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Maximal Deviations of Incomplete U -statistics
with Applications to Empirical Risk Sampling

Stéphan Clémençon∗ Sylvain Robbiano† Jessica Tressou ‡

Abstract

It is the goal of this paper to extend the Empirical Risk

Minimization (ERM) paradigm, from a practical perspec-

tive, to the situation where a natural estimate of the risk is

of the form of a K-sample U -statistics, as it is the case in

the K-partite ranking problem for instance. Indeed, the nu-

merical computation of the empirical risk is hardly feasible

if not infeasible, even for moderate samples sizes. Precisely,

it involves averaging O(nd1+...+dK ) terms, when consider-

ing a U -statistic of degrees (d1, . . . , dK) based on samples

of sizes proportional to n. We propose here to consider a

drastically simpler Monte-Carlo version of the empirical risk

based on O(n) terms solely, which can be viewed as an in-

complete generalized U-statistic, and prove that, remarkably,

the approximation stage does not damage the ERM proce-

dure and yields a learning rate of order OP(1/
√

n). Beyond

a theoretical analysis guaranteeing the validity of this ap-

proach, numerical experiments are displayed for illustrative

purpose.

Keywords: Empirical risk minimization, risk sampling, in-

complete U -statistics, ranking, minimum-volume set

1 Introduction

In statistical learning theory, the paradigmatic ap-
proach to predictive problems is to use data-based es-
timates of the prediction error to select a decision rule
from a class of candidates. In classification/regression,
such estimates are sample mean statistics and the the-
ory of Empirical Risk Minimization (ERM in abbrevi-
ated form) has been originally developed in this situa-
tion, relying essentially on the study of maximal devi-
ations between these empirical averages and their ex-
pectations. The tools used for this purpose are mainly
concentration inequalities for empirical processes; see
[18] for instance. One may refer to [8] for a recent ac-
count of the theory of classification. Recently, a variety
of learning issues, where natural empirical risk estimates
are no longer basic sample mean statistics, have received

∗LTCI - UMR No. 5141 Telecom Paristech CNRS -
stephan.clemencon@telecom-paristech.fr
†LTCI - UMR No. 5141 Telecom Paristech CNRS -

sylvain.robbiano@telecom-paristech.fr
‡INRA Metarisk - UR1204 - jessica.tressou@agroparistech.fr

a good deal of attention in the machine-learning litera-
ture, requiring to extend the ERM approach. Indeed, in
certain problems such as supervised ranking [11], learn-
ing on graphs [5] or pairwise dissimilarity-based cluster-
ing [10], statistical counterparts of the risk are of the
form of (generalized) U -statistics; see [19]. Such empir-
ical functionals are computed by averaging over tuples
of sampling observations, exhibiting thus a complex de-
pendence structure. Linearization techniques (see [16])
are the main ingredient in investigating the behavior of
empirical risk minimizers in this setting, the latter per-
mitting to establish probabilistic upper bounds for the
maximal deviation of collection of centered U -statistics
under adequate conditions by reducing the study to that
of standard empirical processes. However, while the
ERM theory based on minimization of U -statistics is
now consolidated, putting this approach in practice gen-
erally leads to face significant computational difficulties,
not sufficiently well documented in the machine-learning
literature. In many concrete cases, the mere computa-
tion of the risk involves a summation which extends
over an extremely high number of tuples and runs out
of time or memory on most machines. It is the major
purpose of this paper to study how a simplistic sam-
pling technique (i.e. drawing with replacement) applied
to risk estimation, as originally proposed by [7] in the
context of asymptotic pointwise estimation, may effi-
ciently remedy this issue without damaging too much
the ”reduced variance” property of the estimates, while
preserving the learning rates (including ”fast-rate” situ-
ations). Applications to supervised ranking and to min-
imum volume set learning are considered here in order
to illustrate this remarkable phenomenon.

The paper is structured as follows. As a first go, two
important situations where the empirical functional of
interest in the learning problem considered is of the form
of a (generalized) U -statistic, hardly or not computable
in most cases encountered in practice, are described at
length in section 2 in order to motivate the subsequent
study. Section 3 next recalls key concepts of the theory
of incomplete generalized U -statistics and states the
main result of the paper, establishing a probabilistic
upper bound for the maximal deviation related to a



finite collection of incomplete U -statistics, under mild
assumptions. Finally, the implications of this result
for the aforementioned examples from the learning
perspective are thoroughly discussed and illustrated by
numerical experiments in section 4. Technical details
are postponed to the Appendix section.

2 Motivation

We start off with motivating the study of maximal
deviations of collections of incomplete generalized U -
statistics in the statistical learning context, through
two problems, supervised and unsupervised respectively,
which shall serve as running examples in this paper.

