a quest for the “right” software may also experience the
frustration of settling for the less relevant ones that web search
engines may lead him to.

In this work, we propose Orion, a search engine architec-
ture where information extracted from source code, versioning
repositories, bug tracking systems, collaborative development
platforms, etc. are merged to build a knowledge database
that can easily be queried through a user-friendly language,
the Orion DSL. To this end, we have acquired and curated
large amounts of data from a number of popular project
hosting platforms. We have then defined and isolated a number
of software system characteristics and their corresponding
development artifacts that we have furthermore linked to enable
advanced queries that may span over multiple information
sources.

Orion combines the data sources and integrates the infor-
mation so as to allow the linked data to be searched in a unified
platform. Related work to ours has mainly focused on making
the data readily available by means of centralization [1], [9],
or aimed at regularly delivering snapshots and statistics on
monitored projects [12]. While these efforts have enabled
researchers to more easily study the data globally, they do not
expose any new combinations of data to yield richer datasets,
nor do they allow for advanced queries across data sources.
We extend these work by building a search engine on top
of a knowledge database. A more recent work by Dyer et
al. proposes the BOA [6] infrastructure for mining software
repositories. Their approach however is targeted for computing

statistics across software repositories, while Orion aims at
facilitating the selection of a set of software projects satisfying
various criteria based on properties of their development arti-
facts (e.g., source code size, programming languages, bug fix
rate, team size, etc.). BOA only analyzes information available
on SourceForge. Our approach however integrates information
from various sources including GitHub, Google Code, JIRA,
etc.

The main contributions of this paper are as follows:

• We discuss the opportunities and challenges in the
context of project search and propose the Orion inte-
grated search engine for empowering users, developers
and researchers in their quests for relevant software
projects.

• We explore the design of the Orion system, including
the DSL, the mapping of raw data to domain-specific
types, and the crawling step of project data for trans-
lation into a common format.

• We highlight, with a few query examples, the capa-
bilities of our prototype implementation with datasets
from a large variety of sources, such as bug reports,
source code versioning information, and developer
activities, from tens of thousands software projects.
We also provide an assessment based on a user-study
for estimating the need, the usability and effectiveness
of Orion.

The rest of this paper is organized as follows. Section II
motivates this work, by illustrating the need for an integrated
search engine, and by outlining the challenges that we face
in its design. Section III discusses our approach through a
presentation of the design of the Orion DSL and an overview of
the construction of Orion knowledge database. In Section IV,
we propose an assessment of the Orion approach. Finally,
Sections V and VI discuss related work and conclude with
future work respectively.

II. MOTIVATIONS

Software projects data are prevalent on the world wide
web. Thanks to the momentum of open source philosophy,
a wide range of project development artifacts are available on
project homepages and on hosting platforms. The availability
of such data has created unprecedented opportunities for
research studies on real software development activities, for
code reuse by novice as well as experienced programmers,
for the exploration of diversified software alternatives, etc.
Discovering the relevant project however, remains a tedious
endeavor, with the current search capabilities on the world
wide web. In this section we describe two complex and
challenging search scenarios for different kinds of software
project seekers. We subsequently discuss the requirements for
improving the search for software projects.

A. Search Scenarios

A researcher on a quest for datasets. Research fellow Robert
is interested in bug localization. To assess his latest approach,
he is in need for datasets from several programs with specific
development properties: (1) The programs must have had a
significant number of bugs during their development cycle;

(2) the programs should include test cases as, commonly, test
cases allow to detect many bugs and thus can be used to replay
software faults; (3) finally, to reduce the threats to validity and
ensure that his approach can be generalized, Robert is seeking
for programs from different software development teams.

Unfortunately, this search scenario requires information
that is dispersed and may even be hidden in the deep web (e.g.,
in the source code). Thus, to retrieve such a set of programs,
Robert must visit numerous websites, potentially downloading
several software programs that will later be dismissed, before
settling for a set of datasets that is smaller than he hoped for
or whose development artifacts do not properly fit Robert’s
goals.

A programmer searching for a good and suitable project
to reuse. Mark is a programmer whose latest assignment
involves the implementation of a visualization software. He
has opted for OpenGL, but for bootstrapping reasons, he is
seeking code samples for understanding the internals of the
API and potentially for reuse. Mark thus seeks (1) a project
dealing with OpenGL, that is (2) still actively maintained and
that (3) other people have tested before and contributed with
feature requests and bug reports. In addition, Mark has an
obligation to (4) respect his company restrictions on licenses.

As in the case of the previous scenario, using the traditional
approach, this search is challenging. It consists of scanning
programmer forums, and visiting several development web-
sites. To address these challenges, we build an extensible and
maintenable knowledge database of software projects that will
deliver rich query capabilities for users.

B. Summary of Challenges

From the scenarios depicted above we distinguish two main
challenges for an effective search of software projects on the
web: (1) the myriads of information that make a software
project unique are not maintained together, complicating the
construction of queries that simultaneously considers multiple
criteria; (2) the capabilities of traditional web search engines
are limited in the exploitation of the semantics of user queries
that are simply treated as a series of terms, and each term as
a series of symbols from an alphabet.

1) Dispersed Information: Information on development
artifacts of software projects are stored in heterogeneous
repositories which are often located at various decorrelated
which, furthermore, may not be connected among them: e.g.,
developers commit code changes in version control systems,
report and manage bugs in bug trackers, discuss and interact in
mailing lists or hosting platforms, etc. This dispersion of data
complicates any search that leverages a combination of criteria.
Even on hosting platforms, such as GitHub1 and Freecode2,
where these information appear together in the project page,
they are still not integrated in a way that allows a search using
criteria based on multiple information types.

2) Flat Queries: Traditional search engines like the
GoogleTM search engine, index web pages based on the appear-
ance of terms and rely on information retrieval techniques to
return query results. Consequently, a project seeker who enters

1 github.com 2 freecode.com

2

a flat query, e.g., “project in Ocaml”, can only expect search
engines to return pages containing the provided keywords
without any guarantee that the terms appearing in the pages
bear the same meaning as intended by the user. Thus, while
having been proven powerful and scalable, current search
engines are simply not data aware [3]. Indeed, in such settings,
the notion of a project entity does not exist and meaningful
project query results cannot be returned where all attributes
are composed to form the relevant data.

