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Robust Principal Components Analysis (RPCA) shows a nice framework to separate moving objects from the background. The background sequence is then modeled by a low rank subspace that can gradually change over time, while the moving foreground objects constitute the correlated sparse outliers. RPCA problem can be exactly solved via convex optimization that minimizes a combination of the nuclear norm and the l1-norm. To solve this convex program, an Alternating Direction Method (ADM) is commonly used. However, the subproblems in ADM are easily solvable only when the linear mappings in the constraints are identities. This assumption is rarely veried in real application such as foreground detection. In this paper, we propose to use a Linearized Alternating Direction Method (LADM) with adaptive penalty to achieve RPCA for foreground detection. LADM alleviates the constraints of the original ADM with a faster convergence speed. Experimental results on dierent datasets show the pertinence of the proposed approach.

Introduction

The detection of moving objects is the basic low-level operations in video analysis. This detection is usually done using foreground detection. This basic operation consists of separating the moving objects called "foreground" from the static information called "background" [START_REF] Bouwmans | Recent advanced statistical background modeling for foreground detection: A systematic survey[END_REF][2]. In 1999, Oliver et al. [START_REF] Oliver | A bayesian computer vision system for modeling human interactions[END_REF] are the rst authors that model the background by Principal Component Analysis (PCA). PCA provides a robust model of the probability distribution function of the background, but not of the moving objects while they do not have a signicant contribution to the model. The main limitation of this model [2] is that the size of the foreground object must be small and don't appear in the same location during a long period in the training sequence. Recent research on robust PCA [START_REF] La | A framework for robust subspace learning[END_REF] [START_REF] Candes | Robust principal component analysis?[END_REF] can be used to alleviate these limitations. For example, Candes et al. [START_REF] Candes | Robust principal component analysis?[END_REF] proposed a convex optimization to address the robust PCA problem. The observation matrix is assumed represented as: A = L + S where L is a low-rank matrix and S must be sparse matrix with a small fraction of nonzero entries. This research seeks to solve for L with the following optimization problem: min

L,S ||L|| * + λ||S|| 1 subj A = L + S ( 1 
)
where ||.|| * and ||.|| 1 are the nuclear norm and l 1 -norm, respectively, and λ > 0 is an arbitrary balanced parameter. Under these minimal assumptions, this approach perfectly recovers the low-rank and the sparse matrices. The optimization in Equation ( 1) can be solved as a general convex optimization problem by any o-the-shelf interior point solver [START_REF] Chandrasekharan | Rank-sparsity incoherence for matrix decomposition[END_REF]. However, although interior point methods normally take very few iterations to converge, they have diculty in handling large matrices because the complexity of computing the step direction is O(n 6 ), where n is the dimension of the matrix. So the generic interior point solvers are too limited for many real applications. The interior point solvers do not scale well for large matrices because they keep the second-order information. To overcome the scalability issue, only the rst-order information can be used. Cai et al. [START_REF] Cai | A singular value thresholding algorithm for matrix completion[END_REF] showed that this technique, called Singular Value Thresholding (SVT), can be used to minimize the nuclear norm. As the matrix recovery problem in Equation ( 1) needs minimizing a combination of both the l 1 -norm and the nuclear norm, Wright et al. [START_REF] Wright | Robust principal component analysis: Exact recovery of corrupted low-rank matrices by convex optimization[END_REF] adopted a iterative thresholding technique to solve it and obtained similar convergence and scalability properties than interior point methods. However, the iterative thresholding scheme converges extremely slowly. To alleviate this slow convergence, Lin et al. [START_REF] Lin | Fast convex optimization algorithms for exact recovery of a corrupted low-rank matrix[END_REF] proposed the accelerated proximal gradient (APG) algorithm and the gradient-ascent algorithm applied to the dual of the problem in Equation (1). However, these algorithms are all the same to slow for real application. More recently, Lin et al. [START_REF] Lin | The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices[END_REF] proposed two algorithms based on augmented Lagrange multipliers (ALM). The rst algorithm is called exact ALM (EALM) method that has a Q-linear convergence speed, while the APG is in theory only sub-linear. The second algorithm is an improvement of the EALM that is called inexact ALM (IALM) method, which converges practically as fast as the exact ALM, but the required number of partial SVDs is signicantly less. The IALM is at least ve times faster than APG, and its precision is also higher [START_REF] Lin | The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices[END_REF]. However, the direct application of ALM treats the Equation (1) as a generic minimization problem and ignores its separable structure emerging in both the objective function and the constraint [START_REF] Lin | The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices[END_REF]. Hence, the variables S and L are minimized simultaneously. Yuan and Yang [START_REF] Yuan | Sparse and low-rank matrix decomposition via alternating direction methods[END_REF] proposed to alleviate this ignorance by the Alternating Direction Method (ADM) which minimizes the variables L and S serially. However, the subproblems in ADM are easily solvable only when the linear mappings in the constraints are identities.

