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AN EXPLICIT FORMULA
FOR THE CUBIC SZEGŐ EQUATION

PATRICK GÉRARD AND SANDRINE GRELLIER

Abstract. We derive an explicit formula for the general solu-
tion of the cubic Szegő equation and of the evolution equation
of the corresponding hierarchy. As an application, we prove that
all the solutions corresponding to finite rank Hankel operators are
quasiperiodic.

1. Introduction

This paper is a continuation of the study of dynamical properties
of an integrable system introduced by the authors in [2], [3]. As an
evolution equation, the cubic Szegő equation is a simple model of non
dispersive dynamics. More precisely, it can be identified as a first order
Birkhoff normal form for a certain nonlinear wave equation, see [4]. As
an Hamiltonian equation, it was proved in [2] to admit a Lax pair
and finite dimensional invariant submanifolds corresponding to some
finite rank conditions. In [3], action angle variables were introduced
on generic subsets of the phase space, and on open dense subsets of
the finite rank submanifolds. However, unlike the KdV equation or the
one dimensional cubic nonlinear Schrödinger equation, this integrable
system displays some degeneracy, since the collection of its conservation
laws do not control the high regularity of the solution, as observed
in [2]. An important consequence of this instability phenomenon is
that the action angle variables cannot be extended to the whole phase
space, even when restricted to one of the finite rank submanifolds. Our
purpose in this paper is to prove a formula for the general solution of the
initial value problem for this equation. In the case of generic data, this
formula reduces to the one given by the action angle variables above.
However, the formula enables to study the non generic case too, and
allows in particular to establish the quasiperiodicity of all solutions
lying in one of the above finite rank submanifolds, despite the already
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EXPLICIT FORMULA FOR THE CUBIC SZEGŐ EQUATION 2

mentioned lack of a global system of action–angle variables. Finally,
this formula is also very useful to revisit the instability phenomenon
displayed in [2]. We now introduce the general setting of this equation.

1.1. The setting. Let T = R/2πZ, endowed with the Haar integral∫
T

f :=
1

2π

2π∫
0

f(x) dx .

On L2(T), we use the inner product

(f |g) :=

∫
T

fg .

The family of functions (eikx)k∈Z is an orthonormal basis of L2(T), on
which the components of f ∈ L2(T) are the Fourier coefficients

f̂(k) := (f |eikx) .
We introduce the closed subspace

L2
+(T) := {u ∈ L2(T) : ∀k < 0, û(k) = 0} .

Notice that elements u ∈ L2
+(T) identify to traces of holomorphic func-

tions u on the unit disc D such that

sup
r<1

2π∫
0

|u(reix)|2dx <∞ ,

via the correspondence

u(z) :=
∞∑
k=0

û(k)zk , z ∈ D , u(x) = lim
r→1

u(reix) ,

which establishes a bijective isometry between L2
+(T) and the Hardy

space of the disc.

We denote by Π the orthogonal projector from L2(T) onto L2
+(T),

known as the Szegő projector,

Π

(
∞∑

k=−∞

f̂(k)eikx

)
=
∞∑
k=0

f̂(k)eikx .

On L2
+(T), we introduce the symplectic form

ω(h1, h2) = Im(h1|h2) .

The densely defined energy functional

E(u) :=
1

4

∫
T

|u|4 ,
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formally corresponds to the Hamiltonian evolution equation,

(1) iu̇ = Π(|u|2u) ,

which we called the cubic Szegő equation. In [2], we solved the initial
value problem for this equation on the intersections of Sobolev spaces
with L2

+(T). More precisely, define, for s ≥ 0,

Hs
+(T) := Hs(T) ∩ L2

+(T) = {u ∈ L2
+(T) :

∞∑
k=0

|û(k)|2(1 + k2)s <∞} .

Then equation (1) defines a smooth flow on Hs
+(T) for s > 1

2
, and a

continuous flow on H
1
2
+(T). The main result of this paper provides an

explicit formula for the solution of this initial value problem.

1.2. Hankel operators and the explicit formula. Let u ∈ H
1
2
+(T).

We denote by Hu the C–antilinear operator defined on L2
+(T) as

Hu(h) = Π(uh) , h ∈ L2
+(T) .

In terms of Fourier coefficients, this operator reads

Ĥu(h)(n) =
∞∑
p=0

û(n+ p)ĥ(p) .

In particular, its Hilbert–Schmidt norm is finite since u ∈ H
1
2
+(T). We

call Hu the Hankel operator of symbol u. Notice that this definition
is different from the standard ones used in references [9], [11], where
Hankel operators are rather defined as linear operators from L2

+ into
its orthogonal complement. The link between these two definitions can
be easily established by means of the involution

f ](x) = e−ixf(x) .