C. Search Requirements

To address the challenges for finding relevant software
projects, two essential requirements must be met. We now
review them to motivate the design of Orion.

Information Integration

The first step for improving the effectiveness of project search
should consist in limiting the impact of the heterogeneity
of software repositories as well as resolving the difficulties
imposed by the dispersion of the data in various locations.
Figure 1 illustrates the information types that should be lever-
aged to process the queries for the previously described search
scenarios.

Fig. 1. Information types in a software project’s data

We detail in the following the variety of information that
are mentioned in the above figure to infer the terms and types
that can be used to build the semantics of project search
queries:

3 Project metadata: A software project is initiated by an
individual/company, often referred to as the owner, and may
be supported by an organization (e.g., the Apache Software
Foundation). These types of information are important as
they can be used to infer the developing community and
the programming and management styles that are prevalent
in the project development. A description is also useful to
classify the object of a project and the scope of its products.
Information on the project development homepage and its url
on a hosting platform may also be of interest to a project
seeker. Finally, information on a software project may include
labels which indicate the application domains, the technologies
used, the main concepts developed, etc.

Project metadata are types of information which can be
found on a project page.

3 Source code information: Software projects produce pro-
gramming code written using a programming language among
the hundreds that have been designed over the years [19].
Often, the project contains a main language which represents
the largest portion of the total lines of code (loc), but may also
include several supporting languages such as the scripting
languages that are used for automating compilation and testing

tasks. Furthermore, the structure of the source code may reveal
the presence of test cases (tests), i.e., program files that are
directly included by developers to incrementally test the core
code in order to check the accordance of the implementation
with design specifications or to ensure backward compatibility
as the project evolves.

Source code information being buried in the raw contents
of project programs, retrieving them require to download and
process large amounts of data.

3 Bugs and features management: Software development
cycles are rhythmed by the issues to address. Users often
file bug reports (bugreps) to help improve code quality
of file feature requests (featreqs) to contribute to project
enhancement. Information on the volume of such data for a
given project can provide insights on the maturity of a project
as well as its development status, i.e., whether developers still
improve the products or whether it is no longer maintained.

Project maintainers often setup issue trackers to record and
manage issues submitted by software users.

3 Development context: Finally, a software project is an
evolving ecosystem. Besides the creation date, important
information on the activities in a project include the last
commit date, i.e., the date at which a code change was
last introduced. The size of the development team is also an
important criterion for differentiating projects, as the number
of authors involved in the project may have an impact on the
quality of the code base, both in terms of functionalities and
of bug management.

Information on the development context can be retrieved
from version control systems such as git3 or subversion4 which
are used to setup project code repositories.

Information integration requires the collection of all the
previously described information types to create a project
entity whose instances can be queried with parameterized
criteria. Indeed, the value and usefulness of each information
type increases when it can explicitly be linked with related
information types. This linking step must be preceded by
other steps including the identification of software projects,
the extraction of relevant metadata and processing of these
data to build structured entities describing projects in their
global representations. These steps however are challenged
by the overwhelming amounts of data, the variety of their
representations and the multiplicity of their locations on the
web. Nonetheless, once these steps are completed, it becomes
possible to compose meaningful queries that correlate different
information types to retrieve an appropriate set of results.

Towards semantic query of software projects.

The notion of semantic query generally suggests that a search
engine implements techniques that allow it to return results to
a query based on what it believes the searcher is intending to
find. Users may thus provide their queries in natural language
and the engine may attempt to answer the query directly
instead of returning urls suggesting web pages where the
information might be hidden.

3 git-scm.com 4 subversion.tigris.org

3

Towards implementing semantic query, a projects search
engine should (1) deal with the processing and collection of
domain specific information that are beyond string literals
contained in web documents, and (2) propose languages for
expressing domain specific user queries to find relevant soft-
ware projects that fit a user/developer/researcher needs.

Concretely, to enable an effective search of software
projects, a more expressive query system must be devised,
possibly with some support for semantic querying. Indeed,
once all information related to a software project are integrated,
a project seeker should be empowered to construct rich queries
that exploit the diversity of information types to accurately
identify projects that are relevant to his needs. Where tradi-
tional search engines cannot uncover the “intended meaning”
of flat queries, a dedicated project search engine should capture
the semantics of structured and flexible queries.

To meet these requirements, we have designed and imple-
mented the Orion integrated search engine. Orion includes an
extensible and maintainable knowledge database of software
projects with information retrieved from a variety of sources,
and is complemented with a declarative language for allowing
project seekers to compose expressive queries to easily search
across the database.

III. ORION

Figure 2 illustrates the overall approach of Orion for
addressing the challenges in searching software projects. The
main objective of Orion is to reduce the gap between user’s
search intent and the interpretation that search engines as-
sociate to search queries. To this end, we propose to use a
domain-specific language to formulate search specifications
that describe the criteria for selecting relevant projects. The
queries written with the high-level Orion DSL are translated
into low-level advanced database queries where several infor-
mation tables are joined to select, from a knowledge database,
a set of projects. This knowledge database of projects is
constructed and maintained by crawling the web for project
code and development artifacts. In the following, we provide
implementation details of these aspects of Orion.

Knowledge
database

Knowledge
database

Source code repositories

Bug/issue trackers

Version control
systems

Project pages

….

Web crawl + Extraction + Processing

DB queriesDB queries

Project-search
domain-specific query

Project-search
domain-specific query

Translation

Fig. 2. The Orion approach

A. A Declarative Query Language

Ideally, project seekers should be enabled to enter complex
queries in natural language which would be processed to ex-
tract the semantics of search requests in order to assess whether
these can be served by the underlying database. However,
the value-added of such elaborate engines is disproportionate
compared to the implementation efforts that are required to
deliver such services for the very narrow domain of project
search. Nonetheless, allowing expressive and intuitive queries
remain essential for improving the user-experience in the quest
for software projects.