2.1 First example: K-partite ranking In the K-
partite ranking problem, one has K ≥ 1 independent
random vectors X(1), . . . , X(K) taking their values in
a subset of a generally high-dimensional euclidean space
X , X ⊂ Rd with d ≥ 1 say, with respective probability
distributions F1(dx), . . . , FK(dx). Informally, the
goal is to learn, based on a pooled data set (made
of independent observations drawn as the Xk’s), a
preorder on the input space X , characterized by a
scoring function s : X → R transporting the natural
order on the real line onto X (x ≤s x′ ⇔ s(x) ≤ s(x′)
for all (x, x′) ∈ X 2), so that the random variable s(X(k))
stochastically increases, as much as possible, with the
label k ∈ {1, . . . , K}. A quantitative performance
criterion (when neglecting ties for simplicity) is given
by:
(2.1)

L(s) def= P
{
s(X(1)) < s(X(2)) < . . . < s(X(K))

}
.

If K independent samples, of independent copies of the
r.v. X(k) respectively, are available,

(2.2) X
(k)
1 . . . , X(k)

nk
with nk ≥ 1 for 1 ≤ k ≤ K,

a natural empirical counterpart of the ranking perfor-
mance criterion is:

(2.3) L̂n(s) =

∑n1
i1=1 · · ·

∑nK

iK=1 In
s(X

(1)
i1

)<...<s(X
(K)
iK

)
o

n1 × · · · × nK
,

where n = (n1, . . . , nK) and I{E} denotes the in-
dicator function of any event E. The performance
of empirical maximizers of the quantity (2.3) (or of
variants of the latter performance measure) over a
class S of scoring function candidates has been in-
vestigated in several papers, mainly in the bipartite
context (i.e. for K = 2), under various complex-
ity assumptions for S; see [2, 11] among others. In
a variety of applications (information retrieval, design

of recommender systems for instance), the number of
classes K and/or the sample sizes nk are fairly large,
so that the number of terms to be summed in (2.3),
n1× · · · ×nK namely, is prohibitive. As an illustration,
one may refer to the public databases LETOR (avail-
able at http://research.microsoft.com/∼letor/),
which can be used to evaluate search engines for ranking
documents according to their degree of pertinence for
specific requests in particular (see [20]), where K = 5
and the sample sizes are very huge for most queries.
Datasets released for recent competitions, such as the
Yahoo! Labs ”Learning to Rank” challenge in 2010 or
the KDD Cup Orange challenge in 2009, provide other
examples of such situations. In the KDD Cup Orange
challenge, where submissions were evaluated based on
the AUC performance (i.e. the statistic (2.3) when K =
2), the computation of the empirical version of the crite-
rion required to average over 1012 pairs approximately,
making ”pairwise classification” approaches inapplica-
ble (unless the sampling technique promoted here and
analyzed in the subsequent section is used).

2.2 Second example: risk exposure assessment
Our second example relates to unsupervised learning.
Suppose that M ≥ 1 hazards may arise from K ≥ 1
different sources, which can combine in an additive
manner, as in many environmental or health problems.
To fix ideas, suppose that, weekly say, dietary con-
tamination by M different chemicals through the pos-
sible consumption of P ≥ 1 food items indexed by
p ∈ {1, . . . , P} over a certain statistical population of
interest is under study. The joint dietary risk exposure
can be described by a random vector E = (E1, . . . , EM ),
where:

(2.4) Em =
P∑
p=1

cm,p ·Qp.

for 1 ≤ m ≤ M , denoting by Qp the quantity of food
item No. p consumed per week by an individual drawn
at random in the population studied and by cm,p the
(random) contamination level related to food item No.
p and pollutant No. m. In the field of food safety, risk
assessors are interested in building confidence regions
for the risk exposure E in RM+ :
(2.5)
Rα = arg min

{
λ(R) : P {E ∈ R} ≥ α,R ∈ B(RM+ )

}
,

where Lebesgue measure on RM+ is denoted by λ and the
set of borelian subsets of RM+ by B(RM+ ). For values of
the level α close to 1, such minimum volume sets (MV-
sets in short; see [22]) describe regions where the expo-
sure distribution is most concentrated, exposures lying
in their complementary sets being possibly interpreted



as ”abnormal”. The construction of confidence regions
for the risk exposure is based on the observation of the
dietary behavior of J individuals independently drawn
from the population, yielding an i.i.d. sample {Qi =
(Qi,1, . . . , Qi,P ) : 1 ≤ i ≤ J} and on a database where
a number Lm,p of measures of contamination in pollu-
tant m for food item p, for 1 ≤ p ≤ P and 1 ≤ m ≤M ,
are gathered, {cm,p = (cm,p,1, . . . , cm,p,Lm,p