Notice that, with our definition, Hu satisfies the following self adjoint-
ness identity,

(2) (Hu(h1)|h2) = (Hu(h2)|h1) , h1, h2 ∈ L2
+(T) .

A fundamental property of Hankel operators is their connection with
the shift operator S, defined on L2

+(T) as

Su(x) = eixu(x) .

This property reads

S∗Hu = HuS = HS∗u ,

where S∗ denotes the adjoint of S. We denote by Ku this operator,
and call it the shifted Hankel operator of symbol u. Notice that Ku
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is Hilbert–Schmidt and self adjoint as well. As a consequence, opera-
tors H2

u and K2
u are C–linear trace class positive operators on L2

+(T).
Moreover, they are related by the following important identity,

(3) K2
u = H2

u − (·|u)u .

Theorem 1. Let u0 ∈ H
1
2
+(T), and u ∈ C(R, H

1
2
+(T)) be the solution

of equation (1) such that u(0) = u0. Then

u(t, z) = ((I − ze−itH
2
u0eitK

2
u0S∗)−1e−itH

2
u0u0 | 1) .

The proof of this theorem will be given in section 3. It is a non trivial
consequence of the Lax pair structure recalled in section 2. Our second
result concerns the special case of data u0 such that Hu0 is of finite rank.
In this case, operators S∗, H2

u0
, K2

u0
act on a finite dimensional space

containing u0, and the implementation of the above formula reduces to
diagonalization of matrices.

1.3. Finite rank manifolds and quasiperiodicity. Let d be a pos-

itive integer. We denote by V(d) the set of u ∈ H
1
2
+(T) such that

rkHu =

[
d+ 1

2

]
, rkKu =

[
d

2

]
,

where [x] denotes the integer part of x ∈ R. Using Kronecker’s theorem
[6], one can show that V(d) is a complex Kähler submanifold of L2

+(T)
of dimension d — see the appendix of [2] —, consisting of rational
functions of eix. More precisely, V(d) consists of functions of the form

u(x) =
A(eix)

B(eix)
,

where A,B are polynomials with no common factors, B has no zero in
the closed unit disc, B(0) = 1, and

• If d = 2N is even, the degree of A is at most N − 1 and the
degree of B is exactly N .
• If d = 2N + 1 is odd, the degree of A is exactly N and the

degree of B is at most N .

Using the Lax pair structure recalled in section 2, V(d) is invariant
through the flow of (1).

Theorem 2. For every u0 ∈ V(d), the map

t ∈ R 7→ u(t) ∈ V(d)

is quasiperiodic. More precisely, there exist a positive integer n, real
numbers ω1, · · · , ωn, and a smooth mapping

Φ : Tn → V(d)

such that, for every t ∈ R,

u(t) = Φ(ω1t, · · · , ωnt) .
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In particular, for every s > 1
2
,

(4) sup
t∈R
‖u(t)‖Hs < +∞ .

Notice that property (4) was established in Theorem 7.1 of [2] under
the additional generic assumption that u0 belongs to V(d)gen, namely
that the vectors H2n

u0
(1), n = 1, . . . , N =

[
d+1

2

]
, are linearly indepen-

dent. Our general formula allows us to extend property (4) to all data
in V(d). However, it should be emphasized that, while it is clear from
the arguments of Lemma 5 in [2] that estimate (4) is uniform if u0

varies in a compact subset of V(d)gen, (4) does not follow from an a
priori estimate on the whole of V(d), in the sense that one can find
families of data (uε0) in V(d), belonging to a compact subset of V(d),
in particular bounded in all Hs, and such that

sup
ε

sup
t∈R
‖uε(t)‖Hs =∞ , s >

1

2
,

see corollary 5 of [2]. We shall revisit this phenomenon in section 4
thanks to the explicit formula of Theorem 1.

Finally, let us mention that the generalization of property (4) to non
finite rank solutions is an open problem.

1.4. Organization of the paper. Section 2 is devoted to recalling the
crucial Lax pair structure attached to equation (1). As a fundamental
consequence, Hu(t) and Ku(t) remain unitarily equivalent to their re-
spective initial data. In section 3, we take advantage of this structure
to derive Theorem 1. In section 4, we apply this theorem to the par-
ticular case of data u0 belonging to V(3), which sheds a new light on
the instability phenomenon. The next two sections are devoted to the
proof of Theorem 2. As a preparation, we first generalize the explicit
formula to Hamiltonian flows associated to energies

Jy(u) := ((I + yH2
u)−1(1)|1) ,

where y is a positive parameter. The quasi periodicity theorem then
follows by observing, through an interpolation argument, that the map
Φ in the statement of Theorem 2 can be defined as the value at time 1
of the Hamiltonian flow corresponding to a suitable linear combination
of energies Jy.