Towards supporting semantic query for searching software
project instances, we propose a domain-specific language
(DSL) which is built to capture the characteristics of software
projects, the variety of search criteria, and the readiness at
which users can navigate across project data.

The proposed language is designed with the intent of
addressing problems that are relevant to the search of software
projects. Consequently, this DSL aims at providing notations
and abstractions with an expressive power focusing in this
restricted domain. The design of the DSL was undertaken after
a domain analysis based on the search scenarios discussed
in Section II-A. We target different categories of users with
various tolerance levels for complexity and learning curves.
As every users would prefer a language that is intuitive and
yet expressive enough to express various needs, we consider,
for the design of the Orion DSL, a user-friendly syntax that
is close to natural language and a precise semantics that is
mapped on common project information types.

Syntax. The syntax of a language defines what keywords
are used in the language and how users can compose those
keywords to form sentences. In the case of project search, we
have opted for a DSL close to human natural language using
common English keywords and expressions (e.g., “SEARCH
3 PROJECTS”). Such a syntax aims at satisfying the need
to have an expressive and intuitive query language. We fur-
thermore re-use as language keywords the different terms that
we have extensively described in previous sections as project
information types (e.g. LOC, LICENSE, LANGUAGE, etc.).

Semantics. The semantics of a language defines the conceptual
meaning of the sentences (i.e., statements) in that language
by stating how they can be logically interpreted. In the case
of project search, we reproduce in the DSL the semantics of
the data types in natural language. Thus, the term “DESCRIP-
TION” which refers to the description of a project is also used
in the DSL to refer to that information type.

Figure 3 presents the grammar of the DSL in the notation
syntax of the Augmented Backus-Naur Form [4]. A query
specification (line 1) can be split into 3 parts : (1) the
request line, where the user specifies the number of projects
he is seeking and the information types that must be returned
by the engine; (2) some criteria statements which describe
the criteria that need to be satisfied by the returned results; (3)
an optional preference part where the requester indicates
which results should be returned in priority.

The search criteria may include criteria for picking (in-
clude filer) or removing (exclude criteria) candidate projects.

4

query ::= request ;; (criteria ;;)+ (preference ;;)?

request ::= SEARCH (number | *) PROJECTS: fields?
fields ::= attribute attributes∗
attribute ::= NAME | OWNER | ORGANIZATION | URL | HOMEPAGE

| LOC | MAIN LANGUAGE | LANGUAGE | CREATION DATE
| DESCRIPTION | LABELS | LICENSE | FIRST COMMIT
| LAST COMMIT | TESTS | ISSUES | BUGREPS
| FEATREQS |NEW FEATREQS | NEW BUGREPS
| BUGREPS CLOSED | FEATREQS CLOSED

longcondition ::= attribute operator numbered WITH subcondition
subcondition ::= number? qualifier subattr operator expression
shortcondition ::= attribute operator expression
criteria ::= include-criteria | exclude-criteria
condition ::= longcondition | shortcondition
preference ::= PREFER: condition+

include-criteria ::= INCLUDE: condition+

exclude-criteria ::= EXCLUDE: condition+

numbered ::= number expword? | attribute
attributes ::= , attribute
word ::= alphanums (wordpunct alphanums)∗

expression ::= numbered | FAR | NEAR | DIFFERENT | choice
qualifier ::= AVERAGE | MEDIAN | MAXIMUM | MINIMUM | OTHER
expword ::= YEARS | MONTHS | DAYS | YEAR | MONTH | DAY
subattr ::= RESOLUTION | ACTIVITY | TEAM
operator ::= IS | < | <= | > | >= | = | !=
choice ::= word (| word)∗

alphanums ::= [a-zA-Z0-9]+

number ::= [0-9]+

wordpunct ::= [-_]

Fig. 3. Orion Language Grammar

Such group of statements are preceded respectively with the
keywords INCLUDE and EXCLUDE, while the preference part
is preceded by PREFER. All parts end with the ;; termination
sequence. The conditions in the criteria statements express the
search criteria using common mathematical relational opera-
tors such as ’<’ as well as the semantic operator ’IS’.

We illustrate the expressiveness of the language by specify-
ing search queries for the scenarios described in Section II-A.
We provide specifications for possible queries that the re-
searcher Robert, the developer Julia, and the programmer Mark
might submit for their search scenarios.

In the first query, the desired projects must have at least
100 bug reports and more than 1000 test cases. These projects
should also have developers from different communities (e.g.,
organizations). To identify relevant projects in this scenario,
the project seeker requests the search engine to correlate
information for software repository metadata, bug tracking
systems, and source code.

Figure 4 describes this specification in Orion DSL. The
requested results are limited to 5 instances of projects and
must list for each, the name of the project, the organization
supporting the project, and the number of bug reports as well
as of test case files in the source code. When processing the
request, the engine should attempt to return the first 5 projects
that are from different organization. The returned projects must
only include projects that fit the search conditions described
with relational operators.

SEARCH 5 PROJECTS: NAME, ORGANIZATION, BUGREPS, TESTS
INCLUDE:

BUGREPS >= 100
TESTS > 1000

;;
PREFER:

ORGANIZATION IS DIFFERENT
;;

Fig. 4. Researcher query for relevant datasets

In the second query, the manager could be searching for
4 project that are largely written in ANSI C or C++, that are

in their early days (e.g., less than 1 year old), and are still
active (e.g., last commit happened less than 1 month ago).
Furthermore, the development team for each project must be
small (less than 20 members), but should include at least 1
developer with work experience in a team of more than 100
developers.

Figure 5 provides an example specification in Orion DSL
for such a search scenario. In this case, the requester tasks
the engine to search across all project records and the relevant
contributors to identify emerging projects that are adopted by
developers having participated in large projects. No particular
preferences are specified for this query.

