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Abstract. Foreground detection is the first step in video surveillance
system to detect moving objects. Robust Principal Components Analy-
sis (RPCA) shows a nice framework to separate moving objects from the
background. The background sequence is then modeled by a low rank
subspace that can gradually change over time, while the moving fore-
ground objects constitute the correlated sparse outliers. In this paper,
we propose to use a low-rank matrix factorization with IRLS scheme
(Iteratively reweighted least squares) and to address in the minimization
process the spatial connexity and the temporal sparseness of moving
objects (e.g. outliers). Experimental results on the BMC 2012 datasets
show the pertinence of the proposed approach.

1 Introduction

The detection of moving objects is the basic low-level operations in video anal-
ysis. This detection is usually done using foreground detection. This basic op-
eration consists of separating the moving objects called ”foreground” from the
static information called ”background”. Recent research on robust PCA shows
qualitative visual results with the background variations appromatively lying in
a low dimension subspace, and the sparse part being the moving objects. First,
Candes et al. [1] proposed a convex optimization problem to address the robust
PCA problem. The observation matrix is assumed represented as: A = L + S
where L is a low-rank matrix and S must be sparse matrix with a small frac-
tion of nonzero entries. This research seeks to solve for L with the following
optimization problem:

min
L,S

||L||∗ + λ||S||1 subj A = L+ S (1)

where ||.||∗ and ||.||1 are the nuclear norm (which is the L1 norm of singular
values) and l1 norm, respectively, and λ > 0 is an arbitrary balanced parameter.
Under these minimal assumptions, this approach called Principal Component
Pursuit (PCP) solution perfectly recovers the low-rank and the sparse matrices.

In this paper, we propose a robust low-matrix factorization with IRLS scheme
to adress the second limitation. For a data matrix A containing the sequence, we
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assume that a part is approximatively low-rank and product of two matrices, and
a small part of this matrix is corrupted by the outliers. Furthermore, we directly
introduced a spatial term in the l1 minimization to address the spatial connexity
of the pixels. So, our contributions can be summarized as follows: 1) Addition
of spatial constraint to minimization process, 2) IRLS alternating scheme for
weighted the 2-parameters ||.||α,β for matrix low-rank decomposition. The rest
of this paper is organized as follows. The Section 2 focus on IRLS method ap-
plied on vector regression problems. In Section 3, we present a robust low-rank
matrix factorization which allows us to detect foreground objects in dynamic
backgrounds. In Section 4, we present results on the BMC 2012 datasets1 and
the Section 5 provides the conclusion.

2 Lp Minimization with spatial constraint

In most applications, video surveillance data is assumed to be compose of back-
ground, foreground and noise. Regression task is a crucial part of the proposed
decomposition algorithm. We consider the following minimization problem (2),
where A is a dictionary matrix (row order) and b is a row vector, the second
term forces the error E to be a connexe shape, through the TV (Total Variation)
of the residual must be small, where the matrix ∇s is a spatial gradient.

argmin
x

||Ax− b||α + λ||∇s(Ax− b)||1 (2)

The left part of the problem (3) is convex for α > 1 and the usual IRLS (Iter-
atively reweighted least squares) scheme for solve argmin

x
||Ax − b||α is given

by

D(i) = diag((ε+ |b−Ax(i)|)α−2)
x(i+1) = (AtD(i)A)−1AtD(i)b

(3)

It was proven that a suitable IRLS method is convergent for 1 ≤ α < 3 [2]. Since
if the process is expressed with a residual formulation, we gain more numericaly
stability and let us to choose freely α ∈ [1,∞[ with an adapted step size λopt on
every iteration.

r(i) = b−Ax(i)
D = diag((ε+ |r(i)|)α−2)
y(i) = (A′DA)−1A′Dr(i)

x(i+1) = x(i) + (1 + λopt)y
(i)

(4)

With a fixed λopt, we should choose λopt as developed [3].

1 http://bmc.univ-bpclermont.fr
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Otherwise, the algorithm is twice iterative, where we try to get an optimal x
and an optimal λ at each step.

c(i) = Ay(i)

d(i) = b−A(x(i) + y(i))

argmin
λopt

||c(i)λ− d(i)||α

λ(0) = Λ(α)

s(k) = d− λ(k)c

E = diag((ε+ |s(k)|)α−2)

z(k) = ctEs(k)

ctEc

λ(k+1) = λ(k) + (1 + Λ(α))z(k)

(5)

Only few iterations (≈ 10) is enough for acceptable approximation of λopt of
the λ(k) sequence. Moreover, the convergence is usually improved by a Aitken
process or an other acceleration technique. Note for case α > 2, convergence
is achieved when 0 < 1 + λ < 2

α−1 . Additionally, TV is particular case of the
following problem:

argmin
x

||Ax− b||α + λ||Cx− d||β (6)

By derivation, the associated IRLS scheme is,

r1 = b−Ax(i), r2 = d− Cx(i), e1 = ε+ |r1|, e2 = ε+ |r2|
D1 = (

∑
eα1 )

1
α
−1diag(eα−2

1 ), D2 = λ(
∑
eβ2 )

1
β
−1

diag(eβ−2
2 )

y(i) = (A′D1A+ C′D2C)−1(A′D1r1 + C′D2r2)

x(i+1) = x(i) + (1 + λopt)y
(i)

(7)

