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Abstract. Robust Principal Components Analysis (RPCA) shows a
nice framework to separate moving objects from the background. The
background sequence is then modeled by a low rank subspace that can
gradually change over time, while the moving foreground objects consti-
tute the correlated sparse outliers. RPCA problem can be exactly solved
via convex optimization that minimizes a combination of the nuclear
norm and the {1-norm. To solve this convex program, an Alternating Di-
rection Method (ADM) is commonly used. However, the subproblems in
ADM are easily solvable only when the linear mappings in the constraints
are identities. This assumption is rarely verified in real application such
as foreground detection. In this paper, we propose to use a Linearized
Alternating Direction Method (LADM) with adaptive penalty to achieve
RPCA for foreground detection. LADM alleviates the constraints of the
original ADM with a faster convergence speed. Experimental results on
different datasets show the pertinence of the proposed approach.
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1 Introduction

The detection of moving objects is the basic low-level operations in video anal-
ysis. This detection is usually done using foreground detection. This basic op-
eration consists of separating the moving objects called "foreground" from the
static information called "background" [1][2]. In 1999, Oliver et al. [3] are the first
authors that model the background by Principal Component Analysis (PCA).
PCA provides a robust model of the probability distribution function of the
background, but not of the moving objects while they do not have a significant
contribution to the model. The main limitation of this model [2] is that the size
of the foreground object must be small and don’t appear in the same location
during a long period in the training sequence. Recent research on robust PCA
[4] [5] can be used to alleviate these limitations. For example, Candes et al. [5]
proposed a convex optimization to address the robust PCA problem. The ob-
servation matrix is assumed represented as: A = L + S where L is a low-rank
matrix and S must be sparse matrix with a small fraction of nonzero entries.
This research seeks to solve for L with the following optimization problem:

min IIL||« + A||S]]1 subj A=L+S (1)



where ||.||« and ||.||1 are the nuclear norm and /1-norm, respectively, and A > 0
is an arbitrary balanced parameter. Under these minimal assumptions, this ap-
proach perfectly recovers the low-rank and the sparse matrices. The optimization
in Equation (1) can be solved as a general convex optimization problem by any
off-the-shelf interior point solver [6]. However, although interior point methods
normally take very few iterations to converge, they have difficulty in handling
large matrices because the complexity of computing the step direction is O(n"),
where n is the dimension of the matrix. So the generic interior point solvers are
too limited for many real applications. The interior point solvers do not scale
well for large matrices because they keep the second-order information. To over-
come the scalability issue, only the first-order information can be used. Cai et
al. [7] showed that this technique, called Singular Value Thresholding (SVT),
can be used to minimize the nuclear norm. As the matrix recovery problem
in Equation (1) needs minimizing a combination of both the /;-norm and the
nuclear norm, Wright et al. [8] adopted a iterative thresholding technique to
solve it and obtained similar convergence and scalability properties than interior
point methods. However, the iterative thresholding scheme converges extremely
slowly. To alleviate this slow convergence, Lin et al. [9] proposed the accelerated
proximal gradient (APG) algorithm and the gradient-ascent algorithm applied
to the dual of the problem in Equation (1). However, these algorithms are all the
same to slow for real application. More recently, Lin et al. [10] proposed two al-
gorithms based on augmented Lagrange multipliers (ALM). The first algorithm
is called exact ALM (EALM) method that has a Q-linear convergence speed,
while the APG is in theory only sub-linear. The second algorithm is an improve-
ment of the EALM that is called inexact ALM (IALM) method, which converges
practically as fast as the exact ALM, but the required number of partial SVDs
is significantly less. The TALM is at least five times faster than APG, and its
precision is also higher [10]. However, the direct application of ALM treats the
Equation (1) as a generic minimization problem and ignores its separable struc-
ture emerging in both the objective function and the constraint [10]. Hence, the
variables S and L are minimized simultaneously. Yuan and Yang [11] proposed
to alleviate this ignorance by the Alternating Direction Method (ADM) which
minimizes the variables L and S serially. However, the subproblems in ADM are
easily solvable only when the linear mappings in the constraints are identities.
This assumption is rarely verified in real application. Recently, Lin et al. [12] ad-
dressed this problem by Linearized Alternating Direction Method (LADM) with
adaptive penalty. They proved the global convergence of LADM and applied it
to solve low-rank representation (LRR). Furthermore, this method reduces the
complexity O(n?) of the original ADM based method to O(rn?), where r and n
are the rank and size of the representation matrix, respectively. These properties
allow us to use it for foreground detection. The rest of this paper is organized as
follows. In Section 2, we present how the background and the foreground can be
separated via RPCA. Then, the proposed foreground detection method with the
LADM algorithm is presented. Finally, performance evaluation and comparison
with four other algorithms are given in Section 3.



