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Abstract    We introduce the paradigm of chaotic mathematical circuitry which 
shows some similarity to the paradigm of electronic circuitry especially in the 
frame of chaotic attractors for application purpose (cryptography, generic algo-
rithms in optimization, control, …). 

Keywords: Chaos dynamics inside soft computing algorithms; Mathematical cha-
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1. Introduction 

The purpose of this communication is to build an analogous of paradigm of 
electronic circuitry, which is the design of electronic circuit: the paradigm of cha-
otic mathematical circuitry, in order to improve easily the performance of well 
known chaotic attractors for application purpose (cryptography, generic algo-
rithms in optimization, control, ... ). 
An electronic circuit is composed of individual electronic components, such as re-
sistors, transistors, capacitors, inductors and diodes, connected by conductive 
wires through which electric current can flow. The combination of components 
and wires allows various simple and complex operations to be performed: signals 
can be amplified, computations can be accomplished, and data can be moved from 
one place to another. We introduce in the same way mathematical circuits which 
are composed of individual components (generators, couplers, samplers, mixers, 
and reducers, ...) connected through streams of data. The combination of such 
mathematical components leads to several news applications such as improving 
the performance of well known chaotic attractors (Hénon, Chua, Lorenz, Rössler, 
...) for application purpose (chaotic cryptography, evolutionary and genetic algo-
rithms in optimization, control,...). In Sec. 2 we present the symbols we introduce 
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in the paradigm of mathematical circuits (generators, couplers, samplers, mixers, 
and reducers). In Sec. 3 we consider the design of two circuits, the first one for 
Chaotic multistream PseudoRandom Number Generators, the second one for 
Noise-resisting cryptographic transmitter and receiver. The conclusion is given in 
Sec. 4. 

2. Elementary components of mathematical circuits 

Analog circuits are very commonly represented in schematic diagrams, in 
which wires are shown as lines, and each component has a unique symbol. We 
present in this section the first symbols we design in order to draw mathematical 
schematic diagrams. 

2.1 Generator 

The first class of symbol we describe, generator symbols, are, from a mathe-
matical point of view, equivalent to a battery or a current generator in electronic 
circuit. However we consider that they generate a numerical signal (in one or sev-
eral dimensions) rather than a voltage or an intensity variation (nonetheless, a 
voltage or intensity variation can be considered as a physical signal which can be 
discretized). This signal can be either continuous, as in Chua's circuit, Lorenz or 
Rössler attractors or discrete as in Hénon or logistic map. 

2.1.1 Chua’s circuit: a prototype for continuous generator 

Nowadays there is a worldwide tradition of use of the circuit invented by L.O. 
Chua in October 1983 for several purposes [2]. This circuit of Fig. 1(a) contains 
three linear energy-storage elements (an inductor and two capacitors), a linear re-
sistor, and a single nonlinear resistor, namely, Chua's diode (Fig. 1(b)) with three 
segment linear characteristic defined by 

R 0 R 1 0 R p R p
1

f ( v ) m v ( m m ) v B v B
2

� �� �� �� �= + − + − −= + − + − −= + − + − −= + − + − −� �� �� �� �    (1) 

where the slopes in the inner and the outer regions are 0m  and 0m , respectively, 

and pB±±±±  denotes the breakpoints. 
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The dynamics of Chua's circuit is governed by Eq. (2) where 
1CV , 

2CV , and LI  are 

respectively the voltages across the capacitors 1C  and 2C , and the intensity of the 

electrical current through the inductor L . 
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(((( ))))

1

2 1 1

2

1 2

2

C
1 C C C

C
2 C C L

L
C

dv
C G v -v - f v ,

dt
dv

C G v -v i
dt

di
L -v

dt

����
====����

����
����
���� = += += += +
����
���� ====��������

   (2) 