2. The Lax pair structure

In this section, we recall the Lax pairs associated to the cubic Szegő
equation, see [2], [3]. First we introduce the notion of a Toeplitz oper-
ator. Given b ∈ L∞(T), we define Tb : L2

+ → L2
+ as

Tb(h) = Π(bh) , h ∈ L2
+ .
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Notice that Tb is bounded and T ∗b = Tb. The starting point is the
following lemma.

Lemma 1. Let a, b, c ∈ Hs
+, s > 1

2
. Then

HΠ(abc) = TabHc +HaTbc −HaHbHc .

Proof. Given h ∈ L2
+, we have

HΠ(abc)(h) = Π(abch) = Π(abΠ(ch)) + Π(ab(I − Π)(ch))

= TabHc(h) +Ha(g) , g := b(I − Π)(ch) .

Since g ∈ L2
+,

g = Π(g) = Π(bch)− Π(bΠ(ch)) = Tbc(h)−HbHc(h) .

This completes the proof. �

Using Lemma 1 with a = b = c = u, we get

(5) HΠ(|u|2u) = T|u|2Hu +HuT|u|2 −H3
u .

Theorem 3. Let u ∈ C∞(R, Hs
+), s > 1

2
, be a solution of (1). Then

dHu

dt
= [Bu, Hu] , Bu :=

i

2
H2
u − iT|u|2 ,

dKu

dt
= [Cu, Ku] , Cu :=

i

2
K2
u − iT|u|2 .

Proof. Using equation (1) and identity (5),

dHu

dt
= H−iΠ(|u|2u) = −iHΠ(|u|2u) = −i(T|u|2Hu +HuT|u|2 −H3

u) .

Using the antilinearity of Hu, this leads to the first identity. For the
second one, we observe that

(6) KΠ(|u|2u) = HΠ(|u|2u)S = T|u|2HuS +HuT|u|2S −H3
uS .

Moreover, notice that

Tb(Sh) = STb(h) + (bSh|1) .

In the case b = |u|2, this gives

T|u|2Sh = ST|u|2h+ (|u|2Sh|1) .

Moreover,
(|u|2Sh|1) = (u|uSh) = (u|Ku(h)) .

Consequently,

HuT|u|2Sh = KuT|u|2h+ (Ku(h)|u)u .

Coming back to (6), we obtain

KΠ(|u|2u) = T|u|2Ku +KuT|u|2 − (H2
u − (·|u)u)Ku .

Using identity (3), this leads to

(7) KΠ(|u|2u) = T|u|2Ku +KuT|u|2 −K3
u .
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The second identity is therefore a consequence of antilinearity and of

dKu

dt
= −iKΠ(|u|2u) .

�

Observing that Bu, Cu are linear and antiselfadjoint, we obtain, fol-
lowing a classical argument due to Lax [7],

Corollary 1. Under the conditions of Theorem 3, define U = U(t),
V = V (t) the solutions of the following linear ODEs on L(L2

+),

dU

dt
= BuU ,

dV

dt
= CuV , U(0) = V (0) = I .

Then U(t), V (t) are unitary operators and

Hu(t) = U(t)Hu(0)U(t)∗ , Ku(t) = V (t)Ku(0)V (t)∗ .

3. Proof of the formula

In this section, we prove Theorem 1. Our starting point is the fol-
lowing identity, valid for every v ∈ L2

+,

(8) v(z) = ((I − zS∗)−1v|1) , z ∈ D .

Indeed, the Taylor coefficient of order n of the right hand side at z = 0
is

((S∗)nv|1) = (v|Sn1) = v̂(n) ,

which coincides with the Taylor coefficient of order n of the left hand
side. Let u ∈ C∞(R, Hs

+) be a solution of (1), s > 1
2
. Applying (8) to

v = u(t) and using the unitarity of U(t), we get

u(t, z) = ((I − zS∗)−1u(t)|1) = (U(t)∗(I − zS∗)−1u(t)|U(t)∗1) ,

which yields

(9) u(t, z) = ((I − zU(t)∗S∗U(t))−1U(t)∗u(t)|U(t)∗1) .