SEARCH 4 PROJECTS: NAME, OWNER, MAIN LANGUAGE, LAST COMMIT,
NUMBER AUTHORS

INCLUDE:
MAIN LANGUAGE = ansic|cpp
LAST COMMIT <= 1 MONTH
FIRST COMMIT <= 1 YEAR
NUMBER AUTHORS <= 20 WITH 1 OTHER TEAM > 100

;;

Fig. 5. Developer query for relevant projects

In the last query, the programmer is searching for an
application dealing, i.e., tagged, with “OpenGL” and whose
user community is still interested in the project and continues
to submit requests for improvements (the numbers of feature
requests and bug reports are each larger than zero). At the
same time, the development team must have closed more
feature requests and fixed more bugs than the numbers of
current ones. Finally, the programmer filters out all licensing
schemes (namely GPL v1 and GPL v2) that conflict with the
company policy.

The DSL specification in Figure 6 describes the query for
projects that contain candidate code for reuse by a programmer.
In this case, the requester imposes search criteria that checks
the paradigms and techniques (e.g., webservice, cryptographic
algorithms, graphics library etc.) developed or used in the
projects. The search also contains an exclude block which
removes from the results projects that match specific criteria.
Finally, this query explicitly suggests a diversification of the
results from different project owners. It furthermore sorts the
results to return in priority the first 2 projects the longest
existence period.

SEARCH 2 PROJECTS: NAME, LICENSE, LABELS, SUMMARY, FIRST
COMMIT, MAIN LANGUAGE, NEW FEATREQS
FEATREQS CLOSED, NEW BUGREPS,
BUGREPS CLOSED, LAST COMMIT

INCLUDE:
LABELS = opengl
FEATREQS CLOSED > NEW FEATREQS
BUGREPS CLOSED > NEW BUGREPS

;;
EXCLUDE:

LICENSE = GPLv1|GPLv2
;;
PREFER:

OWNER IS DIFFERENT
CREATION DATE IS FAR

;;

Fig. 6. Programmer query for candidate library and code for
reuse

The specification examples for the three described scenar-
ios reflect the need for :

2 a knowledge database which contains a sizeable corpus of

5

software projects containing a variety of information types that
are linked to form project entities which can be queried.

2 a dedicated engine for translating the Orion specification
in low-level requests that could be executed by the underlying
knowledge database.

B. A Knowledge Database

The Orion integrated search engine is built atop a knowl-
edge database that is constructed in two steps: Firstly, we
collect software project data from around the web; Secondly,
we infer the links among data from various sources, merge the
data, and expose them for queries.

1) Harvesting the web: The World Wide Web has endless
amount of information on software development projects. With
the momentum on open-source development, a number of
platforms have emerged to offer project hosting services.
Sourceforge5 and Google Code6 are popular examples of such
platforms that mainly are built around source code repositories
while providing other tools such as bug tracking systems.
Recently, the concept of social coding has lead to the success
of a new kind of development platforms with developer-
friendly interfaces [23]. Instances of this concept, including
Atlassian Bitbucket7 and GitHub8, have increasingly outper-
formed pioneering platforms. For example, in June 2012, after
only 4 years of existence, GitHub is hosting over 3,000,000
repositories, while Sourceforge, launched 13 years ago, con-
tains only about 360,000 projects. Nevertheless, traditional
hosting platforms are still used for many projects, and provide
various useful features, including extensive project labelling,
that are exploited by developers.

Strong organizations, such as the Apache Software Founda-
tion9 or the Linux community10, host the development of their
projects on their own portals where large amounts of data are
available for download. Nonetheless, automatically identifying
the homepages of these projects on the web and building tools
to parse these web pages to extract project information is
challenging. Fortunately, the popularity of hosting platforms
and their practical aspects have incited many project managers
to register their projects and provide mirrors on GitHub-like
platforms, making them easily identifiable.

In this work, we use data collected from GitHub to build
the main corpus of software projects for our database. Never-
theless, given a project, its information can be incomplete in
GitHub. We therefore augment our data with information ex-
tracted from other hosting platforms and project development
portals to enrich the amount of information collected for many
projects.

a) GitHub - a software project corpus

A decade ago, the task of identifying and collecting a huge
number of projects would have been extremingly tedious,
due to the scarcity of repositories containing an inventory
of projects in development. But, today there are rich assets
available that can be harnessed for automatic project infor-
mation harvesting. Information integration on these platforms

5 sourceforge.net 6 code.google.com 7 bitbucket.org 8 github.com
9 apache.org 10 kernel.org

is however lacking on such assets, a gap that Orion aims at
filling.

GitHub is very convenient for repository mining as it
provides extensive REST API11 for accessing its internal data
stores. We have used the API to retrieve general information
100,000 repositories hosted by GitHub. Fig. 7 summarizes the
distribution of the GitHub projects in different segments of
number of LOC. Over 70% of projects contain more than
1,000 LOC. Around 35% of projects include more than 5,000
projects while more than 20% contain more than 10,000 LOC.
Finally, over 600 projects contain more than 1,000,000 LOC.
This distribution suggests that a significant number of the
projects in the dataset are actually real-world projects.

%
 o

f P
ro

je
ct

s

0
20

40
60

> 1,000
> 5,000
> 10,000
> 50,000
> 100,000
> 500,000
> 1,000,000

Fig. 7. Distribution of projects in the datasets in terms of total
Lines of code

The information collected from GitHub for each project
includes a description of the project, the organization/company
developing the project, the GitHub user who owns the project,
the project homepage, and its name and URL. GitHub also
implements bug trackers for each repository and exposes in-
formation from these trackers through its APIs. Fundamentally,
GitHub bases its operation on git12, a distributed revision
control and source code management system, which keeps
track of all contributors by differentiating between revision
authors and committers—an important feature in a hierarchical
development scheme, such as in Linux, where contributors do
not have direct access to the mainline repository.

