
HAL Id: hal-00809451
https://hal.science/hal-00809451

Submitted on 9 Apr 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Popularity, Interoperability, and Impact of Programming
Languages in 100,000 Open Source Projects

Tegawendé F. Bissyandé, Ferdian Thung, David Lo, Lingxiao Jiang, Laurent
Réveillère

To cite this version:
Tegawendé F. Bissyandé, Ferdian Thung, David Lo, Lingxiao Jiang, Laurent Réveillère. Popularity,
Interoperability, and Impact of Programming Languages in 100,000 Open Source Projects. 37th
Annual International Computer Software & Applications Conference (COMPSAC 2013), Jul 2013,
Kyoto, Japan. pp.1-10. �hal-00809451�

https://hal.science/hal-00809451
https://hal.archives-ouvertes.fr

Popularity, Interoperability, and Impact of Programming Languages
in 100,000 Open Source Projects

Tegawendé F. Bissyandé1, Ferdian Thung2, David Lo2, Lingxiao Jiang2 and Laurent Réveillère1
1Laboratoire Bordelais de Recherche en Informatique, France

2Singapore Management University, Singapore
{bissyande,reveillere}@labri.fr,{ferdianthung,davidlo,lxjiang}@smu.edu.sg

Abstract—Programming languages have been proposed even
before the era of the modern computer. As years have gone,
computer resources have increased and application domains
have expanded, leading to the proliferation of hundreds of
programming languages, each attempting to improve over
others or to address new programming paradigms. These
languages range from procedural languages like C, object-
oriented languages like Java, and functional languages such
as ML and Haskell. Unfortunately, there is a lack of large
scale and comprehensive studies that examine the “popular-
ity”, “interoperability”, and “impact” of various programming
languages. To fill this gap, this study investigates a hundred
thousands of open source software projects from GitHub
to answer various research questions on the “popularity”,
“interoperability” and “impact” of various languages measured
in different ways (e.g., in terms of lines of code, development
teams, issues, etc.).

Keywords-Programming languages; Popularity; Interoper-
ability; Open source; Software projects; GitHub

I. INTRODUCTION

Computers have a unique purpose: to perform instructions
given to them by us humans. A natural question arises when
a computer tries to understand and perform any given in-
struction: in what format the instructions should be so that it
may be easy for humans to describe and easy for computers
to understand. Assembly languages, mostly low-level and
specific to certain computer architectures, have early been
proposed to ease the programming of computer instructions
by using mnemonics. To improve developer productivity and
facilitate large scale software development and maintenance,
many higher-level languages with a stronger abstraction
from the details of a computer have also emerged. 70 years
after the apparition of the modern computer, hundreds, if
not thousands, of programming languages have existed—the
Wikipedia Internet encyclopedia lists about 600 languages1.

Various programming languages have their advantages
and disadvantages. Assembly languages are often accredited
to be easier to work with hardware and execute more
efficiently, while higher-level languages often provide a
rich set of grammatical rules and vocabulary that makes
programming much easier for developers. Some program-
ming languages have been introduced fairly recently, while

1http://en.wikipedia.org/wiki/List of programming languages

others have been used for decades. For example, C# was
only introduced in 2001, while C has been in use since
1972. There are also various ways to classify languages
into various categories, including procedural languages (e.g.,
Fortran, Pascal, and ANSI C), aspect-oriented languages
(e.g., AspectJ), object-oriented languages (e.g., Java and
C++), and functional languages (e.g., Haskell). Thus, there
are a wide variety of options that developers can choose
when writing applications.

Due to the wide variety of programming languages out
there, there is a need to investigate the popularity, interop-
erability, and impact of different programming languages.
“Popularity” of programming languages is a challenging
property to assess. In this study we investigate different
correlations of software development metrics with the use of
common programming languages. We use the term “interop-
erability” to refer to the extent to which two programming
languages are used together in software projects. An under-
standing of these factors could help, for example, developers
select languages to use or learn, and could help managers
assess developer pool sizes in function of their skills in
programming languages.

Despite the above-mentioned benefits, there have been,
however, limited studies that investigate the popularity, inter-
operability, and impact of different programming languages.
Thus there is a need for a comprehensive analysis of these
factors based on a large number of projects written in various
programming languages. In this work, we fill this need
by investigating a hundred thousands projects and analyze
these factors by answering a set of research questions. Since
“popularity”, “interoperability” and “impact” are concepts
that involve many variations, we explore these properties of
programming languages across several dimensions. In par-
ticular, our study aims at answering the following questions:

RQ1: How popular are the various programming languages
in terms of adoption in real-world software projects?