2 Foreground detection by RPCA solved via LADM

Denote the training video sequences D = {I1,...Ix } where I, is the frame at time
t and N is the number of training frames. Let each pixel (x,y) be characterized by
its intensity in the grey scale. The decomposition involves the following model:

D=L+§ (2)

where L and S are the low-rank component and sparse component of D, respec-
tively. The matrix L contains the background and the matrix S contains mostly
zero columns, with several non-zero ones corresponding to the foreground. The
matrices L and S can be recovered by the convex program based on the Alter-
nating Direction Method (ADM). For this work on foreground detection, we pro-
pose to use the Linearized Alternating Direction Method (LADM) with adaptive
penalty [12]. The proposed algorithm to solve RPCA via LADM is theorically
the same problem to solve the low-rank representation (LRR) problem [12]. The
LRR problem can be expressed by:

ming g||Z]« + pl|Ell21,stX = XZ + FE (3)

By analogy with equation (2), the matrices X, E, and XZ correspond respec-
tively to D, S and L. By further representing Z as its skinny SVD and utilizing
an advanced functionality of the PROPACK! package, the complexity of solving
LRR by LADMAP becomes only O(rn?), as there is no full sized matrix-matrix
multiplications, where r is the rank of the optimal Z. Theorically, the problem
is initially formulated as a linear constrained convex program [12].

mingy f(x) + g(y), s.tA(x) + Bly) = ¢ (4)
Solving this problem by ADM, one operates on the following augmented La-
grangian function:

La(z,y,A) = f(2) +9(y)+ < A A(z) + Bly) —c> +§HA($) +B(y) —cl* (5)

where ) is the Lagrange multiplier, < .,. > is the inner product, and S > 0 is the
penalty parameter. ADM [11] decomposes the minimization of L4 w.r.t. (z,y)
into two subproblems that minimize w.r.t.  and y, respectively. By linearizing
ADM and adding a proximal term, Lin et al. [12] obtain a linearized ADM
that accelerates the convergence with an adaptive rule for updating the penalty
parameter as follows:

v = argming {2+ 28 oyt A" O+ 5(A) +Blye) —e) /(B (0
where A* is the adjoint of A and n4 > 0 is a parameter used in the stopping
critrion. Similarly,

Bnp

THQ — y + B (M + B(A(zps1) + Blyk) — )/ (Bng)|?

(7)

Y1 = argmingg(y) +

! http://soi.stanford.edu/rmunk/PROPACK /



M1 = Mg + BlA@R41 + Blyrs1 — d (8)
The adaptative updating strategy for the penalty parameterf is as follows:

5k+1 = min(ﬁmawapﬁk)a (9)

where Bq. 18 an upper bound of {8 }.the value of p is defined as

_ J po, if Brmax(ymallerir — 2kl viBllyerr — yel)llcll < e1; 10
p= : (10)
1, otherwise.

The algorithm runs while the following two stopping criteria are not satisfied:

[A(zrs1) + Byrgr) — cll/llell < ex (11)
Bemaz(ynallzrs1 — 2kl viBllyerr — yell)llell < e (12)

Then, the proposed algorithm for foreground detection is as follows.
Algorithm for Foreground Detection via RPCA-LADM

Require: Training sequence with N images that is contained in D and param-
eter p > 0.
Ensure: Background in L and foreground in S.
LRR Algorithm via LADM
Initialize: Set X to D, set Ey, Zy and Ay to zero matrices, where Zj is
represented as (Up, Xo, V) < (0,0,0). Set &1 > 0,2 > 0, Bmaz > Lo >
0,mx > 02,,.,(X),r =5, and k + 0.
while stopping criteria (11) and (12) are not satisfied do
Stepl: Update Exy1 = argmingu||E||2,1 ||+%" (XU Z VI =X +Vi/ Bre||*
Step2: Update the skinny SVD(Ug+1, Xk+1, Vit1) of Zgt1-
Step3: Update the predicted rank r.
it ' < r, then r = min(r’ +1, n); otherwise, r = min(r’ +round(0,05n), n).
Step4: Update Apy1 = Ap + Bie(XUps1) Zp1 Vil + Er1 — X).
Step5: Update fr11 by (9) and (10).
Step6: k + k + 1.
end while
L« XZ, S+« E.
Foreground Detection Threshold the matrix S to obtain the foreground.

For the initialization, the matrix X is set to D. The output are the matri-
ces L and S. The foreground detection mask is obtained by thresholding the
matrix S. Fig. 1 shows the original frame 309 of the sequence from [13] and its
decomposition into the low-rank matrix I and sparse matrix S. We can see that
L corresponds to the background whereas S corresponds to the foreground. The
fourth image shows the foreground mask obtained by thresholding the matrix S
and the fifth image is the ground truth image.



Fig.1: Original image (309), low-rank matrix L (background), sparse matrix S (fore-
ground), foreground mask, ground truth.

3 Experimental Results

We compared the proposed approach with the PCA [3], RSL [4], RPCA-EALM
[10], RPCA-TALM [10]. The experiments were conducted qualitatively and quan-
titatively on the Wallflower dataset [14] and I2R dataset [15]. The algorithms
were implemented in batch mode with matlab.

