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Abstract: 
Pesticide use is still much too often systematic on many crops. However, there is scientific consensus 
that many farmers could change their crop protection practices without putting their revenue in jeo-
pardy. There is need for crop protection management systems that yield significantly lower pesticide 
consumption. For many crops such management systems are not available, although knowledge 
about the pathosystems exists. We present here two crop protection formal guidelines (Decision 
Workflow Systems, DeWS,) which were elicited and formalised using the Statechart (GrapeMilDeWS) 
and the coloured Petri nets (POD BLé) modelling languages. Elicitation and formal modelling helped 
the pathologists to ameliorate their design and provided a convenient computer ready format. 
Moreover, the main purpose of DeWS models is to provide an exhaustive specification, which can 
then be transferred. This permits large experimental networks to be created. Such networks are 
necessary to collect data about the behaviour of the pathosystem under low input management and to 
assess the DeWS robustness and efficiency. Finally DeWS are learning tools for the growers, 
development workers and for its original designers as well. 

Keywords: Formal Modelling, Decision Support Systems, Crop Protection  

1 Introduction 
When it comes to sustainable agriculture, crop protection is a major issue, with concerns 

for environment, economics, social and health issues. In France, the problem is particularly 
acute as the country is the largest pesticide consumer in Europe. Yet there is a scientific 
consensus that lower consumption can be achieved without economic loss (Aubertot et al., 
2005). There is need for crop protection management systems that yield significantly lower 
pesticide consumption. For many crops, such management systems are not available or 
empirically designed by a few farmers in their own farm. Yet, the knowledge to reduce 
pesticide use exists. 

Since 2001, The Santé Végétale Laboratory at INRA (INRA-SV) is involved in the design 
of a low fungicide crop protection strategy in viticulture, using state of the art epidemiological 
results and know-how, yet keeping in mind the economic constraints of growers, including 
risk aversion. The result of this research, in collaboration with Cemagref-ITAP, is the Grape-
MilDeWS Decision Workflow System (DeWS). 

 GrapeMilDeWS aims at managing the two most important cryptogramic pathogens in 
the French vineyard. Erysiphe necator which causes Powdery Mildew and Plasmopara 
Viticola which causes Downy Mildew. Alone, the control of these two diseases leads to 70% 
of yearly pesticide consumption in the French vineyard. This amounts to about 15% of the 
overall national fungicide consumption (ASK, 2000). It is very common among growers to mix 
in the same spraying operation phytosanitary specialties against both diseases. Yet, the 
regional information bulletins from the extension services separate information about these 
two diseases, as their bioclimatic characteristics differ. GrapeMilDeWS is original in that it 
manages at the plot scale both diseases in an integrated reasoning.  

Since 2009, Arvalis–Institut du végétal has joined in and undertook to design a DeWS, 
named “BLé”, for the management of winter wheat crop protection. With wheat, the difficulty 
is not in the lack of data or technical information to achieve low input (or near optimal) pro-
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duction. Printed guidelines that integrate reasoning about several cryptogamic diseases in an 
a priori spraying programme revised each year do exist. Yet, techniques and indicators had 
never been compiled in an integrated operational tool targeted at optimising the implementa-
tion of the spraying program throughout the season. 

 Although wheat production leads to less annual fungicide treatments per hectare than 
viticulture (3.49 vs 14.31 IFT1 respectively), wheat represents one fourth of French arable 
land therefore reduction of fungicide quantities would have a significant impact on a national 
scale. The BLé DeWS manages seven diseases (O. yallundae - eyespot, E. graminis - wheat 
powdery mildew, S. tritici & S. nodurum septoria, H. tritici-repentis – tan spot, P. striiformis - 
yellow rust and P. recondita - brown rust, F. graminearum  and M. nivale. and M. majus – 
Fusarium ear blight). 

DeWS can be seen as crop protection guidelines specifications. Our case studies have 
been elicited and formalised using the Statechart (GrapeMilDeWS) and the coloured Petri 
nets (POD BLé) modelling languages, providing computer ready decision processes. The 
main purpose of DeWS models is to provide an exhaustive specification of the decision 
process, in order to transfer this operational knowledge to other researchers, development 
workers and eventually farmers. In both these case studies, the DeWS address tactical 
aspects of crop protection. Tactic, seen as the sum of treatment decisions (time and product 
dose at the intra annual scale), has a major impact on yield when lowering the input 
quantities.  