Equation (2) can be transformed into the third-order autonomous differential 
equation whose dimension-less form is 

x ( y x f ( x )), 1
y x y z , f ( x ) bx ( a b ) x 1 x 1

2z y

α

β

���� = − −= − −= − −= − −���� � �� �� �� �= − + = + − + − −= − + = + − + − −= − + = + − + − −= − + = + − + − −���� � �� �� �� �
���� =−=−=−=−����

�

�

�

   (3) 

The parameter value 

15.60α ==== , b 28.58==== , 
1

a
7

= −= −= −= −  and 
2

b
7

====    (4) 

are very often used in order to generate chaotic signal. Even if the scheme of Fig. 
1(a) is easily understandable for an electronics engineer, it is of no help to build a 
device using mathematical properties of chaos (like a secure communication sys-
tem based on it [6]). This is why it is more useful to represent Chua’s circuit like a 
chaos generator by the diagram of Fig. 2(a).  
 

  

Fig. 1(a). Realization of Chua’s circuit. (b). Three-segment piecewise-linear v-i characteristic of 
nonlinear voltage controlled resistor (Chua’s diode). 
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On this expanded symbol of continuous generator, the solid line arrows coming 
out from the generator represent the three components of the signal 
x( t ) ( x( t ),y( t ),z( t ))==== , the dashed line arrow points at λ  which stands for the pa-
rameter value defined by Eq. (4) and the dot line arrow points at 0x x( 0 )==== the 

given initial value of the signal. 
If there is no ambiguity on the nature of the generator used, the symbol can be 
simplified as in Fig. 2(b). 

 

 

Fig. 2(a). Chua’s circuit: continuous generator. (b). Simplified symbol of continuous generator, 
(c). Discrete generator (Hénon map, expanded symbol). (d). Simplified symbol discrete genera-
tor. 

2.1.2 Discrete generator: Hénon and Logistic map 

We need also to design chaotic circuitry for discrete signal. For this purpose 
some classical generators can be considered: in dimension 2, the Hénon map [4] 
defined by 

2

a,b
x y 1 axH :
y bx

	 A	 A	 A	 A	 A	 A	 A	 A + −+ −+ −+ −==== B CB CB CB CB CB CB CB C
D ED ED ED E D ED ED ED E

   (5) 

with 

a 1.4, b 0.3,= == == == =    (6) 

which must be associated to the dynamical system  

2
n 1 n

n 1 n

x y 1 ax
y bx

++++
++++

�������� = + −= + −= + −= + −
����

====��������
   (7) 
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in order to provide a stream of chaotic numbers (Figs. 2(c) and 2(d)). And in 1-
dimension, the logistic map 

f ( x ) 4x( 1 x )= −= −= −= −    (8) 

associated to the dynamical system  

n 1 n nx rx ( 1 x )++++ = −= −= −= −    (9) 

Thereafter, another 1-dimensional chaotic generator, the symmetric tent map, 
will be, also, represented by the same symbol of Fig. 3. 

 

 

Fig. 3. 1-dimensional generator (logistic or tent map). 

Remark: In the rest of this article, we use solid line arrow for continuous signal 
x( t ) , and dashed line arrow for discrete signal nx . 

2.2 Coupler 

The experimental observation of hyperchaotic attractors in open and closed chain 
of Chua's circuit was reported in 1994 [5]. The layout of the five identical coupled 
Chua's circuit forming a ring is displayed on Fig. 4.  
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Fig. 4. Five identical coupled Chua’s circuits forming a ring. 

The state equations of this circuit are as follows (10). Identifying the symbols 

1 2

( i ) ( i ) ( i )
LC C(V ,V ,I ) in each Chua's circuit with i i i( x ,y ,z ), the state equations of the 

circuit can be translated into the differential equations (11), and the electronic cir-
cuit is symbolized by the mathematical circuit of Fig. 5. 
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   (10) 

In this figure the double rounded arrows symbolize the coupling of one Chua's 
circuit to the next one. In order to represent the coupling between mathematical 
equation, depending on the nature of the coupling, we can use two different sym-
bols: the ring coupler corresponding to the coupling of one generator to the next 
one (Fig. 5) and the full coupler when the coupling involves more connections be-
tween the couplers (right hand side of Fig. 6). 
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Fig. 5. Numerical circuit corresponding to the electronic circuit of Fig. 4. 

