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Introduction

The detection of moving objects is the basic lowlevel operations in video analysis. This detection is usually done using foreground detection. This basic operation consists of separating the moving objects called "foreground" from the static information called "background". Recent reseach on robust PCA shows qualitative visual results with the background variations appromatively lying in a low dimension subspace, and the sparse part being the moving objects. First, Candes et al. [START_REF] Candes | Robust principal component analysis[END_REF] proposed a convex optimization problem to address the robust PCA problem. The observation matrix is assumed represented as:

A = L + S ( 1 
)
where L is a low-rank matrix and S must be sparse matrix with a small fraction of nonzero entries. This research seeks to solve for L with the following optimization problem: min

L,S ||L|| * + λ||S|| 1 subj A = L + S (2) 
where ||.|| * and ||.|| 1 are the nuclear norm (which is the L 1 norm of singular values) and l 1 norm, respectively, and λ > 0 is an arbitrary balanced parameter. Under these minimal assumptions, this approach called Principal Component Pursuit (PCP) solution perfectly recovers the low-rank and the sparse matrices. Candes et al. [START_REF] Candes | Robust principal component analysis[END_REF] showed results on face images and background modeling that demonstrated encouraging performance. Several algorithms have been proposed for solving PCP such as Augmented Lagrangian Method [START_REF] Candes | Robust principal component analysis[END_REF], Low-Rank Representation [START_REF] Lin | Linearized alternating direction method with adaptive penalty for low-rank representation[END_REF] and SADAL [START_REF] Ma | Algorithms for sparse and low-rank optimization: Convergence, complexity and applications[END_REF]. However, PCP presents the following limitations: 1) The low-rank component are assumed to be exactly low-rank and the sparse component to be exactly sparse but the observations in real applications are often corrupted by noise affecting every entry of the data matrix; 2) The spatial connexity of the pixels are not addressed as the images are stacked in columns; 3) PCP is a batch algorithm.

For the first limitation, Zhou et al. [START_REF] Wright | Robust principal component analysis: Exact recovery of corrupted low-rank matrices by convex optimization[END_REF] proposed a stable PCP that guarantee stable and accurate recovery in the presence of entry-wise noise. Recently, Tang and Nehorai [START_REF] Tang | Robust principal component analysis based on low-rank and block-sparse matrix decomposition[END_REF] proposed a PCP method via a decomposition that enforces the block sparsity of S and then address the second limitation. For the third limitation, He et al. [START_REF] He | Incremental gradient on the grassmannian for online foreground and background separation in subsampled video[END_REF] proposed an incremental Grasmannian RPCA method to update L and S when a new frame arrives.

In this paper, we propose a robust low-matrix factorization with IRLS scheme to adress the second limitation. For a data matrix A containing the sequence, we assume that a part is approximatively low-rank and product of two matrices, and a small part of this matrix is corrupted by the outliers. Furthermore, we directly introduced a spatial term in the l 1 minimization to address the spatial connexity of the pixels. So, our contributions can be summarized as follows: 1) Addition of spatial constraint to minimization process, 2) IRLS alternating scheme for weighted the 2-parameters ||.|| α,β for matrix low-rank decomposition. The rest of this paper is organized as follows. The Section 2 focus on IRLS method apply on vector regression problems. In Section 3, we present a robust low-rank matrix factorization which allows us to detect foreground objects in dynamic backgrounds. In Section 4, we present comparison and evaluation versus the state-of-the-art methods and the Section 5 provides the conclusion.

L p Minimization with spatial constraint

In most applications, video surveillance data is assumed to be compose of background, foreground and noise. Regression task is a crucial part of the proposed decomposition algorithm and illustrate the main keys through a simple 1-D example shown in Fig. 1. We consider the following minimization problem (3), where A is a dictionary matrix (row order) and b is a row vector, the second term forces the error E to be a connexe shape, through the TV (Total Variation) of the error must be small, where the matrix ∇ s is a spatial gradient. The left part of the problem (3) is convexe for α > 1 and the usual IRLS (Iteratively reweighted least squares) scheme for solve argmin x ||Ax -b|| α is given by

argmin x ||Ax -b|| α + λ||∇ s E|| 1 , E = |b -Ax| (3)
D (i) = diag((ε + |b -Ax (i) |) α-2 ) x (i+1) = (A t D (i) A) -1 A t D (i) b (4) 
It was proven that a suitable IRLS method is convergent for 1 ≤ α < 3 (cf. [START_REF] Daubechies | Iteratively reweighted least squares minimization for sparse recovery[END_REF] and [START_REF] Osborne | Finite algorithms in optimization and data analysis[END_REF]). Since if the process is express with a residual formulation, we gain more numericaly stability and let us to choose freely α ∈ [1, ∞[ with an adapted step size λ opt on every iteration.

r (i) = b -Ax (i) D = diag((ε + |r (i) |) α-2 ) y (i) = (A DA) -1 A Dr (i) x (i+1) = x (i) + (1 + λ opt )y (i) (5) 
With a fixed λ opt , we should choose λ opt = Λ(α).