RQ2: How many projects are written in more than one
programming language and what is the degree of
interoperability of each language towards the others?

RQ3: Is there a correlation between the programming lan-
guage used and the project success?

1

RQ4: What is the correlation between the programming
language used and the number of issue reports?

RQ5: How does the programming language correlate with
the size of the development team?

A previous study related to ours is the TIOBE program-
ming community index which ranks various programming
languages [15]. The ranking is based on “the number
of skilled engineers world-wide, courses, and third-party
vendors”.2 The rank is computed by performing searches
on a number of search engines including Google, Bing,
Yahoo!, Wikipedia, Amazon, YouTube, and Baidu. The
data used by TIOBE is not freely available and we could
not find a description of the exact methodology for the
ranking on TIOBE’s site. Different from TIOBE’s ranking,
we investigate the popularity, interoperability, and impact
of programming languages from a different angle: we do
not look into search engines or analyze skilled engineers,
courses, or third party vendors; rather, we analyze a hundred
thousands of open source software projects. We believe
that analyzing actively developed software artifacts is a
promising way to understand how programming languages
are being used. We describe our approach in detail in this
paper and make our data publicly available3. Conway has
also provided a ranking of languages based only on their
appearance in GitHub projects [2]. In this study we further
investigate the amount of lines of code written for each
language.

Our study is made possible by the availability of a large
amount of data in GitHub. Millions of projects are publicly
available for download in GitHub. There are small and
large projects; large ones include the Linux kernel (with
over 10,000,000 lines of code written by more than 9,000
contributors). The availability of a wealth of project data
allows us to explore a variety of interesting questions on the
popularity and impact of various programming languages.
We are however aware that the findings based on these
open source projects are only meant to shed light, to some
extent, on the usage of common programming languages.
Some languages might be under-represented in the dataset
of projects because of the constraints in their development
context. For example, the VHDL language, which is seldom
in our dataset, is widespread for embedded systems in the
industry, a domain that tend not to publish their work to
open source platforms. Aside from such cases, our study
provides a clear picture on the popularity of programming
languages in public domain.

For this study, we have obtained 100,000 git repositories
from GitHub. We have analyzed the contents of each of the
git repositories to find software code. We count the numbers
of lines of code written in various programming languages.
Based on this information, we can answer our formulated

2http://www.tiobe.com/index.php/content/paperinfo/tpci as of June 2012
3Upon request.

questions related to the popularity and interoperability of
programming languages. We also collect various information
related to project success, reported issues, and team sizes.
The contributions of this work are as follows:

1) As far as we know, we are the first to analyze the pop-
ularity of various programming languages by analyzing
a hundred thousands of open source software projects.
We report the popularity of various programming lan-
guages in various dimensions: the numbers of projects
written in a language, the numbers of lines of code
written in a language, and the numbers of developers
that “read”/“write” a language.

2) We analyze the interoperability of various programming
languages based on projects that are developed using
more than one programming language. We measure
how close a pair of programming languages are based
on their interoperability.

3) We describe the correlation between programming lan-
guages and project “success” in the developer commu-
nity, reported bugs, and development team sizes.

The rest of this paper is organized as follows. In Sec-
tion II, we provide preliminary information on various
programming languages and GitHub. In Section III, we elab-
orate the methodology of our empirical study. In Section IV,
we present the results of our study. We list the threats to
validity in Section V. Section VI discusses related work.
We conclude and describe future work in Section VII.

II. PRELIMINARIES

In this section, we introduce various programming lan-
guages, and briefly describe GitHub and the kind of projects
it hosts.

A. Programming Languages

Programming languages define the grammar and seman-
tics used by human beings to communicate and interact with
machines. Programming languages, such as the one used by
Ada Lovelace in her first program [5], have existed before
the invention of modern computers in the 1940s. With the
advent of the computer, programmers started to use assembly
languages. Seventy years later, hundreds of programming
languages have been invented. While some have been dis-
carded with the arrival of their better alternatives, others have
kept their usage trends. A few more recent programming
languages have quickly gained momentum in the last years.