It has been shown, few years ago [7] that the ultra-weak coupling of several lo-
gistic or symmetric tent maps  

n 1 nf ( x ) 1 2 x , x f ( x )++++= − == − == − == − =    (12) 

allows the production of long series of chaotic numbers equally distributed over 
the interval [[[[ ]]]]1,1−−−−  of the real line.  

The system of p-coupled tent map is given by 

(((( )))) (((( ))))n 1 n nX F X A f ( X )++++ = = ⋅= = ⋅= = ⋅= = ⋅    (13) 

where 
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The design of the corresponding mathematical circuit is displayed on Fig. 6. 

 

Fig. 6. Circuit of ultra-weak coupling of p 1-dimensional chaotic maps. 

2.3 Sampler 

However chaotic numbers are not pseudo-random numbers because the plot of 

the couples of any component l l
n n 1( x , x )++++  of iterated points n n 1( X , X )++++  in the cor-

responding phase plane reveals the map f  used as one-dimensional dynamical 
systems to generate them via Eq. (13). Nevertheless we have recently introduced a 
family of enhanced Chaotic Pseudo Random Number Generators (CPRNG) in or-
der to compute very fast long series of pseudorandom numbers with desktop com-
puter [9]. This family is based on the ultra-weak coupling mechanism which is 
improved in order to conceal the chaotic genuine function. 

 

In order to hide f of Eq. (13), in the phase space l l
n n 1( x , x )++++ , the sequence 

l l l l l
0 1 2 n n 1( x , x , x , x , x , )++++� �  generated by the l-th component l

x , is sampled chaoti-

cally, selecting l
nx  every time the value mnx  of the m-th component m

x , is strictly 

greater than a threshold T belonging to the interval [[[[ ]]]]1,1−−−−  of the real line. 

 
The pseudo-code, for computing such chaotically sub-sampled iterates is: 
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1 2 p 1 p
0 0 0 0 0X ( x , x , x , x ) seed

−−−−= == == == =�  

n 0; q 0;= == == == =  

do { while n N<<<<  

 do{ while m
nx T<<<<  compute 1 2 p 1 p

n n n n( x , x , x , x ); n
−−−− + ++ ++ ++ +� } 

compute 1 2 p 1 p
n n n n( x , x , x , x )

−−−−
� ; then 1

;q n( q )n( q ) n; x x n ; q )= = + + + += = + + + += = + + + += = + + + + } 

 

Fig. 7. Circuit of enhanced Chaotic Pseudo Random Number Generator (CPRNG) based on cha-
otic under-sampling. 

This chaotic under-sampling is possible due to the independence of each com-

ponent of the iterated points nX  vs. the others [8]. We introduce the symbol on 

the right hand side of Fig. 7. in order to give a schematic representation of this 
chaotic under-sampling process. 

2.4 Mixer 

A second mechanism can improve the unpredictability of the pseudo-random 
sequence generated as above, using synergistically all the components of the vec-
tor nX  instead of two.  

Given p 1−−−−  thresholds 1 2 p 10 T T T 1−−−−< < < << < < << < < << < < <�  forming a partition 

121 ,,, −pJJJ � of the interval [[[[ ]]]]1,1−−−− , the pseudo-code, for computing such chaoti-

cally sub-sampled iterates is: 
1 2 p 1 p

0 0 0 0 0X ( x , x , x , x ) seed
−−−−= == == == =�  

n 0; q 0;= == == == =  

do { while n N<<<<  

 do{ while m
n 0x J∈∈∈ ∈  compute 1 2 p 1 p

n n n n( x , x , x , x ); n
−−−− + ++ ++ ++ +� } 

compute 1 2 p 1 p
n n n n( x , x , x , x )

−−−−
� ;  

let k be such that p
n kx J∈∈∈ ∈ ; then k

;q n( q )n( q ) n; x x n ; q )= = + + + += = + + + += = + + + += = + + + + } 
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We draw the symbol on the right hand side of Fig. 8. in order to give a sche-
matic representation of the chaotic mixing process. For sake of simplicity we have 
only displayed a circuit with three 1-dimensional generators. However the mixing 
process runs better when more generators are coupled.  