More generally, we consider the following matrix regression problem with two
parameters norm (α, β) and a weighted matrix (W ),

min
X
||AX −B||α,β

W

with ||Mij ||α,β
W

= (

n∑
i=1

(

m∑
j=1

Wij |Mij |β)
α
β )

1
α (8)

The problem is solved in the same manner on matrices with a reweighted regres-
sion strategy,

Until X is stable, repeat on each k-columns
R ← B −AX
S ← ε+ |R|
Dk ← diag(Sβ−2

ik ◦ (
∑
j(S

β
ij ◦Wij))

α
β
−1 ◦Wik)k

Xik ← Xik +(1+Λ(max(α, β)))(AtDkA)−1AtDkRik

(9)

3 Foreground Detection via Robust Low-Rank Matrix
Factorization and temporal constraint

The training video sequence A ∈ Rn×m is stored as a matrix with a particular
structure. Columns are spatial frames and rows are values of a fixed pixel over
time. For A =

{
I1, . . . , Im

}
, Ij denotes a vectorized frame of n pixels at j-time

with m is the number of frames. Ay+hx,t implies the pixel intensity at coordinate
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Fig. 1. Overview of the learning and evaluation process. Learning process needs GT
(Groundtruth) for better fits the eigenbackground components.

x, y, t. The background modeling process finds an ideal subspace of the video
sequence, which describes the best as possible the (dynamic) background as
shown in Fig. 2. Then, the decomposition involves the following model:

A = L+ S = BC + S (10)

where B is a low-rank matrix corresponding to the background model plus noise
and C allows to approximate L by linear combination. S is a sparse matrix which
corresponds to the foreground component obtained by subtraction.

Fig. 2. At left: The common process of background subtraction via PCA (Principal
Component Analysis). At final step, an adaptative threshold is used to get a binary
result.

Fig. 3. At right: Using the previous decomposition on a low-rank random matrix plus
noise, different kind of pattern on residual matrix emerge with the choice of the norm.

The model involves the error reconstruction determined by the following
constraints:

min
B∈Rn×p,C∈Rp×m

||(A−BC) ◦W ||α,β + µ||BC||∗ (11)

where ||.||∗ denote the nuclear norm. The decomposition is split into two parts.
Firstly, we track 1-Rank decomposition since the first eigen-vector is strongly
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dominant in video surveillance.

R1 = A−B1C1 min
B1,C1

||R1||1,1
R = A−B1C1 −BrCr min

Br,Cr
||R ◦ φ(R1)||2,1→0

(12)

Fig. 4. At Left: Schema ofideal PCA processing. The eigenbackground are computed
using a Weighted-PCA with GroundTruth.

Fig. 5. At right: First eigenBackground of the fifths sequence of Rotary (BMC) with
the norms ||.||opt, ||.||1,1 and ||.||2,1. Last row shows eigenBackground on real dataset
with ||.||2,1.

We use ||.||2,1→0 instead of usual ||.||1,1 because it forces spatial homogeneous
fitting. Besides β = (1 → 0) means the β parameter decreases during iteration.
First, we search a solution of the convex problem ||.||2,1, then use the solution
as an initial guess for non-convex problem ||.||2,(1−ε). Finally, we find a local
minimum of ||.||2,0 and hope that is near of the global minimum of this problem.
Furthermore, this norm enforce temporarily sparseness of outliers as shown in
Fig.4. In the case where α = β = 2, the decomposition is usually solved by a
SVD (Singular Value Decomposition). Thus, our SVD algorithm can be seen
as an iterative regression. The proposed scheme determines alternatively the
optimal coefficients, it means searching C for B fixed and searching B for C
fixed.

C(k+1) = (AtA)−1AtB(k)

C̄(k+1) = C(k+1)
√
Ct(k+1)C(k+1)

−1

B(k+1) = (AtA)−1AtC̄(k+1)

(13)

Additionnaly, this alternating regression framework allows to associate a
weigthed matrix W which is entrywise multiplied to the error term,

min
B,C
||(A−BC) ◦W ||α,β (14)

The W mask is iteratively computed and aims to enforce the fit exclusively on
guessed background region.
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We define a function φ that have two goals, smooth the error (like spatial me-
dian filtering) and transform the error for obtain a suitable weighted mask for
regression.

W = φ(|A−BC|) , φ(E) = e−γTV (E) (15)

By including local penalty as a constraint in RPCA, this explicitly increases
local coherence of the sparse component as filled/plain shapes (therefore moving
object).

4 Experimental Results

Here, we show experimental results on the real dataset of BMC,

Video Recall Precision F-measure PSNR Visual Results
1 0.9139 0.7170 0.8036 38.2425
2 0.8785 0.8656 0.8720 26.7721
3 0.9658 0.8120 0.8822 37.7053
4 0.9550 0.7187 0.8202 39.3699
5 0.9102 0.5589 0.6925 30.5876
6 0.9002 0.7727 0.8316 29.9994
7 0.9116 0.8401 0.8744 26.8350
8 0.8651 0.6710 0.7558 30.5040
9 0.9309 0.8239 0.8741 55.1163

Table 1. Quantitative results with common criterions. Last column show the original,
GT and result of the first four real video sequences.

5 Conclusion

In this paper, we have presented a robust matrix factorization for foreground
detection. This method is conceptually simple, easy to implement and efficient.
Furthermore, experiments on video surveillance datasets show that this approach
is more robust than recent RPCA approaches in the presence of dynamic back-
grounds and illumination changes. Further research consists in developping an
incremental version to update the model at every frame and to achieve real-time
requirements.
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