We shall identify successively U(t)∗1, U(t)∗u(t), and the restriction of
U(t)∗S∗U(t) on the range of Hu0 . We begin with U(t)∗1,

d

dt
U(t)∗1 = −U(t)∗Bu(1) ,

and

Bu(1) =
i

2
H2
u(1)− iT|u|2(1) = − i

2
H2
u(1) .

Hence
d

dt
U(t)∗1 =

i

2
U(t)∗H2

u(1) =
i

2
H2
u0
U(t)∗1 ,

where we have used corollary 1. This yields

(10) U(t)∗1 = ei
t
2
H2

u0 (1) .



EXPLICIT FORMULA FOR THE CUBIC SZEGŐ EQUATION 8

Consequently,

U(t)∗u(t) = U(t)∗Hu(t)(1) = Hu0U(t)∗(1) = Hu0e
i t
2
H2

u0 (1) ,

and therefore

(11) U(t)∗u(t) = e−i
t
2
H2

u0 (u0) .

Finally,

U(t)∗S∗U(t)Hu0 = U(t)∗S∗Hu(t)U(t) = U(t)∗Ku(t)U(t) ,

and therefore

(12) U(t)∗S∗U(t)Hu0 = U(t)∗V (t)Ku0V (t)∗U(t) .

On the other hand,

d

dt
U(t)∗V (t) = −U(t)∗Bu(t)V (t) + U(t)∗Cu(t)V (t) = U(t)∗(Cu(t) −Bu(t))V (t)

=
i

2
U(t)∗(K2

u(t) −H2
u(t))V (t) =

i

2
(U(t)∗V (t)K2

u0
−H2

u0
U(t)∗V (t)) .

We infer

U(t)∗V (t) = e−i
t
2
H2

u0ei
t
2
K2

u0 .

Plugging this identity into (12), we obtain

U(t)∗S∗U(t)Hu0 = e−i
t
2
H2

u0ei
t
2
K2

u0Ku0e
−i t

2
K2

u0ei
t
2
H2

u0

= e−i
t
2
H2

u0eitK
2
u0Ku0e

i t
2
H2

u0

= e−i
t
2
H2

u0eitK
2
u0S∗Hu0e

i t
2
H2

u0

= e−i
t
2
H2

u0eitK
2
u0S∗e−i

t
2
H2

u0Hu0 .

We conclude that, on the range of Hu0 ,

(13) U(t)∗S∗U(t) = e−i
t
2
H2

u0eitK
2
u0S∗e−i

t
2
H2

u0 .

It remains to plug identities (10), (11), (13) into (9). We finally obtain

u(t, z) = ((I − ze−i
t
2
H2

u0eitK
2
u0S∗e−i

t
2
H2

u0 )−1e−i
t
2
H2

u0 (u0)|ei
t
2
H2

u0 (1))

= ((I − ze−itH
2
u0eitK

2
u0S∗)−1e−itH

2
u0 (u0)|1) ,

which is the claimed formula in the case of data u0 ∈ Hs
+, s >

1
2
. The

case u0 ∈ H
1
2
+ follows by a simple approximation argument. Indeed, we

know from [2], Theorem 2.1, that, for every t ∈ R, the mapping u0 7→
u(t) is continuous on H

1
2
+. On the other hand, the maps u0 7→ Hu0 , Ku0

are continuous from H
1
2
+ into L(L2

+). Since H2
u0
, K2

u0
are selfadjoint, the

operator

e−itH
2
u0eitK

2
u0S∗

has norm at most 1. Hence, for z ∈ D, the right hand side of the

formula is continuous from H
1
2
+ into C.
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4. An example

This section is devoted to revisiting sections 6.1, 6.2 of [2] by means
of the explicit formula. Given ε ∈ R, we define

uε0(x) = eix + ε .

It is easy to check that uε0 ∈ V(3), hence the corresponding solution uε

of (1) is valued in V(3), and consequently reads

uε(t, x) =
aε(t)eix + bε(t)

1− pε(t)eix
,

with aε(t) ∈ C∗, bε(t) ∈ C, pε(t) ∈ D, aε(t) + bε(t)pε(t) 6= 0. We are
going to calculate these functions explicitly. We start with the special
case ε = 0. In this case, |u0

0| = 1, hence

u0(t, x) = e−itu0
0(x)

so

a0(t) = e−it , b0(t) = 0 , p0(t) = 0 .

We come to ε 6= 0. The operators H2
u0
, K2

u0
, S∗ act on the range of Huε0

,
which is the two dimensional vector space spanned by 1, eix. In this
basis, the matrices of these three operators are respectively

M(H2
u0

) =

(
1 + ε2 ε
ε 1

)
, M(K2

u0
) =

(
1 0
0 0

)
, M(S∗) =

(
0 1
0 0

)
.