The design methods and tools for these two DeWSs, which implement innovative 
fungicide protection strategies, are presented in the following pages. A brief description of 
the structure of the models is given, together with sample parts of the models. In the second 
part, the importance of the field experiments with respect to validating the decision workflows 
is explained. Finally, the choices of working at the tactical decision scale, and of the 
modelling paradigm, are discussed, particularly in the perspective of extending this work to 
the farm scale 

2 Designing novel decision procedures 
The French agronomic school has developed since the 1980s the model for action theo-

ry which gives a general framework to explain the managerial behaviour of farmers; articu-
lating decision making at the crop level with the farm level (see Aubry & Chatelin, 1997). This 
conceptual framework has been developed in order to diagnose the farmer’s practices and 
help the farmer improve his management. It has inspired a wide range of tools developed in 
France for various applications in agriculture (Attonaty et al., 1994; Bergez et al., 2001; 
Chatelin et al., 2005; Cros et al., 2004; Debaeke et al., 2006). From the earliest to the latest, 
these systems have evolved to include biophysical simulation models taking advantage of 
the increase of computing power. Other international approaches to decision making for crop 
management should also be mentioned like (Audsley et al., 2005; Henriksen et al., 2000; 
Lemaire et al., 2003; Parsons & Beest, 2004; Zadoks, 1989). 

Workflow modelling 
The concepts of business process management, workflow modelling (W. van der Aalst & 

van Hee, 2002), has recently emerged in agriculture. Some authors emphasize on the need 
for modelling the farm business processes in order to cope with the complexity of agri-food 
supply chain networks (Wolfert et al., 2009) and novel e-government processes (Ntaliani et 
al., 2009). If the former have focused on the information system aspects of workflow 
modelling, Guan et al.(2008) have focused on the optimisation of the workflow in Japanese 
rice paddies. 

1 IFT is the treatment frequency index (Champeaux, 2006) the data  are from 
http://agriculture.gouv.fr/sections/thematiques/environnement/prevention-des-pollutions/produits-
phytosanitaires6167 
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We have used the workflow concepts to develop decision systems based on expertise 
and synthesised knowledge instead of using the biophysical model approach to optimise the 
solution through simulation. Consequently, newly designed decision workflows need to be 
tested in field experiments. In order to avoid errors and inconsistencies and thus shorten the 
development and life cycle, the decision logics can be checked thanks to Formal modelling. 

The Structure of Decision Workflow Systems 
The idea underlying the design of DeWS is that optimal solutions for some pest manage-

ment problems cannot be computed in practice (see ch. 2 in Léger, 2008). Therefore, the 
goal of the design is to reach satisfactory performance, both in terms of crop health and 
reduced fungicide quantities. The specification of the decision making procedure has to 
synthesise: an operational knowledge, including timing tactics, with the set of decision 
support tools that are available to the farmers, including field observation. 

The work we present here builds on the workflow concept to model prescriptive decision 
procedures. The result should be a formal specification model of the process ready for 
integration into a simulator or a decision support system (Léger et al., 2010). We have 
experience that graphical workflow models can be understood by non-specialists and that  
elicitation and formal modelling can help the pathologists to ameliorate their design through a 
systematic approach of the decision logic (Léger & Naud, 2009). 

In the case study conducted in viticulture, GrapeMilDeWS was elicited directly in 
Statechart. The ability for the expert to visualise at a glance the behaviour of the DeWS at 
design time has proved helpful, both for the knowledge engineer modelling it (the 
misunderstanding between him and the expert could be alleviated before any behaviour was 
displayed at run time) and for the experts who gained a better understanding of the system 
they had in mind, seeing it literally unfold before them. 

The terminology “decision workflow” acknowledges the fact that timing and processes, 
that is, sequences of events and decisions all along the season, should structure system’s 
design. Therefore, we have chosen discrete event system (DES) paradigm for modelling. 
This is a time abstraction for the dynamics of the patho-system (i.e. the crop, the disease and 
the control system) for which a detailed model would also include differential equations. 

