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Abstract

Foreground detection is the first step in video surveil-
lance system to detect moving objects. Robust Principal
Components Analysis (RPCA) shows a nice framework
to separate moving objects from the background. The
background sequence is then modeled by a low rank
subspace that can gradually change over time, while
the moving foreground objects constitute the correlated
sparse outliers. In this paper, we propose to use a low-
rank matrix factorization with IRLS scheme (Iteratively
reweighted least squares) and to address in the mini-
mization process the spatial connexity of the pixels. Ex-
perimental results on the Wallflower and I2R datasets
show the pertinence of the proposed approach.

1. Introduction

The detection of moving objects is the basic low-
level operations in video analysis. This detection is usu-
ally done using foreground detection. This basic oper-
ation consists of separating the moving objects called
”foreground” from the static information called ”back-
ground”. Recent reseach on robust PCA shows quali-
tative visual results with the background variations ap-
promatively lying in a low dimension subspace, and the
sparse part being the moving objects. First, Candes et
al. [1] proposed a convex optimization problem to ad-
dress the robust PCA problem. The observation matrix
is assumed represented as:

A = L+ S (1)

where L is a low-rank matrix and S must be sparse ma-
trix with a small fraction of nonzero entries. This re-
search seeks to solve for L with the following optimiza-
tion problem:

min
L,S
||L||∗ + λ||S||1 subj A = L+ S (2)

where ||.||∗ and ||.||1 are the nuclear norm (which is the
L1 norm of singular values) and l1 norm, respectively,
and λ > 0 is an arbitrary balanced parameter. Under
these minimal assumptions, this approach called Prin-
cipal Component Pursuit (PCP) solution perfectly re-
covers the low-rank and the sparse matrices. Candes et
al. [1] showed results on face images and background
modeling that demonstrated encouraging performance.
Several algorithms have been proposed for solving PCP
such as Augmented Lagrangian Method [1], Low-Rank
Representation [5] and SADAL[6]. However, PCP
presents the following limitations: 1) The low-rank
component are assumed to be exactly low-rank and the
sparse component to be exactly sparse but the observa-
tions in real applications are often corrupted by noise
affecting every entry of the data matrix; 2) The spatial
connexity of the pixels are not addressed as the images
are stacked in columns; 3) PCP is a batch algorithm.
For the first limitation, Zhou et al. [11] proposed a sta-
ble PCP that guarantee stable and accurate recovery in
the presence of entry-wise noise. Recently, Tang and
Nehorai [9] proposed a PCP method via a decomposi-
tion that enforces the block sparsity of S and then ad-
dress the second limitation. For the third limitation, He
et al. [3] proposed an incremental Grasmannian RPCA
method to update L and S when a new frame arrives.

In this paper, we propose a robust low-matrix fac-
torization with IRLS scheme to adress the second lim-
itation. For a data matrix A containing the sequence,
we assume that a part is approximatively low-rank and
product of two matrices, and a small part of this matrix
is corrupted by the outliers. Furthermore, we directly
introduced a spatial term in the l1 minimization to ad-
dress the spatial connexity of the pixels. So, our contri-
butions can be summarized as follows: 1) Addition of
spatial constraint to minimization process, 2) IRLS al-
ternating scheme for weighted the 2-parameters ||.||α,β
for matrix low-rank decomposition. The rest of this pa-
per is organized as follows. The Section 2 focus on
IRLS method apply on vector regression problems. In



Section 3, we present a robust low-rank matrix factor-
ization which allows us to detect foreground objects in
dynamic backgrounds. In Section 4, we present com-
parison and evaluation versus the state-of-the-art meth-
ods and the Section 5 provides the conclusion.

2 Lp Minimization with spatial constraint

In most applications, video surveillance data is as-
sumed to be compose of background, foreground and
noise. Regression task is a crucial part of the proposed
decomposition algorithm and illustrate the main keys
through a simple 1-D example shown in Fig. 1. We con-
sider the following minimization problem (3), where A
is a dictionary matrix (row order) and b is a row vec-
tor, the second term forces the error E to be a connexe
shape, through the TV (Total Variation) of the error
must be small, where the matrix∇s is a spatial gradient.

argmin
x

||Ax− b||α + λ||∇sE||1, E = |b−Ax| (3)
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Figure 1. Schematic example for the 1-D case: We illustrate dif-

ferent fitting strategies of random dictionary basis (cosine func-

tion, wavelets, ...) on a composite signal S = S1 + S2 + S3.
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Figure 2. Overview of our background modeling strategy for the

1-D case with L1 minimization and spatial constrain in order to

split Foreground and Background+Noises components.