The eigenvalues of H2
u0

are

ρ2
± = 1 +

ε2

2
± ε
√

1 +
ε2

4
,

hence the matrix of the exponential is given by

M
(

e−itH
2
u0

)
=

e−itρ
2
+ − e−itρ

2
−

ρ2
+ − ρ2

−
M(H2

u0
) +

ρ2
−e−itρ

2
+ − ρ2

+e−itρ
2
−

ρ2
− − ρ2

+

I

=
e−iΩt

2ω

(
−2i sin (ωt)M(H2

u0
) + (2ω cos(ωt) + 2iΩ sin(ωt))I

)
where ω := ε

√
1 +

ε2

4
, Ω := 1 +

ε2

2
.

We obtain

e−itH
2
u0 (u0) =

e−iΩt

2ω

(
−2iεΩ sin(ωt) + 2εω cos(ωt) + (2ω cos(ωt)− iε2 sin(ωt))eix

)
,

M
(

e−itH
2
u0eitK

2
u0S∗

)
=

e−it
ε2

2

2ω

(
0 2ω cos(ωt)− iε2 sin(ωt)
0 −2iε sin(ωt)

)
,
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Figure 4.1. The trajectory of pε for small ε.

and finally

aε(t) = e−it(1+ε2) , bε(t) = e−it(1+ε2/2)

(
ε cos(ωt)− i 2 + ε2

√
4 + ε2

sin(ωt)

)
pε(t) = − 2i√

4 + ε2
sin(ωt) e−itε

2/2 , ω :=
ε

2

√
4 + ε2 .

The important feature of such dynamics concerns the regime ε → 0.
Though p0(t) ≡ 0, pε(t) may visit small neighborhoods of the unit
circle at large times. Specifically, at time tε = π/(2ω) ∼ π/(2ε), we
have |pε(t)| ∼ 1− ε2. A consequence is that the momentum density,

µn(tε) := n|ûε(tε, n)|2 = n|aε(tε) + bε(tε)pε(tε)|2|pε(tε)|2(n−1)

= n
ε4

(4 + ε2)2

(
1− ε2

4 + ε2

)n−1

,

which satisfies
∞∑
n=1

µn(tε) = Tr(K2
uε(tε)) = Tr(K2

uε0
) = 1 ,

becomes concentrated at high frequencies

n ' 1

ε2
.

This induces the following instability of Hs norms

‖uε(tε)‖Hs ' 1

ε2s−1
, s >

1

2
,

a phenomenon of the same nature as the one displayed by Colliander,
Keel, Staffilani, Takaoka and Tao in [1]. This proves in particular that
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conservation laws do not control Hs regularity for s > 1
2
. Notice that,

as already mentioned at the end of subsection 1.3 of the introduction,
the family (uε0) approaches u0

0, which is a non generic element of V(3),
since H2

u0
admits 1 as a double eigenvalue.

This example naturally leads to the question of large time behavior of
the Hs norm of individual solutions for s > 1

2
. We are going to answer

this question in the special case of finite rank solutions by proving the
quasi periodicity theorem in the next two sections.

5. Generalization to the Szegő hierarchy

The Szegő hierarchy was introduced in [2] and used in [3]. For the
convenience of the reader, and because our notation is slightly different,

we shall recall the main facts here. For y > 0 and u ∈ H
1
2
+, we set

Jy(u) = ((I + yH2
u)−1(1)|1) .

Notice that the connection with the Szegő equation is made by

E(u) =
1

4
(∂2
yJ

y
|y=0 − (∂yJ

y
|y=0)2) .

For every s > 1
2
, Jy is a smooth real valued function on Hs

+, and its
Hamiltonian vector field is given by

XJy(u) = 2iywyHuw
y , wy := (I + yH2

u)−1(1) ,

which is a Lipschitz vector field on bounded subsets of Hs
+. This fact is

a consequence of the following lemma, where we collect basic estimates.
We recall that the Wiener algebra W is the space of f ∈ L2

+ such that

‖f‖W :=
∞∑
k=0

|f̂(k)| <∞ .

Lemma 2. Let f, u, v ∈ L2
+.