Nonetheless, the software project corpus thus constituted
presents two limitations: (1) it does not contain data on all
possible information types for all selected projects. GitHub
is indeed developer-oriented and its features may not favour
a categorization style where users could identify and select
project following the content. Other platforms, which are more
user-oriented, may provide better facilities for this particular
setting. (2) For some of the project data that are available in
hosting platforms, further steps, including downloading raw
data, processing and counting, are required to expose relevant
information types.

b) Reaching out to other platforms

Aside from projects whose development essentially occurs on
GitHub, many others are simply mirrored on GitHub to benefit
from broader community exposure. For such projects, the
corresponding GitHub repositories lack essential information.
For example, the description of the project is often summarized
(e.g., “Mirror of Apache CouchDB”13) and bug trackers are
often disabled as the development occurs outside of GitHub.

11 api.github.com 12 git-scm.com/ 13 github.com/apache/couchdb

6

sourceforge.net
code.google.com
bitbucket.org
github.com
api.github.com
git-scm.com/
github.com/apache/couchdb

As GitHub is meant for collaborative development, single-
man projects for delivering small utilities are often hosted
on other platforms such as Google Code and Freecode14.
Google Code furthermore provides extensive tagging facilities
to developers for labelling and categorizing their projects.
These tags can be relied upon to improve query results. Due to
these considerations, we also collect data for 50,000 projects
from Google Code and for 35,000 projects from Freecode. All
these project sources provide common information types, such
as name and source code, which are already available in the
corpus in the case of projects that are also hosted in GitHub.
In such cases, the corpus is augmented with information types
that are not available in GitHub. However, when a project
is only available from one source, the queryable information
types are restricted to those available in the dataset. Neverthe-
less, common queries, including two among the three search
scenarios illustrated in this paper, require information types
that are common to all platforms.

c) Crawling the web and beyond

While popular software hosting platforms provide bug tracking
systems with common features, most of them cannot link bug
reports with patches submitted in software revision control
systems. GitHub provides a pull request feature that can be
harnessed to infer those links in cases where the requests are
actually accepted by the repository owner. However, the results
are often limited to the small set of patches by developers who
have no direct access to the main repository. To compensate
this deficiency, JIRA, a commercial bug/issue tracking system,
provides add-ons for connecting issues to revision control
systems and is used by hundreds of projects from the Apache
Software Foundation15. To collect bug links, we crawl the web
based on the specific URL format of JIRA.

Finally, we note that other important information for the
success of queries, as illustrated by our motivating search
scenarios, are not apparent on the hosting platforms. These
information include the number of lines of code which can only
be inferred after an offline processing of source code. The real
distribution of programming languages used in the projects
also requires a refined investigation of the source code of
each project to differentiate the main language from appearing
languages. The source code tree structure from which we
deduce e.g., the extent of test cases is also not available directly
from project page. Instead, we download every source code
repository ourselves in order to explore these properties.

2) Constructing the knowledge database: For the construc-
tion of our prototype knowledge database, we have harvested
from the collected software projects different types of infor-
mation and artifacts. This step has required processing project
description data, project labels data, code commits, issue/bug
reports, source code (for computing the LOC in all languages,
and surveying the source tree structrues), etc..

In cases where we merge data from several hosting plat-
forms, since project names are unreliable, we infer the cor-
relation among datasets based on the project’s URLs. For
example, GitHub repository API provides a homepage field
where developers can indicate e.g., the Google Code URL from
which the project is mirrored. Though we already support a

14 freecode.com 15 issues.apache.org

dozen information types16, extending the database to include
additional information should be readily possible.

Finally, the knowledge database contain raw information to
ease the maintenance of the update of the knowledge database.
Search scnearios that request mean values or other combined
information are handled on-the-fly by the underlying engine
using virtual tables, such as SQL views. Resource-consuming
tasks that were performed to fill the database can now be
performed on a small scale for each evolved project. For
example, the change of source lines of code can directly
be inferred from the new commits without any need for re-
computation in the entire source code.

After 1 week of continuous data collection, we have
processed about 1.5 terabytes of raw data to fill our MySQL
database with 2 gigabytes of harvested information data. To
ensure query performance, we have referred to the best prac-
tices in MySQL database tuning, and created lookup indices
in all tables.

C. Querying with Orion

The Orion search engine takes as input a high-level specifi-
cation that is checked for correctness and translated into a low-
level database request for querying the knowledge database.

correctness checks: The Orion engine first ensures that the
specification respects the grammar of the DSL, then performs
consistency checks to ensure that the specification does not
contain contradictory search criteria.

DB request generation: In the current implementation of the
database, the specifications are directly translated to generate
appropriate SQL statements which look up multiple tables
to serve search requests. Each attribute of the Orion DSL
representing an information type that is mapped to a specific
table, the Orion compiler iteratively joins the relevant tables
that are necessary to answer the requests. A few informations
types such as the url are used as keys in the predicates of the
JOIN statements. User search preferences are also translated
into GROUP BY or ORDER BY statements depending on the
specification. Advanced queries that lead to nested SQL state-
ments are also supported.

Figure 8 provides an illustrative example of the generation
outcome for an Orion basic search specification. The speci-
fication outlined in Figure 4 was previously used to request
researcher datasets in Section II-A where the query relates
to information on project organization, on the reported bugs,
and on the test cases in the source code. The generated SQL
request, in Figure 8, shows that 3 tables (repos info, issues,
test cases), corresponding to different information sources, are
joined to serve the request. The use of the Orion DSL achieves
two aims: (1) firstly, the Orion DSL abstracts the internal struc-
tures of the knowledge database which can become challenging
to comprehend; (2) secondly, the DSL allows users who may
ignore the underlying requirements of database management
systems to easily tune the search criteria, sort the output, and
limit the extent of output processing. In our case, for common
search scenarios, querying the knowledge database does not
require any knowledge on SQL-based relational databases.

16 Further descriptions can be found on the project page

7

freecode.com
issues.apache.org

Nonetheless, project seekers that are knowledgeable in SQL,
can survey the database schemas and construct their own SQL
requests to query the knowledge database.