Each programming language belongs to a category that is
more or less suitable for different programming tasks and
computing environments. We only focus on 30 commonly
known programming languages that appear in our dataset.
Table I describes each language, its category, and its year
of apparition. The oldest one, Fortran, was proposed 56
years ago, while the most recent, C# appeared about 10
years ago. These languages are classified into categories

2

Table I
30 COMMON PROGRAMMING LANGUAGES

Language Main classifications Appearance
Fortran Imperative / Procedural 1957
Lisp Functional / Interpreted 1958
COBOL Imperative / Compiled 1959
Yacc Syntax handling 1970
Pascal Imperative / Procedural 1970
ANSI C Imperative / Procedural 1972
ML Functional / Compiled 1973
Sed Command Line/Parsing 1973
Lex Lexical analysis 1975
Shell (sh) Command Line / Interpreted 1977
Awk Rule based / Scripting 1977
C Shell (csh) Command Line / Interpreted 1978
Ada Concurrent 1980
VHDL Dataflow 1980s
Modula-3 Imperative / Object-Oriented 1980s
C++ Imperative / Object-Oriented 1983
Perl Imperative / Object-Oriented 1983
Objective-C Object-oriented 1983
Erlang Functional / Compiled 1986
Tcl Scripting 1988
Expect (exp) Scripting / Automation 1990
Haskell Functional 1990
Python Interpreted / Object-Oriented 1991
Fortran 90 (f90) Imperative 1991
JavaScript Object-Oriented 1995
Java Object-Oriented 1995
PHP Imperative 1995
Ruby Imperative 1995
JSP Imperative 1999
C# Imperative/Functional/Object-Oriented 2001

with functional and object-oriented features, compiled and
interpretive designs, scripting and execution purposes, etc.

Given the capabilities of general purpose programming
languages, a programming task can often be implemented
in any of them. Then, why a language would be preferred
against another? It is important to understand such a question
as it may provide insights for designing better languages.
Before understanding “why”, it is important to know what
the “popular” programming languages are and what the
impact of a language is on the evolution of a project, which
are the topics of this paper.

B. GitHub

GitHub is a project hosting site that has introduced the
concept of social coding by providing many developer-
friendly features. It can be viewed as a socio-technical
network. GitHub has thus gained a wide acceptance and
adoption among developers, and its website indicates that it
is currently4 hosting more than 3,000,000 project reposito-
ries. Thanks to GitHub’s extensive REST [4] APIs5, we are
able to identify about 1,300,000 million repositories whose
contents are publicly available for use.

GitHub uses git [7] as its revision control system for
source code versioning. It enables forking, which allows to
create copies of repositories, and it supports pull requests
for merging changes from copies to the source repository, to
facilitate contributions from developers who are not project
team members. Aside from source code revision control,
GitHub integrates common software development facilities,
such as bug/issue trackers and wiki pages.

4http://github.com as of June 2012
5http://developer.github.com

A large number of projects, such as those from the
Apache community, which are developed outside the GitHub
platform, i.e., autonomously or on other platforms such as
Sourceforge, have their repositories mirrored in GitHub. This
fact indicates that by using GitHub projects, we do not limit
ourselves to the GitHub community or to git. Furthermore, a
number of famous companies such as FacebookTM host open
source versions of their projects on GitHub. This suggests
that our project dataset contains projects managed by diverse
communities. While the large number of projects hosted by
GitHub and its extensive APIs for accessing the projects
enable large studies like ours, there are still some challenges
that we need to address, such as (1) collecting and managing
huge amount of data, and (2) inferring important information
which are not directly available from the APIs, such as the
number of source lines of code in a project.

III. METHODOLOGY

To perform our empirical study, we need a large number
of projects that may represent the universe of all projects.
The software projects should be written for various purposes
by diverse teams in a variety of languages. We have done a
manual exploratory survey of the projects on GitHub, inves-
tigating the development teams, the application domains and
the range of programming languages used in the projects.
We have thus found that projects hosted by GitHub are
very diverse and thus suitable to the requirements of our
study. We have also found that GitHub is used as the main
development platform for over a million projects, and that
it may also be used as a mirror for popular projects, such
as Apache or Linux.

For our study, we consider the first 100,000 projects
returned by the GitHub APIs. There appears to be no distinct
ordering scheme in the returned list of projects6 which also
vary on subsequent requests. Given these projects, we extract
several types of information for each project:

General project information: Each repository is moni-
tored by GitHub and tracked based on different features. In
this paper, we consider the concepts of watchers and forks.
“Watchers” is a metric for measuring interest and activity in
a project. It gives an indication of the amount of attention
that is given to a project by the developer community: an
aspect of project “success”. Watchers typically use project
releases, report bugs, and incidentally promote the project in
their socio-technical network. “Forks” is a metric for mea-
suring the active involvement of the developer community in
the growth of a project’s code base and the improvement of
its quality. While these metrics are not absolute, they provide
good insights on the “success” of a project.

Source Lines of code: To compute the number of
physical source lines of code (sloc), we download each
project’s code repository and rely on the SLOCCount7 tool.