Λ(α) =      5/6 if α ≤ 1 -2 3 α + 3 2 if 1 < α < 1 + 3 4 1 α-1 -1 if α ≥ 1 + 3 4 (6)
Otherwise, the algorithm is twice iterative, where we try to get an optimal x and an optimal λ at each step.

c (i) = Ay (i) d (i) = b -A(x (i) + y (i) ) argmin λ opt ||c (i) λ -d (i) ||α λ (0) = Λ(α) s (k) = d -λ (k) c E = diag((ε + |s (k) |) α-2 ) z (k) = c t Es (k) c t Ec λ (k+1) = λ (k) + (1 + Λ(α))z (k) (7)
Only few iterations (≈ 10) is enough for acceptable approximation of λ opt of the λ (k) sequence. Moreover, the convergence is usually improved by a Aitken process or an other acceleration technique. Note for case α > 2, convergence is achieved when 0 < 1 + λ < 2 α-1 . Additionally, TV is particular case of the following problem:

argmin x ||Ax -b|| α + λ||Cx -d|| β (8) 
By derivation, the associated IRLS scheme is,

r 1 = b -Ax (i) , r 2 = d -Cx (i) , e 1 = ε + |r 1 |, e 2 = ε + |r 2 | D 1 = ( e α 1 ) 1 α -1 diag(e α-2 1 
), D 2 = λ( e β 2 )

1 β -1 diag(e β-2 2 ) y (i) = (A D 1 A + C D 2 C) -1 (A D 1 r 1 + A D 2 r 2 ) x (i+1) = x (i) + (1 + λopt)y (i) (9) 
The penalty term of (3) used for to increase connexity of the error requires to solve this minimization problem,

argmin x ||C|Ax -b| α -d|| β (10) 
With • denotes the Hadamard product, the IRLS follow:

r 1 = b -Ax (i) , r 2 = d -C|Ax (i) -b| D = diag((C (|r 2 | β-2 • r 2 )) • |r 1 | α-2 ) y (i) = (A DA) -1 (A Dr 1 ) , x (i+1) = x (i) + (1 + λopt)y (i) (11) 
More generally, we consider the following matrix regression problem min 

With ||M ij || α,β W = ( n i=1 ( m j=1 W ij |M ij | β ) α β ) 1 α ( 12 
)
The problem is solved in the same manner on matrices with a reweighted regression strategy,

Until X is stable, repeat on each k-columns R ← B -AX S ← ε + |R| D k ← diag(S β-2 ik • ( j (S β ij • W ij )) α β -1 • W ik ) k X ik ← X ik +(1+Λ(max(α, β)))(A t D k A) -1 A t D k R ik (13)

Foreground Detection via Robust Low-Rank Matrix Factorization

The training video sequence A ∈ R n×m is store as a matrix with a particular structure. Columns are spatial frames and rows are values of a fixed pixel over time.

For A = I 1 , . . . , I m , I j denotes a vectorized frame of n pixels at j-time with m is the number of frames.

A y+hx,t implies the pixel intensity at coordinate x, y, t.

Then, the decomposition involves the following model:

A = L + S = BC + S ( 14 
)
where B is a low-rank matrix corresponding to the background model plus noise and C allows to approximate L by linear combination. S is a sparse matrix which corresponds to the foreground component obtained by subtraction. The model involves the error reconstruction determined by the following constraints:

min B∈R n×p ,C∈R p×m ||(A-BC)•W || α,β +µ||BC|| * (15)
where ||.|| * denote the nuclear norm. The decomposition is fragmented into two parts. Firstly, we track 1-Rank decomposition since the first eigen-vector is strongly dominant in video surveillance. . Finally, we find a local minimum of ||.|| 2,0 and hope that is near of the global minimum of this problem. In the case where α = β = 2, the decomposition is usually solved by a SVD (Singular Value Decomposition). Thus, our SVD algorithm can be seen as an iterative regression. The proposed scheme determines alternatively the optimal coefficients, it means searching C for B fixed and searching B for C fixed.

R 1 = A -B 1 C 1 min B1,C1 ||R 1 || 1,1 R = A -B 1 C 1 -B r C r min Br,Cr ||R • φ(R 1 )|| 2,1→0 (16) 
C (k+1) = (A t A) -1 A t B (k) C(k+1) = C (k+1) √ C t(k+1) C (k+1) -1 B (k+1) = (A t A) -1 A t C(k+1) (17) 
Additionnaly, this alternating regression framework allows to associate a weigthed matrix W which is entrywise multiplied to the error. min

B,C ||(A -BC) • W || α,β
The W mask is iteratively computed and aims to enforce the fit exclusively on guessed background region.

We define a function φ that have two goals, smooth the error (like spatial median filtering) and transform the error for obtain a suitable weighted mask for regression.