We can say that the design of mathematical circuit including couplers, samplers 
or mixers allows the emergence of complexity in chaotic systems which leads to 
randomness [10]. 

 

Fig. 8. Circuit of enhanced Chaotic Pseudo Random Number Generator (CPRNG) based  

2.5 Reducer 

We introduce now, another process which can directly provides random num-
ber without sampling or mixing, although it is possible to combine these processes 

with it. The idea underlying this process is to confine on [[[[ ]]]]n
1,1−−−−  considered as a 

torus, a ring of p-coupled symmetric tent map (or logistic map) [3]. 
Consider the equation 

1 1 2
n 1 n 1 n

m m m 1
n 1 n m n

p 1 p 1 p
n p 1 nn 1

p p 1
n p nn 1

x 1 2 x k x

x 1 2 x k x

x 1 2 x k x

x 1 2 x k x

++++

++++
++++

−−−− −−−−
−−−−++++

++++

���� = − += − += − += − +����
����
����

= − += − += − += − +����
����
����
���� = − += − += − += − +
����
���� = − += − += − += − +
����

�

�
   (15) 

Where the parameters ik 1====� . In order to confine the variables in 1x ++++  on this to-

rus, we do, for every iteration, the transform 
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jif( x 1 ) add 2n 1
jif ( x 1 ) substract 2n 1

���� <−<−<−<−���� ++++
����
���� >>>>++++����

   (16) 

We design a new symbol: the reducer, on the right hand side of Fig. 9, in order 
to give a schematic representation of the projection of the variable on the torus. 
For sake of simplicity we have only displayed a circuit with three 1-dimensional 
generators. However this new pseudo-random number generator works better 
when more generators are coupled. 

 

Fig. 9. Reducer for the circuit of Eq. (15) and the transform of Eq. (16). 

3. Design of mathematical chaotic circuits 

In the limited extend of this paper; it is difficult give examples of fully devel-
oped mathematical circuits. We first give the circuit of Cms-PRNG and then we 
use it for the design of new transmitter and receiver of cryptographic based chaos 
circuit. 

3.1 Chaotic multistream pseudorandom number generators (Cms-
PRNG) 

It is possible to combine several equations in order to design chaotic multis-
tream pseudo random number generators (Cms-PRNG) and processes in order to 
generate uncorrelated sequences of pseudo-random numbers, possessing a large 
number of keys for a cryptographic use.  



12  

 