‖Huf‖W ≤ ‖u‖W‖f‖W ,

‖Huf‖Hs− 1
2
≤ ‖u‖Hs‖f‖L2 , s ≥ 1

2
,

‖Huf‖Hs ≤ ‖u‖Hs‖f‖W , s ≥ 0 ,

‖wy‖Hs ≤ (1 + y‖u‖2
Hs) , s > 1 ,

‖fg‖Hs ≤ Cs(‖f‖W‖g‖Hs + ‖g‖W‖f‖Hs) ,

‖XJy(u)−XJy(v)‖Hs ≤ Cs(R, y)‖u− v‖Hs , s > 1 , ‖u‖Hs + ‖v‖Hs ≤ R .

Proof. The first three estimates are straightforward consequences of
the formula

Ĥuf(k) =
∞∑
`=0

û(k + `)f̂(`) .
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The fourth estimate comes from these estimates and the fact that

wy = 1− yH2
uw

y , ‖wy‖L2 ≤ 1 .

The fifth estimate is obtained by decomposing

f̂ g(k) =
∞∑
`=0

f̂(k − `)ĝ(`) =
∑
|k−`|≤`

f̂(k − `)ĝ(`) +
∑
|k−`|>`

f̂(k − `)ĝ(`) .

As for the last estimate, we set

wy[u] := (I + yH2
u)−1(1) .

We write

‖wy[u]−wy[v]‖L2 = y‖(I+yH2
u)−1(H2

v−H2
u)(I+yH2

v )−1(1)‖L2 ≤ yR‖u−v‖Hs .

Then, by using again the first two inequalities,

wy[u]− wy[v] = y(H2
v (wy[v])−H2

u(wy[u]))

leads to

‖wy[u]− wy[v]‖Hs ≤ C(R, y)‖u− v‖Hs .

Using moreover the fact that Hs is an algebra, this yields the desired
estimate. �

By the Cauchy–Lipschitz theorem, the evolution equation

(14) u̇ = XJy(u)

admits local in time solutions for every initial data in Hs
+ for s > 1,

and the lifetime is bounded from below if the data are bounded in Hs
+.

We shall see that this evolution equation admits a Lax pair structure
similar to the one in section 2.

Theorem 4. For every u ∈ Hs
+, we have

HiXJy (u) = HuF
y
u + F y

uHu ,

KiXJy (u) = KuG
y
u +Gy

uKu ,

Gy
u(h) := −ywy Π(wy h) + y2Huw

y Π(Huwy h) ,

F y
u (h) := Gy

u(h)− y2(h|Huw
y)Huw

y .

If u ∈ C∞(I, Hs
+) is a solution of equation (14) on a time interval I,

then

dHu

dt
= [By

u, Hu] ,
dKu

dt
= [Cy

u, Ku] ,

By
u = −iF y

u , C
y
u = −iGy

u .

Proof.

Lemma 3. We have the following identity,

HaHu(a)(h) = Hu(a)Ha(h) +Hu(aΠ(ah)− (h|a)a) .
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Proof.

HaHu(a)(h) = Π(aHu(a)h) = Hu(a)Ha(h) + Π(Hu(a)(I − Π)(ah)) .

On the other hand,

(1− Π)(ah) = Π(ah)− (a|h) .

The lemma follows by plugging the latter formula into the former one.
�

Let us complete the proof. Using the identity

wy = 1− yH2
uw

y,

and Lemma 3 with a = Hu(w
y), we get

Hwy Hu(wy)(h) = HHu(wy)(h)− yHHu(wy)H2
u(wy)(h)

= HHu(wy)(h)− yH2
u(wy)HHu(wy)(h)− yHu

(
Hu(w

y)Π(Hu(wy)h)− (h|Hu(w
y))Hu(w

y)
)

= wyHHu(wy)(h)− yHu

(
Hu(w

y)Π(Hu(wy)h)− (h|Hu(w
y))Hu(w

y)
)

= wy Π(wyHuh)− yHu

(
Hu(w

y)Π(Hu(wy)h)− (h|Hu(w
y))Hu(w

y)
)
.

We therefore have obtained

Hwy Hu(wy) = LyuHu +HuR
y
u

where Lyu and Ry
u are the following self adjoint operators,

Lyu(h) = wy Π(wy h) , Ry
u(h) = −y

(
Hu(w

y)Π(Hu(wy)h)− (h|Hu(w
y))Hu(w

y)
)
.

Consequently, since Hwy Hu(wy) is self adjoint,

Hwy Hu(wy) =
1

2
(Lyu +Ry

u)Hu +Hu
1

2
(Lyu +Ry

u) .

Multiplying by −2y, we obtain the desired formula, since

F y
u = −y(Lyu +Ry

u) .