3.1 Wallflower dataset?

This dataset consists of seven video sequences, with each sequence presenting one
of the difficulties a practical task is likely to encounter. The images are 160 x 120
pixels. For each sequence, the ground truth is provided for one image when the
algorithm has to show its robustness to a specific change in the scene. Thus,
the performance is evaluated against hand-segmented ground truth. The figure
2 shows the qualitative results. For the quantitative evaluation, we used metrics
based on the true negative (TN), true positive (TP), false negative (FN), false
positive (FP) detections. Then, we computed the detection rate, the precision
and the F-measure. A good performance is obtained when the detection rate is
high without altering the precision. This can be measured by the F-measure [15].
A good performance is then reached when the F-measure is closed to 1 (100 in
percentage). Table 1 shows the F-measure in percentage for each sequence. The
F-measure value of MO sequence can’t be computed due to the absence of true
positives in its ground-truth. RCPA-LADM outperforms globally RSL, RPCA-
EALM and RPCA-TALM. For the four sequences (MO, C, B, FA), the proposed
method gives better results than RSL, RPCA-EALM and RPCA-TALM. For the
sequence WT, TD and LS, results are still acceptable. As these encouraging
results are evaluated by using one ground-truth image, we have evaluated the
proposed method on a dataset with more ground-truth images in the following
sub-section.

3.2 I2R dataset?®

This dataset provided by [8] consists of nine video sequences, which each sequence
presenting dynamic backgrounds or illumination changes. The size of the images
is 176*144 pixels. For each sequence, the ground truth is provided for 20 images.

2 http://research.microsoft.com/en-us/um/people/jckrumm /wallflower /testimages.htm



Fig. 2: Experimental results on the Wallflower dataset. From top to bottom: original
image, ground truth, PCA, RSL, RPCA-EALM,RPCA-IALM, RPCA-LADM. From
left to right: MO (985), TD (1850), LS (1865), WT (247), C (251),B (2832), FA (449).

Table 1: F-measure on the Wallflower dataset

RSL |[RPCA-EALMRPCA-IALM|RPCA-LADM
TD|75.73 81.18 80.56 55.07
LS |28.36 70.86 73.16 59.92
WT|89.69 86.40 40.88 76.43
C 191.78 75.43 22.02 96.74
B [69.38 74.4 73.73 76.07
FA |74.37 72.07 61.92 91.06

Table 2: F-measure on the I2R dataset

RSL |RPCA-IALM|RPCA-LADM
Airport 65.26 74.26 75.51

Water surface|34.42 31.34 86.86
Curtain  |70.73 76.59 82.25




Among this dataset, we have chosen to show results on three representative
sequences that are the following ones: airport, water surface and curtain. We ran
RPCA-TALM and RPCA-LADM on these sequences. We skipped RPCA-EALM
since it would take excessive amounts of time due to full SVD calculations. Since
all these video clips have more than 1000 frames, we took a part of each clip
with 200 frames. Fig. 3 shows the qualitative results. For example, we can see
that the RPCA-LADM allows to detect the complete silhouette in the sequence
called "water surface". Table 2 shows the average F-measure in percentage that is
obtained on 20 ground truth images for each sequence. We can see that RCPA-
LADM outperforms RSL and RPCA-TIALM. Furthermore, we have compared
the CPU times required by RPCA-EALM,RPCA-TALM and RPCA-LADM in
term of both the number of SVDs and CPU times. In the case of the sequence
"Airport" in the resolution 176 x 144 with 200 training images, the CPU time of
each algorithm is respectively 43min, 13min, and 5min20s and the SVDs times is
respectively 550 SVDs, 38 SVDs, and 6 SVDs. On these problems of extremely
low ranks, the partial SVD technique used in RPCA-TALM and RPCA-LADM
becomes quite effective. Even so, the CPU times required by RPCA-TALM are
still about two times of those required by RPCA-LADM. Furthermore, the speed
can be improved by a GPU implementation.

Fig.3: Experimental results on the I2R dataset. From left to right: original image,
ground truth, RSL, RPCA-IALM, RPCA-LADM. From top to bottom: airport (2926),
water surface (1594), curtain (23257).

4 Conclusion

In this paper, we have presented a foreground detection method based on RPCA
that is optimized via a linearized alternating direction method. This method al-
lows us to alleviate the contraints of the identities. Furthermore, experiments on
video surveillance datasets show that this approach is more robust than RSL,
RPCA-EALM, and RPCA-TALM in the presence of dynamic backgrounds and il-
lumination changes. In terms of computational efficiency, the proposed approach

3 http://perception.i2r.a-star.edu.sg/



has exhibited a significant speed advantage over RPCA-TALM. Furthermore, its
speed can be improved by a GPU implementation. Although the main drawback
of the proposed method is its batch aspect, future research consists in develop-
ping an incremental version to update the model at every frame and to achieve
real-time requirements.
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