1, j

p p
1 2 j
n 1 1 n 1, j n

j 3 j 3

p p
m m m 1 j
n 1 n m m, j n m, j n

j 1, j m;m 1 j 1, j m;m 1

p 2 p 2
p 1 p 1 p j

n p 1 p 1, j n p 1, j nn 1
j 1 j 1

1x 1 2 x k 1 x xn

x 1 2 x k 1 x x

x 1 2 x k 1 x x

ε ε

ε ε

ε ε

++++
= == == == =

++++
++++

= ≠ + = ≠ += ≠ + = ≠ += ≠ + = ≠ += ≠ + = ≠ +

− −− −− −− −−−−− −−−−
− − −− − −− − −− − −++++

= == == == =

	 A	 A	 A	 A	 A	 A	 A	 A
= − + − += − + − += − + − += − + − +B CB CB CB CF FF FF FF FB CB CB CB CB CB CB CB CB CB CB CB C

D ED ED ED ED ED ED ED E

	 A	 A	 A	 A	 A	 A	 A	 A
= − + − += − + − += − + − += − + − +B CB CB CB CF FF FF FF FB CB CB CB CB CB CB CB CB CB CB CB C

D ED ED ED ED ED ED ED E

	 A	 A	 A	 A
= − + − += − + − += − + − += − + − +F FF FF FF FB CB CB CB CB CB CB CB C

D ED ED ED E

�

�

p 1 p 1
p p 1 j

n p p, j n p , j nn 1
j 2 j 2

x 1 2 x k 1 x xε ε
− −− −− −− −

++++
= == == == =

����
����
����
����
����
����
����
����
����
����
���� 	 A	 A	 A	 A

B CB CB CB C���� B CB CB CB C���� D ED ED ED E
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   (17) 

This is simply obtained by adding a full coupler as a keyer as shown in the cir-
cuit of Fig. 10, corresponding to Eq. (17) (with the reduction process of Eq.(16)). 

 

Fig. 10. Circuit of Cms-PRNG with only 3 streams. 

3.2 Noise-resisting cryptographic transmitter and receiver circuits 

The Cms-PRNG have been used for a novel ciphering method recently intro-
duced in order to resist to noise which is always present during the transmission of 
the signal in any channel [1]. The main idea is to establish, between the transmitter 
and the receiver, a correspondence between the alphabet constituting the plain text 
and some intervals defining a partition of [[[[ ]]]]1,1−−−− . Some realistic assumption about 

the noise boundedness allows restricting the bounds of the aforementioned inter-
vals in order to precisely resist to the effects of the noise. An extra scrambling re-
sorting to a co-generated chaotic sequence enhances the ciphering process. Then a 
new chaotic substitution method is developed: considering a chaotic carrier, be-
longing to the set of cogenerated and coupled pseudo-random chaotic sequences, 
the idea is to randomly/chaotically (in fact, this is determined by a second pseudo-
random chaotic sequence) replace some elements of the carrier by a ciphered ele-
ment (a letter here) of the message. At the receiver end, a copy of the Cms-PRNG, 
with the same parameters (hence we deal with a symmetrical ciphering method) 
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allows to generate the necessary chaotic sequences and therefore to retrieve the 
initial message. 
This process can be summarized in both circuits of Figs. 11 and 12. Due again to 
the limited extend of this paper, we cannot expand these figures in order to show 
the constituting symbols in each oval shaped region of the circuit. The originality 
of the method lies in the use of a chaotic pseudo-random number generator: sev-
eral co-generated sequences can be used at different steps of the ciphering process, 
since they present the strong property of being uncorrelated. Each letter of the ini-
tial alphabet of the plain text is encoded as a subinterval of [[[[ ]]]]1,1−−−− .  

 

Fig. 11. Transmitter based on circuit of Fig. 10. 

 

Fig. 12. Receiver of the coded signal. 

The bounds of each interval are defined in function of the known bound of the ad-
ditive noise. A pseudo-random sequence is used to enhance the complexity of the 
ciphering. The transmission consists of a substitution technique inside a chaotic 
carrier, depending on another cogenerated sequence. The efficiency of the pro-
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posed scheme is illustrated on some numerical simulations. As further work, some 
studies should be performed of several sets of unknown parameters, since with the 
considered Cms-PRNG with 10 states, the number of possible parameters amounts 

to 90 (the i , jε  and the ik ). 

4. Conclusion 

Following the worldwide tradition of use of Chua's circuits for various pur-
poses, we have introduced the paradigm of chaotic mathematical circuitry which 
shows some similarity to the paradigm of electronic circuitry –the design of elec-
tronic circuits. This new paradigm allows, as an example, the building of new cha-
otic and random number generators.  

Alongside to electronic circuits, the new theory of mathematical circuits allows 
many new applications in chaotic cryptography, genetic algorithms in optimiza-
tion and in control [11], ... Due to the versatility of the new components we intro-
duce, the combined operation of these chaotic mathematical circuits remains 
largely unexplored. 
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