We now come to the second identity. From the first one, we get

(15) KiXJy (u) = HiXJy (u)S = HuF
y
uS + F y

uKu .

For every h, v ∈ L2
+, we use

Π(vSh) = SΠ(vh) + (Sh|v)

and infer

F y
uSh = −ywy Π(wy Sh) + y2Huw

y Π(Huwy Sh)− y2(Sh|Huw
y)Huw

y

= SGy
uh− y(Sh|wy)wy = SGy

uh+ y2(Sh|H2
uw

y)wy

= SGy
uh+ y2(Hu(w

y)|Ku(h))wy ,

where we have used wy = 1− yH2
uw

y again. Plugging this identity into
(15), we obtain the claim.
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The last formulae are straightforward consequences of the antilinearity
of Hu and Ku. �

Using Theorem 4 in a similar way to section 2, we derive

Corollary 2. Under the conditions of Theorem 4, assuming moreover
0 ∈ I, define Uy = Uy(t), V y = V y(t) the solutions of the following
linear ODEs on L(L2

+),

dUy

dt
= By

u U
y ,

dV y

dt
= Cy

u V
y , Uy(0) = V y(0) = I .

Then Uy(t), V y(t) are unitary operators and

Hu(t) = Uy(t)Hu(0)U
y(t)∗ , Ku(t) = V y(t)Ku(0)V

y(t)∗ .

At this stage, we are going to generalize slightly the setting, for the
needs of the next section. Let y1, . . . , yn be positive numbers, and
a1, . . . , an be real numbers. We consider the functional

Ĵ(u) =
n∑
k=1

akJ
yk(u) = (f(H2

u)1|1) , f(s) :=
n∑
k=1

ak
1 + yks

,

and the evolution equation

(16) u̇ = XĴ(u) .

By linearity from Theorem 4, it is clear that the solution of (16) satisfies

(17)
dHu

dt
= [B̂u, Hu] ,

dKu

dt
= [Ĉu, Ku] ,

with

(18) B̂u =
n∑
k=1

akB
yk
u , Ĉu =

n∑
k=1

akC
yk
u .

Corollary 3. Let u be a solution of equation (16) on some time in-

terval I containing 0, define Û = Û(t), V̂ = V̂ (t) the solutions of the
following linear ODEs on L(L2

+),

dÛ

dt
= B̂u Û ,

dV̂

dt
= Ĉu V̂ , Û(0) = V̂ (0) = I .

Then Û(t), V̂ (t) are unitary operators and

Hu(t) = Û(t)Hu(0)Û(t)∗ , Ku(t) = V̂ (t)Ku(0)V̂ (t)∗ .

As a consequence of this corollary, if we start from an initial datum
u(0) such that Hu(0) is a trace class operator, then Hu(t) is trace class
for every t, with the same trace norm. By Peller’s theorem [11], Chap.
6, Theorem 1.1, the trace norm of Hu is equivalent to the norm of u
in the Besov space B1

1,1, which is contained into W and contains Hs
+

for every s > 1. Consequently, if u(0) ∈ Hs
+ for some s > 1, then u(t)

stays bounded in W . We claim that, if u(0) is in V(d), the evolution
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can be continued for all time. Moreover, since the ranks of Hu(t) and
Ku(t) are conserved in view of Corollary 3, this evolution takes place in
V(d) if u(0) ∈ V(d).

Corollary 4. The equation (16) defines a smooth flow on Hs
+ for every

s > 1 and on V(d) for every d.

In view of the Gronwall lemma, the statement is an easy consequence
of the following estimate.

Lemma 4. Let R, y ≥ 0, s > 1 be given. There exists C(d,R, y, s) > 0
such that, for every u ∈ V(d) with ‖u‖W ≤ R,

‖XJy(u)‖Hs ≤ C(d,R, y, s)(1 + ‖u‖Hs) .

Proof. By using Lemma 2, we are reduced to prove

‖wy‖W ≤ B(d,R, y) .

We set N =
[
d+1

2

]
. The above estimate is an easy consequence of

(I +H2
u)−1 =

N∑
k=0

akH
2k
u ,

with |ak| ≤ 1 for k = 0, . . . , N . In fact, the Cayley–Hamilton theorem
yields

(H2
u)N+1 =

N∑
k=1

(−1)k−1Sk(H
2
u)N−k+1 , Sk :=

∑
`1<···<`k

ρ2
`1
. . . ρ2

`k
,

and one can easily check that

ak = (−1)k

1 +
N−k∑
j=1

Sj

1 +
N∑
j=1

Sj

, k = 0, . . . , N .

where ρ2
1 ≥ · · · ≥ ρ2

N are the positive eigenvalues of H2
u, listed with

their multiplicities. �

Remark 1. For general data u(0) ∈ Hs
+, one can prove similarly that

the solution can be continued for all time if y‖u(0)‖Hs is small enough,
or just if yTr|Hu(0)| is small enough.