SELECT DISTINCT engine.repos info.name AS ’NAME’,
engine.repos info.organization AS ’ORGANIZATION’,
engine.issues.number bugs AS ’BUGREPS’,
engine.test cases.number tests AS ’TESTS’
FROM engine.repos info
JOIN engine.issues ON engine.issues.url=engine.repos info.url
JOIN engine.test cases ON engine.test cases.url=engine.repos info.url
WHERE (engine.issues.number bugs >= 100

AND engine.test cases.number tests > 1000)
GROUP BY engine.repos info.organization
LIMIT 5

Fig. 8. SQL request generated by the Orion compiler for
research query (see Orion query in Fig. 4)

Table I shows the result of the researcher query (cf. Fig. 4)
that were returned by the Orion search engine.

TABLE I. QUERY RESULTS OF RESEARCH DATASETS
NAME Organization # BUGREPS # TESTS
rails rails 6760 1318
node joyent 3491 2709
jboss-as jbossas 2541 3448
maqetta maqetta 2596 3137
hiphop-php facebook 518 5093

Table II describes the output of the developer request (cf.
Fig. 5). The user submitted an advanced query whose execution
ran across all records of projects and their contributors to
identify small-sized projects where some of the developers are
also involved in much larger teams.

TABLE II. QUERY RESULTS OF DEVELOPER RELEVANT PROJECTS

NAME OWNER MAIN LAST NUMBER
LANGUAGE COMMIT AUTHORS

PIC 7Robot ansic 2012-06-03 14
aery32 aery32 ansic 2012-06-09 6
Unuk Allanis ansic 2012-06-11 9
Vemulator apagel ansic 2012-05-24 6
EpilepsyViewer Atamai cpp 2012-06-04 4

The output provided following the specification of the
requester does not make apparent the complex combination
(cf. Fig. 9) of data sources that was required to resolve the
query.17

SELECT DISTINCT FROM (SELECT t.name AS ’NAME’,
t.owner AS ’OWNER’, t.language AS ’MAIN LANGUAGE’,
t.last commit AS ’LAST COMMIT’, nb authors AS ’NUMBER AUTHORS’
FROM (SELECT DISTINCT t1.language, t1.last commit FROM

(SELECT engine.main sloc.language, last commit FROM
engine.repos info JOIN engine.projects activity
ON engine.projects activity.url=engine.repos info.url
JOIN engine.main sloc
ON engine.repos info.url=engine.main sloc.url
WHERE (engine.main sloc.language=’ansic’

OR engine.relevant sloc.language=’cpp’)
AND last commit > (NOW() − INTERVAL 1 MONTH)
AND first commit > (NOW() − INTERVAL 1 YEAR))t1

JOIN engine.developers table
ON t1.url=engine.developers tables.url)t

JOIN engine.developers in projects ordered
ON engine.developers in projects ordered.author=t.author
WHERE nb authors>100
AND t.chosen url!= engine.developers in projects ordered.url)t0
JOIN engine.project developers count
ON engine.project developers count.url=t.chosen url
WHERE nb authors<20 limit 4

Fig. 9. SQL request corresponding to a relatively-advanced
search query (cf. Orion query in Fig. 5)

17 Due to space limitations, we leave detailed descriptions on the project page

In Table III we show the results of the programmer request.
The results are comprised of projects with the “opengl” label
with code licenses that are neither GPLv1 nor GPLv2. The
query was answered by aggregating project data from GitHub,
Google code and source code raw data. The engine exploited
the license annotations and the tags provided in Google code
by the developer teams. The generated SQL request for this
query involves the joining of several tables and an extensive
checking of multiple conditions.

IV. ASSESSMENT
In this section, we conduct an evaluation of our approach

and of the prototype implementation of Orion. To do so,
we perform a user study using the software projects used to
build the Orion knowledge database. We explore two aspects:
(1) need, assessing the opportunity of the Orion approach
compared to traditional search engines, and (2) productivity,
assessing users satisfaction with the results provided by Orion,
in terms of query delay and result conformance. We study these
aspects through the following research questions:

RQ1. Need: Is Orion needed despite the existence of
numerous search engines and project hosting platforms?

RQ2. Productivity: Does Orion improve productivity, i.e.
do project seekers find the results quickly and accurately?

We perform our measurements based on the attitudes of
service requesters towards it. To this end, we rely on a psycho-
metric scale, namely the Likert-type scale [18], which specifies
the degree if a user agrees or disagrees with a particular
issue. The respondents are asked to indicate their degree of
agreement by choosing one of five response categories (i.e., we
use a 5-point Likert scale). The end-points of a Likert scale are
typically “strongly disagree” and “strongly agree”. However,
in each case of our questionnaires, we have provided further
description for the response categories.

The respondents pool was constituted by 13 individuals
with different backgrounds : 2 of the respondents have no
background on computer programming; 4 respondents are
master students; 7 PhD students took part to the study. We
consider 10 different search scenarios18, including the three
scenarios that are referred to in previous sections to illustrate
researcher, developer and programmer queries.

Execution latency. First we give an overview of of the time
required by Orion to answer common queries such as those
that were used throughout the paper to illustrate the capabilities
of Orion. We have clocked the performance of the Orion
search engine when resolving user requests: from the input
of Orion specification to the return of search results. For this
experiment, the Orion DSL compiler generates SQL requests
with the SQL_NO_CACHE option to eliminate interference
from MySQL cache lookup. We have then recorded query
latencies of 0.43 seconds, of 0.54 seconds and of 5.58 seconds
respectively for researcher query (cf. results in Table I), devel-
oper query (cf. results in Table II) and programmer query(cf.
results in Table III).

A. Need

In the absence of Orion, project seekers may still go
on the hunt, by themselves, on the world wide web. The

18 The entire study is available on the project page

8

TABLE III. QUERY RESULTS OF PROGRAMMER-SOUGHT LIBRARIES

NAME LICENSE SUMMARY LABELS FEATREQS BUGREPS NEW FEATREQS NEW FIRST LAST MAIN
CLOSED CLOSED FEATREQS BUGREPS COMMIT COMMIT LANGUAGE

angleproject New BSD License ANGLE: Almost Native d3d, google, graphics, html5, 15 182 8 27 2010-03-03 2012-04-04 cppGraphics Layer Engine OpenGL, OpenGLES, webgl
skia Other Open Source 2D Graphics Library 2D,C,cplusplus,CrossPlatform [...] 10 166 12 87 2006-09-20 2011-09-16 cppOpenGL,PDF,Perspective,Vector

main instruments at their disposal are the numerous traditional
search engines, including Google, Bing, Baidu, etc., the vari-
ous project hosting platforms, and developer forum portals.