Figure 1 The Structure of a Decision Workflow System 

DeWS architecture (see Figure 1) is composed of: 
a core decision workflow which is modelled with a DES graphical modelling language like  

Statecharts (Harel & Kugler, 2004), for the GrapeMilDeWS case study or Coloured 
Petri Nets (CPN) (e.g. Jensen, 1996), for the BLé DeWS. 

a set of decision variables which are either Boolean or Ordinal (e.g. {A-,A+,A++}). These 
decision variables are used to route the decision control flow from a reasoning state to 
another according to the latest known environment status. At design time, the semantic 
of these variables should be made as generic as possible. This means that they are 
linked for a given field implementation to concrete measurements from the environment 

Core decision workflow 

Decision variable1 Decision variablen … 

Interface / discretization layer 

Patho-system measured variables

The field and its environment 

Input 
events 

Output 
events 
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but could be linked to alternative inputs for another. This provides some kind of loose 
coupling between the decision workflow and the observation protocol currently used. 

an interface layer makes the link between the current observation protocol and the 
corresponding decision variable. Through this interface, the raw data from the 
observation is mapped onto the decision variable space. For field data, this may be 
achieved with simple discretization tables which are configuration parameters of the 
system. 

a set of measured variables: These variables can be continuous or discrete. Values can be 
obtained via sensors or other information devices; measurement protocols in the field, 
or can be the output of a bioclimatic model.  

input and output events: input events can be rain forecasts, changes of a variable value… 
the output events are decisions for actions like spraying or performing a field survey.  

Design principles 

Figure 2 Conceptual structure for a Decision Workflow System in pest management. 

Designing DeWS requires first to select the target diseases. In order to build a decision 
system that significantly reduces the use of pesticides (under the hypothesis that its use is 
generalised) the system will focus on the most important sources of yield loss and fungicide 
consumption. Because the system addresses the tactical decision making, the diseases that 
are not dependent on the annual weather are excluded (e.g. wood diseases of the vine).  

The second step is to have the domain expert identify sub-targets and issues that need 
to be addressed along the “pest management” season. With these sub target and issues, the 
designers break the season in a number of decision stages (see Figure 2 ). For each of 
these stages, some general principles should outline a solution to reach the stage targets. 
The stage time bounds, whether from calendar or phenology, should be defined too. 

Then the detailed reasoning workflow is written as sub stages models. The decision 
variables define states in the reasoning process. Each state does not necessarily yield a 
decision (to treat or not to treat). At one moment in the reasoning, the state may be to wait 
for an evolution in the system that will trigger a treatment decision or alternatively the 
conclusion that no treatment is needed. 

The formal specification of the process is iterative. The stage’s sub workflow and the 
inter-stage transitions may therefore evolve during the design process. 

In the two following sections, we give a short overview of the two case studies on which 
we implemented this design method. 

Stage i

Intermediate
targets

Stage i+1 Stage n Final goals

Events can be:
• landmarks linked to a « clock » or a duration
• internal (action done)
• events un or ill -planned (rain or rain forecast…)

Criterion or event

State (status) in
the reasoning

Decision to act

Phenology « clock(s) »
Calendar days « clock »

Parts of the process
may execute in parallel

“time” bounds &
landmarks
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2008) which is semantically equivalent to standard Petri Net: a CPN can be unfolded into 
standard PN. Petri nets are common to represent industrial logistic problems; they are also at 
the foundation of most workflow modelling formalisms. 

Our interest in Petri Nets lies in their ability to represent explicitly and compute the state 
of the whole farm level decision system. In addition this formalism is more explicit with 
respect to resource management than what could be achieved with Statecharts. Figure 4 
illustrates how we implemented the BLé DeWS with hierarchical CPN using the “CPN Tools“ 
modelling and simulation tool (Jensen et al., 2007) 

Figure 4 Stage 0 top level from the BLé DeWS. 

3 Validation methodology includes field experiments 
A DeWS relies on the modelling process of an expert based specification. Accordingly, 

we proposed in ch. 6 Léger (2008, pp. 162-178), an assessment based on evaluation and 
conformity-checking. The performance and robustness of the decision system are evaluated 
through field experiments, at the plot level, over several years and various pedo-climatic con-
ditions. In the same time, the conformity of the experimental implementation to the speci-
fication is checked. 