)}. Based
on these data, the probability involved in the constraint
of the MV-set problem (2.5) is estimated by the empir-
ical quantity given by:

P̂{E ∈ R} =

(
J

M∏
m=1

P∏
p=1

Lm,p

)−1

×

J∑
i=1

L1,1∑
l1,1=1

· · ·
LM,P∑
lM,P =1

In
(PP

p=1 cm,p,lm,p ·Qi,p)1≤m≤M
∈R

o,
and the level α is replaced by α − φ, where φ is some
tolerance level, depending, roughly speaking, on the
order of magnitude of supR∈R |P̂{E ∈ R} − P{E ∈ R}|,
where R is the class of Borelian sets over which the
search is performed. Refer to [23] for precise results
following in the footsteps of those in ERM theory. In
practice, averaging over the J×

∏M
m=1

∏P
p=1 Lm,p terms

appearing in the formula above is generally infeasible.
In [4] for instance, where estimation of the probability
that the risk exposure to Ochratoxin A exceeds a critical
threshold is considered, this corresponds to 4 × 1021

terms!

3 Uniform approximation of Generalized
U-statistics through sampling

As shall be seen below, the statistics considered in the
previous section are (generalized) U -statistics, which
can be uniformly approximated by Monte-Carlo ver-
sions whose computation cost is drastically reduced.
This will be next proved to be an essential tool for inves-
tigating the performance of decision rules learnt through
optimization of such empirical quantities.

3.1 Definitions and key properties For clarity,
we recall the definition of generalized U -statistics, the
simplest extensions of standard sample mean statistics.
Properties and asymptotic theory of U -statistics can be
found in [19].

Definition 1. (Generalized U-statistic) Let K ≥
1 and (d1, . . . , dK) ∈ N∗K . Let (X(k)

1 , . . . , X
(k)
nk ),

1 ≤ k ≤ K, be K independent samples of i.i.d. random
variables, taking their values in some space Xk with
distribution Fk(dx) respectively. The generalized (or K-
sample) U -statistic of degrees (d1, . . . , dK) with kernel

H : X d11 ×· · ·×X
dK

K → R, square integrable with respect
to the probability distribution µ = F⊗d11 ⊗ · · · ⊗ F⊗dK

K ,
is defined as

(3.6) Un(H) =

∑
I1
. . .
∑
IK
H(X(1)

I1
; X(2)

I2
; . . . ; X(K)

IK
)(

n1
d1

)
× · · ·

(
nK

dK

) ,

where the symbol
∑
Ik

refers to summation over all
(
nk

dk

)
subsets X(k)

Ik
= (X(k)

i1
, . . . , X

(k)
idk

) related to a set Ik
of dk indexes 1 ≤ i1 < . . . < idk

≤ nk. It is said
symmetric when H is permutation symmetric in each
set of dk arguments X(k)

Ik
.

Returning to the first example of the previous section,
we observe that, for a fixed scoring function s(x),
the quantity (2.3) is a K-sample U -statistic of degree
(1, 1, . . . , 1) with kernel given by:

Hs(x1, . . . , xK) = I{s(x1)<s(x2)<···<s(xK)}

for (x1, . . . , xK) ∈ XK . In a similar manner, consider-
ing the functional involved in the second example, this
corresponds to a K = (M × P + 1)-sample U -statistic
of degree (1, 1, . . . , 1), with kernel given by:

HR(q, c) = In
(PP

p=1 cm,p·qp)1≤m≤M
∈R

o,
for q = (q1, . . . , qP ) ∈ RP+ and c =
((cm,1, . . . , cm,P ),m = 1, . . . ,M) ∈ RP×M+ .

Beyond these two examples, many statistics used
for pointwise estimation or hypothesis testing are ac-
tually U -statistics (e.g. the sample variance, the Gini
mean difference, the Wilcoxon Mann-Whitney statistic,
Kendall tau), their popularity mainly arise from their
”reduced variance” property: the statistic Un(H) has
minimum variance among all unbiased estimators of the
parameter

θ(H) = E[H(X(1)
1 , . . . , X

(1)
d1
, . . . , X

(K)
1 , . . . , X

(K)
dk

)].

Asymptotics. Classically, the limit properties of
these statistics (LLN, CLT, etc.) are investigated in
an asymptotic framework stipulating that, as the full
sample size

n
def
= n1 + . . .+ nK

tends to infinity, we have: nk/n → λk > 0 for k =
1, . . . , K. They can be established by means of a
linearization technique (see [16]), permitting to write
Un(H) as a sum of K basic sample mean statistics (of
the order OP(1/

√
n) each, after recentering), plus possi-

ble degenerate terms (termed degenerate U -statistics).
This method is extensively used in [11] for instance.