This assumption is rarely veried in real application. Recently, Lin et al. [START_REF] Lin | Linearized alternating direction method with adaptive penalty for low-rank representation[END_REF] addressed this problem by Linearized Alternating Direction Method (LADM) with adaptive penalty. They proved the global convergence of LADM and applied it to solve low-rank representation (LRR). Furthermore, this method reduces the complexity O(n 3 ) of the original ADM based method to O(rn 2 ), where r and n are the rank and size of the representation matrix, respectively. These properties allow us to use it for foreground detection. The rest of this paper is organized as follows. In Section 2, we present how the background and the foreground can be separated via RPCA. Then, the proposed foreground detection method with the LADM algorithm is presented. Finally, performance evaluation and comparison with four other algorithms are given in Section 3.

2 Foreground detection by RPCA solved via LADM

Denote the training video sequences

D = { I 1 , ...I N
} where I t is the frame at time t and N is the number of training frames. Let each pixel (x,y) be characterized by its intensity in the grey scale. The decomposition involves the following model:

D = L + S (2)
where L and S are the low-rank component and sparse component of D, respectively. The matrix L contains the background and the matrix S contains mostly zero columns, with several non-zero ones corresponding to the foreground. The matrices L and S can be recovered by the convex program based on the Alternating Direction Method (ADM). For this work on foreground detection, we propose to use the Linearized Alternating Direction Method (LADM) with adaptive penalty [START_REF] Lin | Linearized alternating direction method with adaptive penalty for low-rank representation[END_REF]. The proposed algorithm to solve RPCA via LADM is theorically the same problem to solve the low-rank representation (LRR) problem [START_REF] Lin | Linearized alternating direction method with adaptive penalty for low-rank representation[END_REF]. The LRR problem can be expressed by:

min Z,E ∥Z∥ * + µ∥E∥ 2,1 , s.tX = XZ + E (3)
By analogy with equation (2), the matrices X, E, and XZ correspond respectively to D, S and L. By further representing Z as its skinny SVD and utilizing an advanced functionality of the PROPACK package, the complexity of solving LRR by LADMAP becomes only O(rn 2 ), as there is no full sized matrix-matrix multiplications, where r is the rank of the optimal Z. Theorically, the problem is initially formulated as a linear constrained convex program [START_REF] Lin | Linearized alternating direction method with adaptive penalty for low-rank representation[END_REF].

min x,y f (x) + g(y), s.tA(x) + B(y) = c
(4) Solving this problem by ADM, one operates on the following augmented Lagrangian function:

L A (x, y, λ) = f (x) + g(y)+ < λ, A(x) + B(y) -c > + β 2 ∥A(x) + B(y) -c∥ 2 (5)
where λ is the Lagrange multiplier, < ., . > is the inner product, and β > 0 is the penalty parameter. ADM [START_REF] Yuan | Sparse and low-rank matrix decomposition via alternating direction methods[END_REF] decomposes the minimization of L A w.r.t. (x, y) into two subproblems that minimize w.r.t. x and y, respectively. By linearizing ADM and adding a proximal term, Lin et al. [START_REF] Lin | Linearized alternating direction method with adaptive penalty for low-rank representation[END_REF] obtain a linearized ADM that accelerates the convergence with an adaptive rule for updating the penalty parameter as follows:

x k+1 = argmin x f (x)+ βη A 2 ∥x-x k +A * (λ k +β(A(x k )+B(y k )-c))/(βη A )∥ 2 (6)
where A * is the adjoint of A and η A > 0 is a parameter used in the stopping critrion. Similarly,

y k+1 = argmin y g(y) + βη B 2 ∥y -y k + B * (λ k + β(A(x k+1 ) + B(y k ) -c))/(βη B )∥ 2 (7) 
http://soi.stanford.edu/rmunk/PROPACK/