GrapeMilDeWS is currently experimented in several wine producing regions of France 
(Naud et al., 2009). This large scale experiment is necessary because of the lack of data 
about the behaviour of the powdery and downy mildews pathosystems under low input 
management and for various bioclimatic conditions. The data that is available concerns 
mostly untreated plots, or plots managed with periodic treatments according to specifications 
of products. These data are insufficient for the fine analysis of crop protection reasoning and 
tactics. GrapeMilDeWS has de facto become a learning tool for the growers and 
development workers involved in the experiment, and for its original designers as well (Naud 
et al., 2009). 

With wheat, the focus is not on acquiring new biological knowledge on pathosystems but 
rather on integrating, into an explicit crop protection decision workflow, existing general and 
local knowledge, specialized models or disease-specific decision support tools. For instance, 
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selecting the most effective DSS tool for eyespot between a very detailed agronomic 
decision table and the simpler cultivar resistance index to the disease. 

Quantitative evaluation of the crop protection 
Success criteria are defined in the first steps of a DeWS’ design. In viticulture there are 

two major criteria. The plot must reach the grower’s desired yield, for example the authorised 
production quota for a given wine type in a region. As for sanitary quality criterion, the 
percentage of infected berries should be comparable to results of a conventional practice. 
We consider that performance is not satisfactory when more than 5% of the berries are 
infected by powdery mildew. With wheat, our aim is to maximize the margin, therefore the 
DeWS must reach output that is equal or above the a priori optimal fungicide programs and 
respecting the sanitary constraints (e.g. mycotoxins). 

The validity of low input systems lies in the ability to achieve satisfactory results in a 
number of different climatic and geographic contexts. The formal model provides an objective 
communication tool to extend the experiment beyond the original designer’s own facilities.  

Assessing the conformity of the field implementation to the specification 
In order to identify potential weaknesses in the decision process specification and 

correct them, the DeWS design process is iterative; interleaving design phases, experimental 
evaluation phases, during which the decision process is closely monitored. The decision 
variables are recorded on a daily basis. Each decision is also recorded as well as the date of 
its implementation. This makes it possible to evaluate the conformity of the execution of a 
DeWS to its specification. As a result of this conformity evaluation, the data of a given plot for 
a given year may be partially or totally discarded in the performance evaluation. It can also 
happen, as it is the case for business workflows, that the model of the DeWS should be 
enhanced to account for a pertinent decision for a newly encountered situation.  

The analysis method builds on the quantification of the conformity of an 
implementation’s behaviour to its specification model behaviour (Cook & Wolf, 1999). The 
method is to compare the event sequence produced during the implementation of the 
process to the simulated event sequence produced by the specification model. There are two 
kinds of difficulties in assessing the conformity of processes and particularly crop protection 
decision processes. The first difficulty lies in the frequent impossibility to observe/record all 
relevant events. The second is the need to integrate quantitative time in the comparison. 
When seen as a simple sequence of event, conformity can be assess with a sequence edit 
distance measure (Levenshtein, 1966). However, taking into account the timing of the events 
makes the problem more difficult. In Léger (2008 in ch. 6), this second problem was partially 
addressed by taking advantage of the cycleless structure of GrapeMilDeWS’ Statechart.  

Many workflow modelling languages are Petri Net based and many Process mining tools 
are therefore adapted for Petri Nets. For instance the conformity problem is addressed by 
(Rozinat & van der Aalst, 2008) by counting the token missing or supernumerary ones in the 
net when replaying an observed event sequence. The ProM framework (W. van der Aalst et 
al., 2007) should be appropriate to analyse the conformity of the current BLé DeWS 
experiment implementation.  

4 Discussion 
Implication of choosing DES as modelling paradigm. 
Our case studies were modelled as reactive systems. Simply said, this means that a decision 
should be applied in the field quickly after it has been taken, that response to new 
information should also be quick, and that anticipation under uncertain climatic events and 
revision are not taken into account. Although this hypothesis has proved unrealistic during 
the field implementation, it is a good heuristic at design time and makes the conformance 
checking (see above) simpler. Through field experiments in the first years, further knowledge 
of the time constraints and required flexibility that affect the decision system was acquired. 
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When implementing a DSS from the DeWS, these constraints and planning strategy could be 
added to the formal model. Indeed we have shown (see ch.6 in Léger et al., 2008) that the 
experts when implementing the decision process tend to anticipate a number of decision as 
soon as they can “compute” it in order to simplify their planning. Developing a DSS would 
require providing the farmer with the ability to project into the possible futures, plan future 
operations and yet keep the possibility to “roll back” or revise the planning. Plan technologies 
(e.g. Martin-Clouaire & Rellier, 2009) would allow such behaviour, but the tradeoffs for that 
would be to loose the ergonomic graph representation. An alternative would be to interleave 
planning and revision processes with the core reactive decision process. We have 
undertaken to test this latter alternative with YAWL, which is a computer language dedicated 
to workflows (W. M. P. van der Aalst et al., 2004). Integrating reactive and planning beha-
viour is definitely one of the tasks ahead of this research. 