The Likert-type question that we ask in this assessment
is : Could you find the desired projects? Respondents were
asked to answer this question using Orion or traditional search
engines.

Respondents were given 1 hour to fill the questionnaire
for each of the scenarios and for each of the two methods.
Table IV describes the meaning of the different scales in the
questionnaires.

TABLE IV. LIKERT SCALE RESPONSE CATEGORIES FOR COMPARING
ORION WITH TRADITIONAL SEARCH ENGINES

Scale Response category
1 I gave up
2 I could not find any

3 I found some but I am not sure

4 I have found some
5 I have found them all

We compare the user experience when relying on Orion and
when left with traditional search engines. Figure 10 shows user
responses in boxplots created with the R statistical analysis
tool. The greyed boxes are delimited by the lines indicating
the LOWER QUARTILE, i.e., 25% of the data points are
below this line, and the UPPER QUARTILE (25% of the data
points are above this line). The bold line in the box plots
indicate the MEDIAN (the middle of the dataset). The isolated
points (small circles) below the Orion box represent outliers.
The horizontal line above the “traditional search engines” box
indicate the MAXIMUM (the greatest value). With Orion,
users have found some or all the projects requested (scales
4 and 5) while, on average, they could not find any (scale 2)
using traditional search engines.

●

●

Orion Traditional search engines

1

2

3

4

5

Orion
Traditional search engines

Fig. 10. Assessing the need – Comparison of search results

We furthermore use the Mann-Whitney-Wilcoxon test [16],
a non-parametric test, to assess the statistical difference in
the distributions of user responses for Orion and traditional
search engines. We find that the distributions of user responses
are different at a significant level of 0.001, strengthening our
findings that Orion was very well assessed by users.

Orion outperforms traditional search engines in find-
ing relevant software projects.

B. Productivity
One of the benefits of DSLs is to enhance productivity [14].

In the last user study we investigate how Orion improves the
quest for relevant software projects. This study complements
the study on the usability of Orion by assessing the search
output for user-imagined queries through the question Are you
satisfied with the returned projects?.

Figure 11 draws the boxplot representing the distribution
of user’s satisfaction towards the results returned by Orion. In
general, users have found relevant projects in response to their
queries. The average being between 4 and 5, the study suggests
that the results returned by Orion appear to correspond to the
search intents. All responders allocated a maximum of 1 hour
slot to query and check the results. We note that this amount
of time is reasonable as in the first study, for many scenarios
with traditional search engines, users gave up or did not find
any project at the end of the allocated time.

●●

2 3 4 5

Fig. 11. Assessing the productivity of Orion
Project seekers find, with Orion, accurate results in
a relatively limited period of time.

V. RELATED WORK

We discuss in the following a number of studies related to
the collection of project data, to project and code search, and
to semantic search implementations.

Collection of software project data. In [21], Nagappan
has reported on the discussions of a working group that
describes the opportunities and challenges in using open source
software repositories for empirical studies. In the past years,
significant effort has been spent into collecting, curating, and
analyzing data from open source projects around the world.
The FLOSSMole project19, initially collecting Sourceforge
projects, includes datasets from various sources in various
formats. The Flossmetrics [7] and Sourcerer [1] projects fur-
thermore provide statistics on their collected data. These global
statistics are not suitable for selecting a subset or identifying
a unique project based on desired properties.

Bird et al. have provided insightful discussions on the
opportunities and challenges of mining Git repositories [2],
while Dabbish et al. have presented a study that investigates
the impact of transparency in GitHub through a series of
interviews [5]. More recently, the GHTorrent project aims at
bringing GitHub’s rich product and process data to the hands
of research community [9]. Unfortunately, they do not improve
this collection for the many projects whose real development

19 flossmole.org

9

flossmole.org

activities occur outside of GitHub. The FRASR framework
for analyzing software repositories has mostly focused on
addressing the challenges for data collection and curation [22].
They do not exploit the large datasets in GitHub and its
clean APIs. The TA-RE project aims to facilitate sharing
of benchmark datasets among researchers [15], through an
exchange language.

Overall, our work improves over previous efforts by merg-
ing various artifacts from various sources, and provides the
capabilities for executing complex queries that can yield more
relevant search results for different types of project seekers.

The SeCold [13] platform links data sources and creates
facts, which are analysis results published by developers who
gathered them with their own tools. Similar to SeCold, Orion
integrates and links a variety of information. The BOA [6]
language and infrastructure also aim at improving MSR studies
by reducing the workload and increasing the efficiency in
computing statistics (e.g. average size of commits) across
repositories. Orion, on the other hand, is targeted at the
selection of specific projects which for search purposes are
considered as entities with rankable properties. These two
approaches thus target different usage scenarios. Additionally,
different from BOA, Orion integrates different sources of
information including: GitHub, Google Code, JIRA, etc.

Projects, applications and code search. Project hosting
platforms such as GitHub offer search facilities in their user
interfaces and through their APIs. The capabilities of these
search engines are however limited to a few information types
(e.g., search by language), and do not allow advanced queries
across on multiple criteria. Finally, search results are returned
as unstructured text [20]. CodeFinder [11], CodeGenie [17],
CodeBroker [24], Examplar [10] and PortFolio [20] identify
and return relevant projects or functions by mining source code
repositories. Orion on the hand is focused at searching for
project entities based on different search criteria for diverse
development artifacts.

Similar to our project discovery infrastructure, the Ohloh20

graphical interface, provides users with updated ranking of
projects (e.g., popular projects, most active projects, etc.).
Orion is more powerful as it considers many more development
artifacts. Thus, a much wider variety of search queries is
supported.