6The list is available at http://momentum.labri.fr/orion/project list.txt
7http://www.dwheeler.com/sloccount/

3

This tool computes actual lines of code, ignoring code
comments and blank lines. It supports 29 of the languages
considered in our study. We have extended SLOCCount to
add support for the 30th language, namely JavaScript.

Developer contributions: We also consider the contrib-
utors for a given project inferred from the commits. Whether
a contributor to a project is registered or not in GitHub, his
information is always available in the git repositories that
he contributes to. This inference is particularly important
for projects that are just mirrored in GitHub but whose
development is done on the project’s own website.

Issue Reports: Finally, we consider issue reports as
an important artefact of software development process. For
each project repository, we have crawled the corresponding
issues database on GitHub. Though an “issue” may refer to
a bug report or a feature request, we study them together as
both are good indications of the interest that the programmer
community gives to a project.

Based on the aforementioned information for each project,
we extensively explore the popularity and impact of pro-
gramming languages in various dimensions.

IV. EMPIRICAL EVALUATION

In this section, we investigate the research questions de-
scribed in Section I to assess the popularity of programming
languages. We investigate beforehand the dataset to ensure
that most of the projects are non toy projects of substantial
sizes. To this end we count the total lines of source code
(LOC) in each project. Fig. 1 plots the percentages of
projects with different numbers of lines of source code. Over
70% of the projects contain more than 1,000 LOC. Around
35% of the projects include more than 5,000 LOC, while
more than 20% contain more than 10,000 LOC. Finally,
over 600 projects contain more than 1,000,000 LOC. This
distribution suggests that a significant number of the projects
in the dataset are of substantial sizes.

%
 o

f P
ro

je
ct

s

0
20

40
60

> 1,000
> 5,000
> 10,000
> 50,000
> 100,000
> 500,000
> 1,000,000

Figure 1. Distribution of the Dataset Projects in Terms of Total LOC

A. RQ1: Popular Programming Languages

To provide insights into the first research question, we
investigate the popularity of the 30 programming languages
in terms of the number of lines of code in the 100,000
software projects that are written in each particular language,
the number of projects that contain code in each particular
language, and the number of developers that are involved in
a project that contain code in each particular language. We
describe the results of our study in the following paragraphs.

Table II
Programming Language Popularity—Lines of Code

Rank Language # LOC % LOC

1 ansi c 1,615,634,331 60.83 %
2 javascript 296,893,761 11.18 %
3 c++ 217,566,364 8.19 %
4 php 167,458,938 6.31 %
5 java 99,308,060 3.74 %
6 ruby 59,967,003 2.26 %
7 python 53,850,088 2.03 %
8 c# 31,560,343 1.19 %
9 lisp 27,614,150 1.04 %
10 sh 22,605,731 0.85 %
11 objective c 16,570,836 0.62 %
12 perl 16,413,762 0.62 %
13 pascal 11,766,801 0.44 %
14 erlang 7,335,480 0.28 %
15 yacc 1,646,328 0.06 %
16 ml 1,550,750 0.06 %
17 fortran 1,468,246 0.06 %
18 tcl 1,351,073 0.05 %
19 haskell 1,117,902 0.04 %
20 jsp 972,759 0.04 %
21 ada 878,412 0.03 %
22 f90 588,801 0.02 %
23 lex 573,349 0.02 %
24 vhdl 485,806 0.02 %
25 expect 318,554 0.01 %
26 awk 199,513 0.01 %
27 cobol 135,257 0.01 %
28 csh 74,608 0.00 %
29 sed 26,549 0.00 %
30 modula3 985 0.00 %

60.8%

11.2%
8.2%

6.3%
3.7%

2.3%
2%
5.5%

ansi c
javascript
c++
php
java
ruby
python
others

Figure 2. Language Popularity — Lines of Code

Table II shows the ranking of various programming
languages in terms of total lines of code written in each
language. C code dominates with 1.6 billion lines of code
(60.83% of all LOC that we analyze). Next to C code is
JavaScript and C++ code, which have 296 (11.18%) and
217 (8.19%) millions lines of code respectively. PHP and
Java follow with 6.31% and 3.74% of all LOC respectively.
Other well-known languages, such as Ruby, Python, and C#,
only account for 2.26%, 2.03%, and 1.19% of all LOC.
Functional languages, such as ML and Haskell, appear in
more than 1.5 (0.06%) millions and 1 million (0.04%) LOC.
The least popular programming languages in terms of LOC
are C-Shell, Sed, and Modula3.

Figure 2 represents the distribution of LOC for the top-
ranked languages. The predominance of C can be related to
the fact that many operating system kernels, including the
Linux kernel (10,064,207 lines of C code as of June 2012)
and its device-specific flavors, are among the projects with
the largest code bases and are written in C.