λ k+1 = λ k + β[A(x k+1 + B(y k+1 -c] (8) 
The adaptative updating strategy for the penalty parameterβ is as follows:

β k+1 = min(β max , ρβ k ), (9) 
where β max is an upper bound of {β k }.the value of ρ is dened as

ρ = { ρ 0 , if β k max( √ η A ∥x k+1 -x k ∥, √ η B ∥y k+1 -y k ∥)∥c∥ < ε 1 ; 1, otherwise. (10) 
The algorithm runs while the following two stopping criteria are not satised:

∥A(x k+1 ) + B(y k+1 ) -c∥/∥c∥ < ε 1 ( 11 
)
β k max( √ η A ∥x k+1 -x k ∥, √ η B ∥y k+1 -y k ∥)∥c∥ < ε 1 (12) 
Then, the proposed algorithm for foreground detection is as follows.

Algorithm for Foreground Detection via RPCA-LADM Require: Training sequence with N images that is contained in D and parameter µ > 0.

Ensure: Background in L and foreground in S. LRR Algorithm via LADM Initialize: Set X to D, set E 0 , Z 0 and Λ 0 to zero matrices, where Z 0 is represented as (U 0 , Σ 0 , V 0 ) ← (0, 0, 0). Set ε 1 > 0, ε 2 > 0, β max ≫ β 0 > 0, η X > σ 2 max (X), r = 5, and k ← 0.

while stopping criteria [START_REF] Yuan | Sparse and low-rank matrix decomposition via alternating direction methods[END_REF] and [START_REF] Lin | Linearized alternating direction method with adaptive penalty for low-rank representation[END_REF] are not satised do Step1:

Update E K+1 = argmin E µ∥E∥ 2,1 ∥+ β k 2 ∥(XU k )Σ k V T k -X+V k /β k ∥ 2 .
Step2: Update the skinny SVD(U k+1 , Σ k+1 , V k+1 ) of Z k+1 .

Step3: Update the predicted rank r.

if r ′ < r, then r = min(r ′ + 1, n); otherwise, r = min(r ′ + round(0, 05n), n).

Step4:

Update Λ k+1 = Λ k + β k ((XU k+1 )Σ k+1 V T k+1 + E k+1 -X).
Step5: Update β k+1 by ( 9) and [START_REF] Lin | The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices[END_REF].

Step6:

k ← k + 1. end while L ← XZ, S ← E.
Foreground Detection Threshold the matrix S to obtain the foreground.

For the initialization, the matrix X is set to D. The output are the matrices L and S. The foreground detection mask is obtained by thresholding the matrix S. Fig. 1 shows the original frame 309 of the sequence from [START_REF] Sheikh | Bayesian modeling of dynamic scenes for object detection[END_REF] and its decomposition into the low-rank matrix L and sparse matrix S. We can see that L corresponds to the background whereas S corresponds to the foreground. The fourth image shows the foreground mask obtained by thresholding the matrix S and the fth image is the ground truth image. 

Experimental Results

We compared the proposed approach with the PCA [START_REF] Oliver | A bayesian computer vision system for modeling human interactions[END_REF], RSL [START_REF] La | A framework for robust subspace learning[END_REF], RPCA-EALM [START_REF] Lin | The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices[END_REF], RPCA-IALM [START_REF] Lin | The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices[END_REF]. The experiments were conducted qualitatively and quantitatively on the Wallower dataset [START_REF] Toyama | Wallower: Principles and practice of background maintenance[END_REF] and I2R dataset [START_REF] Maddalena | A fuzzy spatial coherence-based approach to background foreground separation for moving object detection[END_REF]. The algorithms were implemented in batch mode with matlab.