The left part of the problem (3) is convexe for α > 1 and
the usual IRLS (Iteratively reweighted least squares)
scheme for solve argmin

x
||Ax− b||α is given by

D(i) = diag((ε+ |b−Ax(i)|)α−2)
x(i+1) = (AtD(i)A)−1AtD(i)b

(4)

It was proven that a suitable IRLS method is convergent
for 1 ≤ α < 3 (cf. [2] and [8]). Since if the process is
express with a residual formulation, we gain more nu-
mericaly stability and let us to choose freely α ∈ [1,∞[

with an adapted step size λopt on every iteration.

r(i) = b−Ax(i)
D = diag((ε+ |r(i)|)α−2)
y(i) = (A′DA)−1A′Dr(i)

x(i+1) = x(i) + (1 + λopt)y
(i)

(5)

With a fixed λopt, we should choose λopt = Λ(α).

Λ(α) =


5/6 if α ≤ 1

− 2
3α+ 3

2 if 1 < α < 1 + 3
4

1
α−1 − 1 if α ≥ 1 + 3

4

(6)

Otherwise, the algorithm is twice iterative, where we try
to get an optimal x and an optimal λ at each step.

c(i) = Ay(i)

d(i) = b−A(x(i) + y(i))

argmin
λopt

||c(i)λ− d(i)||α

λ(0) = Λ(α)

s(k) = d− λ(k)c
E = diag((ε+ |s(k)|)α−2)

z(k) = ctEs(k)

ctEc
λ(k+1) = λ(k) + (1 + Λ(α))z(k)

(7)

Only few iterations (≈ 10) is enough for acceptable ap-
proximation of λopt of the λ(k) sequence. Moreover, the
convergence is usually improved by a Aitken process or
an other acceleration technique. Note for case α > 2,
convergence is achieved when 0 < 1+λ < 2

α−1 . Addi-
tionally, TV is particular case of the following problem:

argmin
x

||Ax− b||α + λ||Cx− d||β (8)

By derivation, the associated IRLS scheme is,
r1 = b−Ax(i), r2 = d− Cx(i), e1 = ε+ |r1|, e2 = ε+ |r2|
D1 = (

∑
eα1 )

1
α
−1diag(eα−2

1 ), D2 = λ(
∑
eβ2 )

1
β
−1diag(eβ−2

2 )

y(i) = (A′D1A+ C′D2C)−1(A′D1r1 +A′D2r2)

x(i+1) = x(i) + (1 + λopt)y(i)
(9)

The penalty term of (3) used for to increase connexity
of the error requires to solve this minimization problem,

argmin
x

||C|Ax− b|α − d||β (10)

With ◦ denotes the Hadamard product, the IRLS follow:
r1 = b−Ax(i), r2 = d− C|Ax(i) − b|
D = diag((C′(|r2|β−2 ◦ r2)) ◦ |r1|α−2)

y(i) = (A′DA)−1(A′Dr1) , x(i+1) = x(i) + (1 + λopt)y(i)

(11)

More generally, we consider the following matrix re-
gression problem min

X
||AX−B||α,β

W

with two param-

eters norm (α, β) and a weighted matrix (W ),

With ||Mij ||α,β
W

= (

n∑
i=1

(

m∑
j=1

Wij |Mij |β)
α
β )

1
α (12)

The problem is solved in the same manner on matrices
with a reweighted regression strategy,

Until X is stable, repeat on each k-columns
R ← B −AX
S ← ε+ |R|
Dk ← diag(Sβ−2

ik ◦ (
∑
j(S

β
ij ◦Wij))

α
β
−1 ◦Wik)k

Xik ← Xik +(1+Λ(max(α, β)))(AtDkA)−1AtDkRik

(13)



3 Foreground Detection via Robust Low-
Rank Matrix Factorization

The training video sequence A ∈ Rn×m is store as a
matrix with a particular structure. Columns are spatial
frames and rows are values of a fixed pixel over time.
For A =

{
I1, . . . , Im

}
, Ij denotes a vectorized frame

of n pixels at j-time with m is the number of frames.
Ay+hx,t implies the pixel intensity at coordinate x, y, t.
Then, the decomposition involves the following model:

A = L+ S = BC + S (14)

where B is a low-rank matrix corresponding to the
background model plus noise and C allows to approx-
imate L by linear combination. S is a sparse matrix
which corresponds to the foreground component ob-
tained by subtraction. The model involves the error re-
construction determined by the following constraints:

min
B∈Rn×p,C∈Rp×m

||(A−BC)◦W ||α,β+µ||BC||∗ (15)

where ||.||∗ denote the nuclear norm. The decompo-
sition is fragmented into two parts. Firstly, we track
1-Rank decomposition since the first eigen-vector is
strongly dominant in video surveillance.