Why work at the tactical scale? 
Within the agronomical research community, it is common to admit that the most 

promising way to reduce pollution of a given cropping system, which should be run at its 
optimum, while preserving the revenue is to modify the cropping system itself. In other words 
the largest reduction in pesticide use would only be made at the strategic pluri-annual level 
through drastic changes. It seems that this assumption has lead to a low level of interest 
among crop protection researchers about the ways and methods that will allow a producer to 
manage a given cropping system close to a steady optimal.  

Furthermore, the DeWS approach, which is process based, could be adapted to non 
conventional farming paradigms like integrated production or organic farming. 

Yet, our experiments show that even under the traditional agronomic production 
paradigm, most farmers have a technically suboptimal use of fungicides (i.e. GrapeMilDeWS 
achieved commercial standard production with 40% to 60% less treatments, in 80% of the 
tests.). Our understanding of these result, is that the farmers put more emphasis on 
organisational risk management, and projected consequences on the yield, than on the 
economic loss caused by spending on unnecessary sprayings. Our efforts aim at developing 
decision devices which, from the earliest steps of design, take into account the farmers most 
stringent organisational constraints while outlining for them the safe paths to make the most 
productive use of their inputs. In this context, the field experiments that we undertook show 
that low input crop protection is economically efficient (yield and cost efficiency) and that it is 
technically feasible under normal production conditions. 

Going upscale: the farm level 
Our work has so far been limited to the plot scale, ensuring the design is safe, and 

efficient at that scale. The farm scale is the research step ahead for DeWS. We believe that 
having a formal model of the system will help us study through model checking or simulation 
the behaviour of the whole farm system. 

One way to think about the farm scale level is a distributed decision system, either 
holonic or multi-agent, where spraying needs for each plot, with its own instance of the 
DeWS, would be managed by a planning module with optimisation algorithms. 

Alternatively, if the DeWS is implemented with CPN, the farm level could also be 
implemented with this same formalism. This second solution would require altering the 
original design in order to include the resource management constraints. This CPN model 
could however be adapted to a commercial workflow management system easily. 

5 Conclusion 
With the Decision Workflow System methodology, we address the need for novel pest 

management methods at the tactical decision scale. This design methodology aims at more 
rational use of pesticides.  
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This methodology blends field experiment and formal modelling to assess the quality of 
candidate solution, allowing incremental improvement of the designed solution. Formal 
methods are used to ensure the quality of experiments.  

The traceability in the decision making process gives a renewed perspective in the study 
of decision support systems. For instance while developing a new bio-climatic model, epi-
demiologists and pathologist will be able to use the DeWS as a realistic and yet instrumented 
complete pest management strategy, which allows comparison of various candidates. In the 
same process, a DeWS will help identify when more information is needed to provide better 
decision making. 

Our experience with the field experiment networks is that it is an efficient tool for 
scientists, development worker and farmer to learn about new crop protection principles that 
would at first hand go against their intuition. This is achieved by providing a safe environ-
ment: the experimental set up, but more important the structured reasoning framework. 

This structured reasoning framework does not only facilitate communication within the 
experiment network. It also allows to gather data about performance and feasibility, including 
pragmatic details about use of weather forecasts or interpretation of bioclimatic models, and 
to relate this data to decision paths. The accumulation of cases permits to consolidate 
scientifically sound knowledge without implementing the usual blocs and repetitions. 

In the same time, extension workers participating to the experiment have gained 
experience about low input strategies, and participating farmers have gained confidence in 
reducing fungicide intensity. 

Besides continuation of experimentation of existing DeWS, further research will 
investigate decision at the farm scale, planning and revision of decisions, and optimisation of 
sampling within a plot and between the different plots of the farm. 
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