Our next step is to derive an explicit formula for the solution of
(16) along the same lines as in section 3. The starting points are the
formulae

By
u(1) = iyJy(u)wy

Cy
u −By

u = −iy2(·|Huw
y)Huw

y

= iyJy(u)((I + yH2
u)−1 − (I + yK2

u)−1) ,
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where we have used the identity K2
u = H2

u − (·|u)u . This leads to

B̂u(1) = ig(H2
u)(1) , g(s) :=

n∑
k=1

akykJ
yk(u)

1 + yks
,

Ĉu − B̂u = i(g(H2
u)− g(K2

u)) .

Arguing exactly as in section 3, we obtain the following formula.

Theorem 5. The solution u of equation (16) with initial data u(0) =
u0 ∈ Hs

+, s > 1, is given by

(19) u(t, z) = ((I − ze2itg(H2
u0

)e−2itg(K2
u0

)S∗)−1e2itg(H2
u0

)u0 | 1) , z ∈ D ,

where

g(s) :=
n∑
k=1

akykJ
yk(u)

1 + yks
.

6. Proof of the quasiperiodicity theorem

In this section, we prove Theorem 2. Let u0 ∈ V(d) be given. Firstly
we show that t 7→ u(t) is a quasi periodic function valued into V(d).
Denote by Σ the union of the spectra of H2

u0
and K2

u0
. We claim that

it is enough to prove that, for any function ω : Σ→ T, the formula

Φ(ω)(z) = ((I − ze−iω(H2
u0

)eiω(K2
u0

)S∗)−1e−iω(H2
u0

)u0 | 1) , z ∈ D ,

defines an element Φ(ω) ∈ V(d). Indeed, if this is established, Theorem
1 exactly claims that u(t) = Φ(tω), where, for every s ∈ Σ, ω(s) =
s mod 2π . Moreover, it is clear from the above formula that Φ(ω) is a
rational function with coefficients smoothly dependent on ω ∈ TΣ, so
that Φ is smooth as a map from TΣ to V(d).

Let ω ∈ TΣ. For each s ∈ Σ, we represent ω(s) by some element
of [0, 2π), still denoted by ω(s). Fix n = |Σ| and let y1, . . . , yn be n
positive numbers pairwise distinct. Then the matrix(

1

1 + yks

)
k=1,...,n,s∈Σ

is invertible, hence the linear system

ω(s) = −2
n∑
k=1

akykJ
yk(u0)

1 + yks
, s ∈ Σ

has a unique solution a1, . . . , an. Using Theorem 5, Φ(ω) is the value
at time t = 1 of the solution u of equation (16) with parameters
a1, . . . , an, y1, . . . , yn. By Corollary 4, it belongs to V(d). This proves
quasi periodicity.

Since Φ is a continuous mapping, Φ(TΣ) is a compact subset of V(d).
On the other hand, for every s, the Hs norm is continuous on V(d). It is
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therefore bounded on this compact subset, which contains the integral
curve issued from u0. This completes the proof of Theorem 2.

Remark 2. It is tempting to adapt the above proof of quasi periodicity
to non finite rank solutions. However, even assuming that one can
define a flow on Hs

+ for all y with convenient estimates for large y,
this strategy meets a serious difficulty. Indeed, on the one hand, the
construction of a Hamiltonian flow on Hs

+ for

Ĵ(u) = (f(H2
u)1|1)

requires a minimal regularity for f , say C1, which, if f is represented
as

f(s) =

∞∫
0

a(y)

1 + ys
dµ(y)

for some positive measure µ and some function a on R+, imposes a
decay condition as

∞∫
0

y|a(y)| dµ(y) .

On the other hand, Σ is made of a sequence of positive numbers con-
verging to 0 and of its limit, and the interpolation problem

ω(s) = −2

∞∫
0

ya(y)Jy(u0)

1 + ys
dµ(y)

would have a solution only if ω : Σ → T is continuous on Σ. Un-
fortunately, the space C(Σ,T) is not compact, neither for the simple
convergence, nor for the uniform convergence. Therefore the question
of large time dynamics of non finite rank solutions of the cubic Szegő
equation remains widely open.
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Université Paris-Sud XI, Laboratoire de Mathématiques d’Orsay,
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