Wallower dataset

This dataset consists of seven video sequences, with each sequence presenting one of the diculties a practical task is likely to encounter. The images are 160 × 120 pixels. For each sequence, the ground truth is provided for one image when the algorithm has to show its robustness to a specic change in the scene. Thus, the performance is evaluated against hand-segmented ground truth. The gure 2 shows the qualitative results. For the quantitative evaluation, we used metrics based on the true negative (TN), true positive (TP), false negative (FN), false positive (FP) detections. Then, we computed the detection rate, the precision and the F-measure. A good performance is obtained when the detection rate is high without altering the precision. This can be measured by the F-measure [START_REF] Maddalena | A fuzzy spatial coherence-based approach to background foreground separation for moving object detection[END_REF]. A good performance is then reached when the F-measure is closed to 1 (100 in percentage). Table 1 shows the F-measure in percentage for each sequence. The F-measure value of MO sequence can't be computed due to the absence of true positives in its ground-truth. RCPA-LADM outperforms globally RSL, RPCA-EALM and RPCA-IALM. For the four sequences (MO, C, B, FA), the proposed method gives better results than RSL, RPCA-EALM and RPCA-IALM. For the sequence WT, TD and LS, results are still acceptable. As these encouraging results are evaluated by using one ground-truth image, we have evaluated the proposed method on a dataset with more ground-truth images in the following sub-section.

I2R dataset !

This dataset provided by [START_REF] Wright | Robust principal component analysis: Exact recovery of corrupted low-rank matrices by convex optimization[END_REF] consists of nine video sequences, which each sequence presenting dynamic backgrounds or illumination changes. The size of the images is 176*144 pixels. For each sequence, the ground truth is provided for 20 images. Among this dataset, we have chosen to show results on three representative sequences that are the following ones: airport, water surface and curtain. We ran RPCA-IALM and RPCA-LADM on these sequences. We skipped RPCA-EALM since it would take excessive amounts of time due to full SVD calculations. Since all these video clips have more than 1000 frames, we took a part of each clip with 200 frames. Fig. 3 shows the qualitative results. For example, we can see that the RPCA-LADM allows to detect the complete silhouette in the sequence called "water surface". Table 2 shows the average F-measure in percentage that is obtained on 20 ground truth images for each sequence. We can see that RCPA-LADM outperforms RSL and RPCA-IALM. Furthermore, we have compared the CPU times required by RPCA-EALM,RPCA-IALM and RPCA-LADM in term of both the number of SVDs and CPU times. In the case of the sequence "Airport" in the resolution 176 × 144 with 200 training images, the CPU time of each algorithm is respectively 43min, 13min, and 5min20s and the SVDs times is respectively 550 SVDs, 38 SVDs, and 6 SVDs. On these problems of extremely low ranks, the partial SVD technique used in RPCA-IALM and RPCA-LADM becomes quite eective. Even so, the CPU times required by RPCA-IALM are still about two times of those required by RPCA-LADM. Furthermore, the speed can be improved by a GPU implementation. 

Conclusion

In this paper, we have presented a foreground detection method based on RPCA that is optimized via a linearized alternating direction method. This method allows us to alleviate the contraints of the identities. Furthermore, experiments on video surveillance datasets show that this approach is more robust than RSL, RPCA-EALM, and RPCA-IALM in the presence of dynamic backgrounds and illumination changes. In terms of computational eciency, the proposed approach has exhibited a signicant speed advantage over RPCA-IALM. Furthermore, its speed can be improved by a GPU implementation. Although the main drawback of the proposed method is its batch aspect, future research consists in developping an incremental version to update the model at every frame and to achieve real-time requirements.

Fig. 1 :

 1 Fig. 1: Original image (309), low-rank matrix L (background), sparse matrix S (foreground), foreground mask, ground truth.

  Fig. 2: Experimental results on the Wallower dataset. From top to bottom: original image, ground truth, PCA, RSL, RPCA-EALM,RPCA-IALM, RPCA-LADM. From left to right: MO (985), TD (1850), LS (1865), WT (247), C (251),B (2832), FA (449).

Fig. 3 :

 3 Fig. 3: Experimental results on the I2R dataset. From left to right: original image, ground truth, RSL, RPCA-IALM, RPCA-LADM. From top to bottom: airport (2926), water surface (1594), curtain (23257).

Table 1 :

 1 F-measure on the Wallower dataset

	RSL RPCA-EALM RPCA-IALM RPCA-LADM
	TD 75.73	81.18	80.56	55.07
	LS 28.36	70.86	73.16	59.92
	WT 89.69	86.40	40.88	76.43
	C 91.78	75.43	22.02	96.74
	B 69.38	74.4	73.73	76.07
	FA 74.37	72.07	61.92	91.06
	Table 2: F-measure on the I2R dataset
		RSL RPCA-IALM RPCA-LADM
	Airport	65.26	74.26	75.51
	Water surface 34.42	31.34	86.86
	Curtain	70.73	76.59	82.25
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