As previously seen on the running examples consid-
ered in this paper, in practice, the number

∏K
k=1

(
nk

dk

)
of terms to be summed up to compute (3.6) is generally
prohibitive. As a remedy to this computational issue, in
the seminal contribution [7], the concept of incomplete
generalized U -statistic has been introduced, where the
summation in formula (3.6) is replaced by a summation
involving much less terms, extending over low cardinal-
ity subsets of the

(
nk

dk

)
dk-tuples of indices, 1 ≤ k ≤ K,

solely. In the simplest formulation, the subsets of indices
are obtained by sampling with replacement, leading to
the following definition.

Definition 2. (Incomplete Generalized U-
statistic) Let B ≥ 1. The incomplete version of the
U -statistic (3.6) based on B terms is defined by:

(3.7) ŨB(H) =
1
B

∑
(I1, ..., IK)∈DB

H(X(1)
I1
, . . . , X

(K)
IK

),

where DB is a set of cardinality B built by
sampling with replacement in the set Λ =
{((i(1)

1 , . . . , i
(1)
d1

), . . . , (i(K)
1 , . . . , i

(K)
dK

)) : 1 ≤
i
(k)
1 < . . . < i

(k)
dk
≤ nk, 1 ≤ k ≤ K}.

Remark 1. (Alternative sampling schemes.) We
point out that, as proposed in [17], other sampling
schemes could be considered, sampling without replace-
ment or Bernoulli sampling in particular. The results of
this paper could be extended to these situations. Due
to space limitation, we restrict our attention here to the
sampling with replacement scheme.

In practice, B should be chosen much smaller than
the cardinality of Λ, namely #Λ =

∏K
k=1

(
nk

dk

)
, in

order to overcome the computational issue previously
mentioned. We emphasize that the cost related to the
computation of the value taken by the kernel H at a
given point (x(1)

I1
, . . . , x

(K)
IK

) depending on the form of
H is not considered here, focus is on the number of terms
involved in the summation solely. As an estimator of
θ(H), the statistic (3.7) is still unbiased but its variance
is naturally larger than that of (3.6). Precisely, we have

Var(ŨB(H)) = (1− 1/B)Var(Un(H)) +O(1/B),

as B → +∞; refer to [19] (see p. 193 therein). In-
cidentally, we underline that the empirical variance of
(3.6) is not easy to compute neither since it involves
summing approximately #Λ terms and bootstrap tech-
niques should be used for this purpose, as proposed
in [4]. The asymptotic properties of incomplete U -
statistics have been investigated in several articles; see
[9, 13, 17]. The angle embraced in the present paper is

of quite different nature, the key idea we promote here is
to use incomplete versions of collections of U -statistics
in learning problems such as those described in section
2. The result established in the next section shows that
this approach solves the numerical problem, while not
damaging the learning rates.

3.2 Main result - Uniform approximation of U-
statistics by incomplete U-statistics Under certain
assumptions on the collection H of (symmetric) kernels
H considered, concentration results established for U -
processes (i.e. collections of U -statistics) may extend to
their incomplete versions, as revealed by the following
theorem. As the goal of this paper is to present the main
ideas rather than formulating results at a high level of
generality owing to space limitations, we consider the
(not that restrictive) situation where the class H of
kernels is a VC major class of functions of finite Vapnik-
Chervonenkis dimension; see [12].

Theorem 3.1. (Maximal deviation) Let H be a col-
lection of bounded symmetric kernels on Ω =

∏K
k=1 X

dk

k

of finite VC dimension V < +∞. We set MH =
sup(H,x)∈H×X |H(x)|. Then, the following assertions
hold.

(i) For all η > 0, we have: ∀n = (n1, . . . , nK) ∈ N∗K ,
∀B ≥ 1,

P
{

sup
H∈H

∣∣∣ŨB(H)− Un(H)
∣∣∣ > η

}
≤ 2(1+#Λ)V×

e−Bη
2/M2

H .

(ii) For all δ ∈ (0, 1), with probability at least 1− δ, we
have: ∀nk ≥ 1, 1 ≤ k ≤ K,

(3.8)
1
MH

sup
H∈H

∣∣∣ŨB(H)− E
[
ŨB(H)

]∣∣∣ ≤
2

√
2V log(1 + κ)

κ
+

√
log(2/δ)

κ

+

√
V log(1 + #Λ) + log(4/δ)

B
,

where κ = min{bn1/d1c, . . . , bnK/dKc} and bxc
denotes the integer part of any real number x.