W = φ(|A -BC|) , φ(E) = e -γT V (E)
(18) By including local penalty as a constraint in RPCA, this explicitly increases local coherence of the sparse component as filled/plain shapes (therefore moving object).

Experimental Results

We have compared the proposed approach with recent RPCA approaches: LBD [START_REF] Tang | Robust principal component analysis based on low-rank and block-sparse matrix decomposition[END_REF], LRR [START_REF] Lin | Linearized alternating direction method with adaptive penalty for low-rank representation[END_REF], SADAL [START_REF] Ma | Algorithms for sparse and low-rank optimization: Convergence, complexity and applications[END_REF] and GRASTA [START_REF] He | Incremental gradient on the grassmannian for online foreground and background separation in subsampled video[END_REF] algorithms. The experiments were conducted qualitatively and quantitatively on the Wallflower dataset [START_REF] Toyama | Wallflower: Principles and practice of background maintenance[END_REF] I2R dataset [START_REF] Li | Statistical modeling of complex backgrounds for foreground object detection[END_REF]. The algorithms are implemented with Matlab.

Wallflower and I2R dataset

The Wallflower dataset provided by Toyama et al. [START_REF] Toyama | Wallflower: Principles and practice of background maintenance[END_REF] consists of seven video sequences, with each sequence presenting one of the difficulties a practical task is likely to encounter. The images are 160 × 120 pixels. The Fig. 3 and Fig. 4 show the qualitative results. For the quantitative evaluation, we used metrics based on the detection rate, the precision and the F-measure [START_REF] Maddalena | A fuzzy spatial coherence-based approach to background foreground separation for moving object detection[END_REF] computed between algorithm result and hand-segmented ground truth. our method (direct one-to-one correspondence with Fig. 4).

The I2R dataset provided by [START_REF] Li | Statistical modeling of complex backgrounds for foreground object detection[END_REF] consists of nine video sequences, which each sequence presenting dynamic backgrounds or illumination changes. The size of the images is 176 × 144 pixels. For each sequence, the ground truth is provided for 20 images. Among this dataset, we have chosen to show results on seven sequences (see Fig. 3 and Fig. 4).

Discussion

The proposed approach outperforms the other algorithms on five sequences over the Wallflower and I2R datasets and it is followed by SADAL. For the other sequences, the algorithm is in the second place or the results are still acceptable.

Conclusion

In this paper, we have presented a robust matrix factorization for foreground detection. This method is conceptually simple, easy to implement and efficient. Furthermore, experiments on video surveillance datasets show that this approach is more robust than recent RPCA approaches in the presence of dynamic backgrounds and illumination changes. Further research consists in developping an incremental version to update the model at every frame and to achieve real-time requirements.

Figure 1 .

 1 Figure 1. Schematic example for the 1-D case: We illustrate different fitting strategies of random dictionary basis (cosine function, wavelets, ...) on a composite signal S = S1 + S2 + S3.

Figure 2 .

 2 Figure 2. Overview of our background modeling strategy for the 1-D case with L1 minimization and spatial constrain in order to split Foreground and Background+Noises components.

X||AX-

  B|| α,β W with two parameters norm (α, β) and a weighted matrix (W ),

  We use ||.|| 2,1→0 instead of usual ||.|| 1,1 because it forces spatial homogeneous fitting. Besides β = (1 → 0) means the β parameter decreases during iteration. First, we search a solution of the convex problem ||.|| 2,1 , then use the solution as an initial guess for non-convex problem ||.|| 2,(1-ε)

Figure 3 .

 3 Figure 3. From top to bottom: Wallflower and I2R datasets. From left to right (split in two columns): The original image, the background model and their difference.

Figure 4 .

 4 Figure 4. Foreground detection masks on the Wallflower and I2R datasets. From left to right: Ground Truth, LBD, LRR, SADAL, GRASTA, our method.

Table 1

 1 shows the results obtained for each algorithms.

	Sequence	Frame	LBD LRR SADAL GRASTA Our method
	bootstrap	00299 70.18 69.40	67.02	55.37	58.78
	campus	01650 59.93 59.99	68.14	61.84	75.07
	curtain	22772 91.08 88.34	91.01	89.88	90.73
	escalator	02424 65.28 63.41	59.81	68.31	63.68
	hall	02926 73.58 69.75	77.57	78.25	79.26
	shoppingmall	01862 80.15 77.88	82.80	79.54	81.94
	watersurface	01499 90.37 83.57	92.01	90.97	91.02
	camouflage	00251 70.58 70.49	76.00	70.34	82.27
	fore. aperture	00489 60.69 50.10	71.55	75.14	75.19
	light switch	01865 57.74 36.76	69.33	28.35	58.49
	moved objects 00985	0	0	0	0	0
	time of day	01850 71.43 54.41	80.84	79.80	80.43
	waving trees	00247 62.65 50.74	81.67	84.16	84.70

Table . 1 F-measure for LBD [9], LRR[5], SADAL[6], GRASTA[3],
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