Semantic search. Real world implementations of semantic
search have been deployed. Example such as Wolfram Alpha,
focus on a restricted domains for more accuracy. The Semantic
MediaWiki21 framework includes a simple query language for
semantic search, so that users can directly request certain
information from the wiki database. Orion follows the same
approach by providing a user-friendly language for specifying
project search requests.

VI. CONCLUSION & FUTURE WORK
In this paper, we have introduced Orion, a unified platform

for searching relevant software projects leveraging various data
sources including source code and revision control informa-
tion, bug reports and developer activity. We have downloaded
and processed software development artefacts for tens of
thousands of software projects on popular hosting platforms

20 http://ohloh.net 21 semantic-mediawiki.org

and crawled development artifacts data on the web to build our
prototype knowledge database. Orion enables the execution of
various complex queries that are not supported by traditional
web search engines. Orion furthermore comes with a language
target at project search.

We have demonstrated the need for Orion as well as
its productivity by conducting a user-study. The results in-
deed show with strong statistical significance that users find
relevant software projects faster and more accurately with
Orion. This work is being expanded in various directions
for (1) enriching the knowledge database with more software
projects, (2) exposing more information types for queries and
(3) improving the engine towards the implementation of a
transparent semantic query.

Availability: Materials for this paper, including information
on the collected projects, the database, the user study, etc. can
be found at http://momentum.labri.fr/orion.

REFERENCES

[1] S. Bajracharya, J. Ossher, and C. Lopes, “Sourcerer: An internet-scale
software repository,” in SUITE, 2009.

[2] C. Bird, P. C. Rigby, E. T. Barr, D. J. Hamilton, D. M. Germán, and
P. T. Devanbu, “The promises and perils of mining git,” in MSR, 2009.

[3] T. Cheng and K. C.-C. Chang, “Entity search engine: Towards agile
best-effort information integration over the web,” in CIDR, 2007.

[4] D. Crocker and P. Overell, “Augmented BNF for Syntax Specifications:
ABNF,” RFC 5234 (Standard), IETF, Jan. 2008.

[5] L. A. Dabbish, H. C. Stuart, J. Tsay, and J. D. Herbsleb, “Social
coding in github: transparency and collaboration in an open software
repository,” in CSCW, 2012.

[6] R. Dyer, H. Nguyen, H. Rajan, and T. N. Nguyen, “Boa: A language
and infrastructure for analyzing ultra-large-scale software repositories,”
in ICSE, 2013.

[7] J. M. Gonzalez-Barahona, G. Robles, and S. Dueñas, “Collecting data
about floss development: the flossmetrics experience,” in FLOSS, 2010.

[8] G. Gousios and D. Spinellis, “A platform for software engineering
research,” in MSR, 2009.

[9] ——, “Ghtorrent: Github’s data from a firehose,” in MSR, 2012.
[10] M. Grechanik, C. Fu, Q. Xie, C. McMillan, D. Poshyvanyk, and

C. Cumby, “A search engine for finding highly relevant applications,”
in ICSE, 2010.

[11] S. Henninger, “Supporting the construction and evolution of component
repositories,” in ICSE, 1996.

[12] J. Howison, M. Conklin, and K. Crowston, “FLOSSMole: a collabora-
tive repository for FLOSS research data and analyses,” IJITWE, vol. 1,
no. 3, Jul. 2006.

[13] I. Keivanloo, C. Forbes, A. Hmood, M. Erfani, C. Neal, G. Peristerakis,
and J. Rilling, “A linked data platform for mining software repositories,”
in MSR, 2012.

[14] R. B. Kieburtz, L. McKinney, J. M. Bell, J. Hook, A. Kotov, J. Lewis,
D. P. Oliva, T. Sheard, I. Smith, and L. Walton, “A software engineering
experiment in software component generation,” in ICSE, 1996.

[15] S. Kim, T. Zimmermann, M. Kim, A. Hassan, A. Mockus, T. Girba,
M. Pinzger, E. J. Whitehead, Jr., and A. Zeller, “TA-RE: An exchange
language for mining software repositories,” in MSR, 2006.

[16] W. H. Kruskal, “Historical notes on the wilcoxon unpaired two-sample
test,” Journal of the American Statistical Association, vol. 279, no. 52,
Sep. 1957.

[17] O. A. L. Lemos, S. K. Bajracharya, J. Ossher, R. S. Morla, P. C.
Masiero, P. Baldi, and C. V. Lopes, “Codegenie: using test-cases to
search and reuse source code,” in ASE, 2007.

[18] R. Likert, “A technique for the measurement of attitudes.” Archives of
Psychology, vol. 22, no. 140, 1932.

[19] J. R. Mashey, “Languages, levels, libraries, and longevity,” Queue,
vol. 2, no. 9, Dec. 2004.

[20] C. McMillan, M. Grechanik, D. Poshyvanyk, Q. Xie, and C. Fu,
“Portfolio: finding relevant functions and their usage,” in ICSE, 2011.

[21] N. Nagappan, “Potential of open source systems as project repositories
for empirical studies working group results,” in Empirical Software
Engineering Issues, 2006.

[22] W. Poncin, A. Serebrenik, and M. van den Brand, “Process mining
software repositories,” in CSMR, 2011.

[23] M.-A. D. Storey, C. Treude, A. van Deursen, and L.-T. Cheng, “The
impact of social media on software engineering practices and tools,” in
FoSER, 2010.

[24] Y. Ye and G. Fischer, “Supporting reuse by delivering task-relevant and
personalized information,” in ICSE, 2002.

10

semantic-mediawiki.org
http://momentum.labri.fr/orion

	Introduction
	Motivations
	Search Scenarios
	Summary of Challenges
	Dispersed Information
	Flat Queries

	Search Requirements

	Orion
	A Declarative Query Language
	A Knowledge Database
	Harvesting the web
	Constructing the knowledge database

	Querying with Orion

	Assessment
	Need
	Productivity

	Related work
	Conclusion & Future work
	References