Refer to the Appendix for the proof. The bounds stated
above show that, for a number B = Bn of terms tending
to infinity as n → +∞ at a rate O(n), the maximal
deviation supH∈H |ŨB(H) − θ(H)| is asymptotically of
the order OP(n−1/2), just like supH∈H |Un(H)− θ(H)|.
Remarkably, except in the case K = 1 and dK = 1
solely, using such incomplete U -statistics thus yields



a significant gain in terms of computational cost and
preserves the order of the probabilistic upper bounds
for the uniform deviation.

4 Applications

We now discuss the consequences of Theorem 3.1
through the examples introduced in section 2 (notice
that, in both cases, we haveMH = 1). Beyond theoret-
ical guarantees, the performance of algorithms based on
incomplete versions of the empirical counterpart of the
functional of interest is illustrated by numerical results,
supporting the efficiency of the sampling approach pro-
moted in this paper in the machine-learning context.

4.1 Sampling the risk in K-partite ranking We
place ourselves in the framework described in subsection
2.1. Here, the full sample size is n = n1 + . . .+nK . Let
(b1, b2, . . . , bK) be a sequence of nonnegative integers
such that:

∀k ∈ {1, . . . , K}, bk ∼ n1/K
k ∼ n1/K as n→ +∞.

The sampling scheme consists, for 1 ≤ k ≤ K, of
drawing with replacement bk observations in the sample
No. k: X(k)

i1
, . . . , X

(k)
ibk

. Set B = b1 × · · · × bK . Based
on the sampled data, we compute the following estimate
of the ranking performance criterion

L̃B(s) =
1
B

b1∑
l1=1

· · ·
bK∑
lK=1

I8<:s(X
(1)

i
(1)
l1

)<...<s(X
(K)

i
(K)
lK

)

9=;
,

and consider the maximizer over a class S of scoring
function candidates:

(4.9) ŝB = arg max
s∈S

L̃B(s).

The following result provides a rate bound for the rank-
ing performance of the scoring function above (neglect-
ing the bias term).

Corollary 4.1. Suppose that S is a VC major class
of functions of finite VC dimension V < +∞. Then,
for all δ ∈ (0, 1), we have with probability at least 1− δ:
∀n ∈ N∗K ,

(4.10) max
s∈S

L(s)− L(ŝB) ≤ c
√
V log(#Λ/δ)

n
,

for some constant c < +∞.

The proof immediately derives from Theorem 3.1, de-
tails are left to the reader. One should pay attention to

the fact that the deficit of ranking performance of the
rule obtained through maximization of statistics com-
puted by averaging O(n) terms is thus of the same or-
der as that of arg maxs∈S L̂n(s), whose computation re-
quires to evaluate averages extending over O(nK) terms.

Remark 2. (On fast rates) In the bipartite setup
(i.e. K = 2), situations where fast rates of convergence
can be achieved by arg maxs∈S L̂n(s) have been exhib-
ited; see [11]. In this regard, we point out that, in these
situations, the same rate bounds can be attained by ŝB ,
at the price of a higher computational cost (i.e. of a
larger asymptotic order for B) however.

A numerical example with K = 5. As an illus-
tration, we display below some results related to the
performance of the algorithm SVMrank (implemented
with default parameters, linear kernel and C = 20;
see [15]) using the SVM-light implementation available
at http://svmlight.joachims.org/. We simulated a
mixture of 5 Gaussian distributions on R2 with means
m1, . . . , m5 respectively, where mi = (i/6, i/6) for 1 ≤
i ≤ 5, and same covariance matrix (1/15, 0; 0, 1/15),
so that an optimal scoring function (w.r.t. the criterion
(2.1)) is given by: s(x, y) = x + y for all (x, y) ∈ R2.
We independently drew 50 training samples of size
n = 10 000 (2 000 per class) and a test sample of size
10 000. Inside each class, we drew with replacement b
observations and formed the datasetDb, for b = 20, 100.
The results, averaged over the 50 replications, are re-
ported in Table 1.

Table 1: Comparison of the empirical ranking perfor-
mance : ”ranking” experiment - L∗ = 0.1525

% of data 1% 5% 100%

L 0.1497 0.1520 0.1524
σ̂ 0.0041 0.0008 0.0002
time (in seconds) 10 200 148523

Figures speak volume. We see that, even for b = 20 (i.e
1% of the data), the performance is close to the optimum
L∗ for a computation time reduced by a factor 10000.
For b = 100 (i.e 5% of the data), it is quasi-optimal,
with a gain in time of a factor greater than 500.