R1 = A−B1C1 min
B1,C1

||R1||1,1
R = A−B1C1 −BrCr min

Br,Cr
||R ◦ φ(R1)||2,1→0

(16)

We use ||.||2,1→0 instead of usual ||.||1,1 because it
forces spatial homogeneous fitting. Besides β = (1→ 0)

means the β parameter decreases during iteration. First,
we search a solution of the convex problem ||.||2,1, then
use the solution as an initial guess for non-convex prob-
lem ||.||2,(1−ε). Finally, we find a local minimum of
||.||2,0 and hope that is near of the global minimum of
this problem. In the case where α = β = 2, the de-
composition is usually solved by a SVD (Singular Value
Decomposition). Thus, our SVD algorithm can be seen
as an iterative regression. The proposed scheme de-
termines alternatively the optimal coefficients, it means
searching C for B fixed and searching B for C fixed.

C(k+1) = (AtA)−1AtB(k)

C̄(k+1) = C(k+1)
√
Ct(k+1)C(k+1)

−1

B(k+1) = (AtA)−1AtC̄(k+1)

(17)

Additionnaly, this alternating regression framework al-
lows to associate a weigthed matrix W which is entry-
wise multiplied to the error. min

B,C
||(A− BC) ◦W ||α,β

The W mask is iteratively computed and aims to en-
force the fit exclusively on guessed background region.

We define a function φ that have two goals, smooth the
error (like spatial median filtering) and transform the
error for obtain a suitable weighted mask for regression.

W = φ(|A−BC|) , φ(E) = e−γTV (E) (18)
By including local penalty as a constraint in RPCA, this
explicitly increases local coherence of the sparse com-
ponent as filled/plain shapes (therefore moving object).

4 Experimental Results

We have compared the proposed approach with re-
cent RPCA approaches: LBD [9], LRR [5], SADAL
[6] and GRASTA [3] algorithms. The experiments
were conducted qualitatively and quantitatively on the
Wallflower dataset [10] I2R dataset [4]. The algorithms
are implemented with Matlab.

4.1 Wallflower and I2R dataset

The Wallflower dataset provided by Toyama et al.
[10] consists of seven video sequences, with each se-
quence presenting one of the difficulties a practical task
is likely to encounter. The images are 160 × 120 pix-
els. The Fig. 3 and Fig. 4 show the qualitative re-
sults. For the quantitative evaluation, we used met-
rics based on the detection rate, the precision and the
F-measure [7] computed between algorithm result and
hand-segmented ground truth. Table 1 shows the results
obtained for each algorithms.

Sequence Frame LBD LRR SADAL GRASTA Our method
bootstrap 00299 70.18 69.40 67.02 55.37 58.78
campus 01650 59.93 59.99 68.14 61.84 75.07
curtain 22772 91.08 88.34 91.01 89.88 90.73
escalator 02424 65.28 63.41 59.81 68.31 63.68
hall 02926 73.58 69.75 77.57 78.25 79.26
shoppingmall 01862 80.15 77.88 82.80 79.54 81.94
watersurface 01499 90.37 83.57 92.01 90.97 91.02
camouflage 00251 70.58 70.49 76.00 70.34 82.27
fore. aperture 00489 60.69 50.10 71.55 75.14 75.19
light switch 01865 57.74 36.76 69.33 28.35 58.49
moved objects 00985 0 0 0 0 0
time of day 01850 71.43 54.41 80.84 79.80 80.43
waving trees 00247 62.65 50.74 81.67 84.16 84.70

Table.1 F-measure for LBD [9], LRR[5], SADAL[6], GRASTA[3],

our method (direct one-to-one correspondence with Fig. 4).

The I2R dataset provided by [4] consists of nine
video sequences, which each sequence presenting dy-
namic backgrounds or illumination changes. The size
of the images is 176 × 144 pixels. For each sequence,
the ground truth is provided for 20 images. Among this
dataset, we have chosen to show results on seven se-
quences (see Fig. 3 and Fig. 4).

4.2 Discussion
The proposed approach outperforms the other

algorithms on five sequences over the Wallflower and
I2R datasets and it is followed by SADAL. For the



Figure 3. From top to bottom: Wallflower and I2R datasets. From

left to right (split in two columns): The original image, the back-

ground model and their difference.

Figure 4. Foreground detection masks on the Wallflower and I2R

datasets. From left to right: Ground Truth, LBD, LRR, SADAL,

GRASTA, our method.

other sequences, the algorithm is in the second place or
the results are still acceptable.

5 Conclusion

In this paper, we have presented a robust matrix fac-
torization for foreground detection. This method is con-
ceptually simple, easy to implement and efficient. Fur-
thermore, experiments on video surveillance datasets
show that this approach is more robust than recent
RPCA approaches in the presence of dynamic back-
grounds and illumination changes. Further research
consists in developping an incremental version to up-
date the model at every frame and to achieve real-time
requirements.
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