LETOR4.0 datasets. We also imple-
mented the approach promoted in this pa-
per on the benchmark LETOR datasets, (see
research.microsoft.com/en-us/um/people/letor/),
by means of the same ranking algorithm as that used in
the previous experiment. To be more precise, we used
the two query sets MQ2007 and MQ2008, where pairs



”page-query” assigned to a discrete label ranging from
0 to 2 (i.e. ”non-relevant” - ”relevant” - ”extremely
relevant”) are gathered. In both datasets, 46 features
are collected, over 69 623 instances in MQ2007 and over
15 211 instances in MQ2008. In each case, an estimate
of the ranking risk L has been computed through 5
replications of a five-fold cross validation procedure,
the results (mean and standard error) are reported in
Tables 2 and 3. We also compute the Kendall τ statistic
τ̂ between the resulting rankings (recall that it ranges
from −1 ”full disagreement” to +1 ”full agreement”),
when using 1% ,5%, 10%, 20% and 100% of the data in
each of the K = 3 samples. The results are reported in
the Tables 2 and 3.

Table 2: Empirical ranking performance : ”LETOR 2008”.

% 1% 5% 10% 20% 100%

L 0.3735 0.3939 0.3992 0.4015 0.4088
σ̂ 0.0038 0.0040 0.0025 0.0027 0.0006
τ̂ 0.7648 0.8653 0.8937 0.9154 1

Figure 1: Empirical ranking performance for SVM-
rank based on 1%, 5%, 10%, 20% and 100% of the
”LETOR 2007” dataset.

Table 3: Empirical ranking performance : ”LETOR 2007”.

% 1% 5% 10% 20% 100%

L 0.2715 0.2894 0.2949 0.2963 0.3000
σ̂ 0.0077 0.0027 0.0017 0.0019 0.0004
τ̂ 0.6621 0.7651 0.8328 0.8501 1

In both experiments, we observe that, as bk/nk
increase, the ranking performance of the rules produced
by the algorithm gets rapidly closer and closer to that
of the ranking rule based on the whole dataset.

4.2 Sampling the distribution of risk exposures
We now turn to the second example; see subsection 2.2.
In order to avoid the computation of P̂{E ∈ R}, which
involves summing over #Λ = J

∏M
m=1

∏P
p=1 Lm,p terms

and is based on n = J+
∑M
m=1

∑P
p=1 Lm,p observations,

we draw with replacement B times in the index set
{1, . . . , J} ×

∏M
m=1

∏P
p=1{1, . . . , Lm,p}, so as to get

a set of indices DB of cardinality B. For any borelian
R ⊂ RM , the probability that exposure lies in the region
R is estimated by the incomplete U -statistics:

(4.11) P̃B{E ∈ R} =
1
B
×∑

(i,(lm,p))∈DB

In
(PP

p=1 ecm,p,lm,p · eQi,p)1≤m≤M
∈R

o.
Suppose that the class R is of finite VC dimension
V < +∞. Let α ∈ (0, 1) be the target mass and
δ ∈ (0, 1) be the desired confidence level. Define the
complexity penalty by:

(4.12) Φ(B,n, δ) = 2

√
2V log(1 + κ)

κ
+

√
log(2/δ)

κ

+

√
V log(1 + #Λ) + log(4/δ)

B
.

Consider the solution R̂α of the constrained optimiza-
tion problem:

(4.13) maximize λ(R) over R

subject to P̃{E ∈ R} ≥ α− Φ(B,n, δ).

The result below shows that, if the number B of
exposure values computed through the sampling scheme
is of the order O(n), the performance of R̂α is then
comparable to that of the region whose selection is based
on the quantities P̂{E ∈ R}, R ∈ R.

Corollary 4.2. For all δ ∈ (0, 1), we have with
probability at least 1− δ:

λ
(
R̂α

)
≤ inf
R∈R: P{E∈R}≥α

λ(R)

and
P
{
E ∈ R̂α

}
≥ α− 2Φ(B,n, δ).

This is a straightforward consequence of Theorem 3.1,
details are omitted (refer to the argument of Corollary
6 in [23] for further details).



Confidence regions for joint dietary exposure to
cadmium, mercury, PCB’s and sodium. Below,
we present numerical results where approximate solu-
tions of (4.13) are built by means of a dyadic recur-
sive partitioning scheme of the exposure space; see [6]
as well as section 7 in [23]. Dietary exposures to the
four substances are built based on French data sur-
veys. Contamination data (cadmium, mercury, PCB’s)
come from the second French Total Diet Study, [3],
and the sodium level is extracted from the Ciqual
table describing French food composition table; see
http://www.anses.fr/TableCIQUAL/. Based on those
datasets, P = 5 food groups containing either one or
more substances were composed (dairy products, meat
and eggs, fish, fruit and vegetables, other foods) accord-
ing to the similarity of their contamination/composition
levels totalizing

∑
m,p Lm,p = 2341 observations. Con-

sumption data for French adults (J = 2488, aged 18-
79 yo) was extracted from the INCA2 database, re-
lated to a French consumption survey conducted by the
French Agency for Food, Environmental and Occupa-
tional Health Safety in 2009, [1]. Interviewed individ-
uals reported their food consumption over 7 days, to-
gether with some sociodemographic variables including
their body weights.
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Figure 2: Cloud of rebuilt bivariate exposures to cad-
mium (x-axis) and mercury (y axis)and MV-set based
on the incomplete criterion (B = 10 000).

Table 4: Performance of the MV-set algorithm - M
substances. Each cell contains the optimal volume and
the test mass for a MV-set of level 95%.

M 2 3 4

n 3179 3529 4829
# Λ 2.96E+14 9.48E+21 6.89E+33

B = 5 000 0.01481 0.00146 0.00002
(95.2%) (93.7%) (92.3%)

B = 10 000 0.01423 0.00151 0.00002
(94.5%) (94.1%) (93.2%)

B = 20 000 0.01412 0.01407 0.00162
(95.0%) (95.0%) (94.5%)

Vectors of exposure (in R4) were generated by
selecting data from the consumption and contamina-
tion/composition datasets at random with replacement.
Whereas #Λ is equal to 6.9 1033 in this example, a
MV-set of level α = 95% has been learnt with only
B = 5000, 10 000, or 20 000 exposure vectors. The re-
sulting region was tested with a much larger sample of
exposures (1 000 000). Table 4 summarizes the resulting
test mass and volume obtained for the different sam-
pling sizes considering in turn M = 2 (cadmium and
mercury), M = 3 (cadmium, mercury, PCB’s) or all
M = 4 substances; the total number of observations n
and the total number of terms involved in the ”com-
plete” U -statistic #Λ are given in Table 4. The perfor-
mance of the algorithm clearly decreases when the di-
mension of the problem is increased. In the case M = 2,
the optimal region related to the exposure to cadmium
and mercury is illustrated in Fig. 4.2 (the exposure
values are normalized to (0, 1)). In higher dimensions,
resulting regions can simply be projected on pairs of
substances (the matlab/mex code we used is available at
http://web.eecs.umich.edu/∼cscott/code.html).

5 Conclusion

Though of great simplicity, the results stated in this
paper are of crucial importance in practice in the ”big
data” era. They hopefully shed light on tractable strate-
gies for implementing learning techniques, when the
(risk) functional has a statistical counterpart which is of
the form of a U -statistic. Whereas the theoretical prop-
erties of decision rules based on optimizing such statis-
tics are becoming well-documented in the machine-
learning literature, computational issues related to the
practical implementation of learning algorithms dedi-
cated to these optimization problems had not been tack-
led, to the best of our knowledge. The essential contri-
bution of this paper is to provide theoretical/empirical



evidence that using incomplete U -statistics as estimates
of the criterion of interest may provide a simple and el-
egant way of dramatically reducing computational cost
in practice, while yielding nearly optimal solutions. The
analysis, carried out here in a finite VC dimension
framework, suggests to investigate next the use of such
statistics for model selection issues and to study con-
centration properties of weighted multinomial random
variables involved in the maximal deviation between U -
statistics and their incomplete versions.

Appendix - Proof of Theorem 3.1

For convenience, we introduce the random sequence
ε = ((εk(I))I∈Λ)1≤k≤B , where εk(I) is equal to 1 if the
tuple I = (I1, . . . , IK) has been selected at the k-th
draw and to 0 otherwise: the εk’s are i.i.d. random
vectors and, for all (k, I) ∈ {1, . . . , B} × Λ, the r.v.
εk(I) has a Bernoulli distribution with parameter 1/#Λ.
We also set XI = (X(1)

I1
, . . . , X(K)

IK
) for any I in Λ.

Equipped with these notations, observe first that one
may write: ∀B ≥ 1, ∀n ∈ N∗K ,

ŨB(H)− Un(H) =
1
B

B∑
k=1

Zk(H),

where Zk(H) =
∑
I∈Λ(εk(I) − 1/#Λ)H(XI) for any

(k, I) ∈ {1, . . . , B} × Λ. It follows from the in-
dependence between the XI ’s and the ε(I)’s that,
for all H ∈ H, conditioned upon the XI ’s, the
variables Z1(H), . . . , ZB(H) are independent, cen-
tered and almost-surely bounded by 2MH (notice that∑
I∈Λ εk(I) = 1 for all k ≥ 1). By virtue of Sauer’s

lemma, since H is a VC major class with finite VC
dimension V, we have, for fixed XI ’s:

#{(H(XI))I∈Λ : H ∈ H} ≤ (1 + #Λ)V .

Hence, conditioned upon the XI ’s, using the union
bound and next Hoeffding’s inequality applied to the
independent sequence Z1(H), . . . , ZB(H), for all η >
0, we obtain that:

P
{

sup
H∈H

∣∣∣ŨB(H)− Un(H)
∣∣∣ > η | (XI)I∈Λ

}
≤ P

{
sup
H∈H

∣∣∣∣∣ 1
B

B∑
k=1

Zk(H)

∣∣∣∣∣ > η | (XI)I∈Λ

}
≤ 2(1 + #Λ)V e−Bη

2/M2
H ,

which proves the first assertion of the theorem. Notice
that this can be formulated: for any δ ∈ (0, 1), we have

with probability at least 1− δ:

sup
H∈H

∣∣∣ŨB(H)− Un(H)
∣∣∣ ≤MH×√
V log(1 + #Λ) + log(2/δ)

B
.

The second part of the theorem straightforwardly
results from the first part combined with the following
result, which extends Corollary 3 in [11] to the K-
sample situation.

Lemma 5.1. Suppose that Theorem 3.1’s hypotheses
are fulfilled. For all δ ∈ (0, 1), we have with probability
at least 1− δ,

1
MH

sup
H∈H

|Un(H)− θ(H)| ≤ 2

√
2V log(1 + κ)

κ

+

√
log(1/δ)

κ
.

proof. Set κ = min{bn1/d1c, . . . , bnK/dKc} and let

κ−1VH

(
X

(1)
1 , . . . , X(1)

n1
, . . . , X

(K)
1 , . . . , X(K)

nK

)
=

H
(
X

(1)
1 , . . . , X

(1)
d1
, . . . , X

(K)
1 , . . . , X

(K)
dK

)
+H

(
X

(1)
d1+1, . . . , X

(1)
2d1
, . . . , X

(K)
dK+1, . . . , X

(K)
2dK

)
+ . . .

+H
(
X

(1)
κd1−d1+1, . . . , X

(K)
κdK−dK+1, . . . , X

(K)
κdK

)
,

for any H ∈ H. Recall that the K-sample U -statistic
Un(H) can be expressed as

Un(H) =
1

n1! · · ·nK !
×∑

σ1∈Sn1 , ..., σK∈SnK

V
(
X

(1)
σ1(1), . . . , X

(K)
σK(nK)

)
,

where Sm denotes the symmetric group of order m for
any m ≥ 1. This representation as an average of sums of
κ independent terms is known as the (first) Hoeffding’s
decomposition; see [16]. Then, using Jensen’s inequality
in particular, one may easily show that, for any nonde-
creasing convex function ψ : R+ → R, the quantity
E[ψ(supH∈H |Un(H̄)|)] is bounded by

E
[
ψ

(
sup
H∈H

∣∣∣VH̄(X(1)
1 , . . . , X(K)

nK
)
∣∣∣)] ,

where we set H̄ = H − θ(H) for all H ∈ H. Now, using
standard symmetrization and randomization arguments



(see [14] for instance) and the bound above, we obtain
that

(5.14) E
[
ψ

(
sup
H∈H

∣∣Un(H̄)
∣∣)] ≤ E [ψ (2Rκ)] ,

where

Rκ = sup
H∈H

1
κ

κ∑
l=1

εlH
(
X

(1)
(l−1)d1+1, . . . , X

(K)
ldK

)
,

is a Rademacher average based on the Rademacher
chaos ε1, . . . , εκ (independent random sym-
metric sign variables), independent from the
X

(k)
i ’s. We now apply the bounded difference

inequality (see [21]) to the functional Rκ, seen
as a function of the i.i.d. random variables
(εl, X

(1)
(l−1)d1+1, . . . , X

(1)
ld1
, . . . , X

(K)
(l−1)dK+1, . . . , X

(K)
ldK

),
1 ≤ l ≤ κ: changing any of these random variables
change the value of Rκ by at most MH/κ. One thus
obtains from (5.14) with ψ(x) = exp(λx), where λ > 0
is a parameter which shall be chosen later, that:
(5.15)

E
[
exp

(
λ sup
H∈H

∣∣Un(H̄)
∣∣)] ≤ exp

(
2λE[Rκ] +

M2
Hλ

2

4κ

)
.

Applying Chernoff’s method, one then gets:

(5.16) P
{

sup
H∈H

∣∣Un(H̄)
∣∣ > η

}
≤

exp
(
−λη + 2λE[Rκ] +

M2
Hλ

2

4κ

)
.

Using the bound (see Eq. (6) in [8] for instance)

E[Rκ] ≤MH

√
2V log(1 + κ)

κ

and taking λ = 2κ(η − 2E[Rκ])/M2
H in (5.16) finally

establishes the desired result.
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