Language popularity can also be measured in terms of
its adoption by the number of software projects using the
language. Thus, for each programming language, we count

4

Table III
Programming Language Popularity—Appearance in Projects

Rank Language # Projects % Projects

1 javascript 27,873 27.87 %
2 ruby 19,857 19.86 %
3 python 15,224 15.22 %
4 sh 14,444 14.44 %
5 php 11,023 11.02 %
6 java 10,646 10.65 %
7 ansi c 10,142 10.14 %
8 c++ 6,865 6.87 %
9 perl 5,741 5.74 %
10 objective c 3,721 3.72 %
11 c# 3,082 3.08 %
12 lisp 2,005 2.01 %
13 pascal 1,165 1.17 %
14 haskell 1,071 1.07 %
15 jsp 958 0.96 %
16 yacc 887 0.89 %
17 erlang 652 0.65 %
18 awk 601 0.60 %
19 lex 567 0.57 %
20 sed 409 0.41 %
21 tcl 255 0.26 %
22 csh 242 0.24 %
23 ml 208 0.21 %
24 ada 195 0.20 %
25 fortran 134 0.13 %
26 expect 102 0.10 %
27 f90 77 0.08 %
28 vhdl 45 0.05 %
29 modula3 13 0.01 %
30 cobol 10 0.01 %

the number of projects that contain code written in this
language. Table III details the ranking of the programming
languages in this scenario. This metric (i.e., popularity by
the number of projects) is similar to GitHub’s own metric.
Our findings are globally similar to the ranking provided by
GitHub and used by Conway in his study.8 JavaScript largely
outranks other programming languages with 27,873 projects,
which represents 27.87% of all projects in our dataset. The
next ones in the ranking are also other scripting languages
that are popularly used in 19.86% (Ruby), 15.22% (Python),
and 14.44% (Shell) of the projects, respectively. Then follow
general-purpose programming languages, such as Java, C,
C++, and C#, which are used in 10.65%, 10.14%, 6.87%,
and 3.08% of the projects respectively.

We also note that the Haskell functional language has
gained popularity with 1,071 projects (1.07%) containing
Haskell code. Based on this metric, Haskell outranks ML,
its counterpart functional language. Finally, the least popular
programming languages are VHDL, Modula3, and Cobol,
which, even when combined, are found in less than 1% of
all projects.

Table IV details the distribution of the top-10 main
languages in the projects. In this study, we consider a
language to be the main language for a project when it is
the language with the most lines of code. The top ranks
are still held by scripting languages. However, when we
compare the numbers of projects in Table IV with those in
Table III, we can see that scripting languages are often used

8http://redmonk.com/sogrady/2012/09/12/language-rankings-9-12/

as supporting languages. For example, although JavaScript
appears in almost 28 thousands projects, it is the main
language in only about 9 thousands (34.50% of all projects
with some JavaScript code); The Shell scripting language
appears in over 14 thousands projects, but it is the main
language in only 3 thousands (22%) projects. Compiled
programming languages, such as Java, C, and C++ are used
more often as main languages (> 50%) in projects.

Table IV
Language Popularity—Top-10 Main Languages in Projects

Rank Language # Projects

1 ruby 12,642
2 python 10,165
3 javascript 9,616
4 java 8,861
5 php 7,886
6 ansic 6,307
7 c++ 4,477
8 sh 3,311
9 objective c 2,982
10 perl 2,472

Another metric that we use to investigate the popularity
of a language is the number of developers using it in
their projects. For computing the ranking, we assume that
all developers in a project are knowledgeable in the main
language of the project. Figure 3 illustrates the distribution
of developers for the top ranked languages. Overall, C
appears to be the most popular language among developers,
followed by Ruby, Python, Java, and C++. JavaScript and
C# are only used by 8.97% and 3.42% of the developers.
The detailed results for all languages are shown in Table V.
Languages such as C-Shell, Modula3, and Cobol appear to
be used by relatively insignificant numbers of developers.

%
 D

ev
el

op
er

s

0
5

10
15

20

ansic
ruby
python
java
c++
php
javascript
shell
perl
c#

Figure 3. Language Popularity—Adoption by Developers. Percentages of
developers that adopt different programming languages.

Ansi C, JavaScript and C++ top our ranking in terms
of LOC. Most of the projects in our dataset contain
code in JavaScript, Ruby in Python. Finally, Ansi
C, Ruby and Python are used in projects with the
largest developer pools. These findings suggest that
these languages should be learned.

B. RQ2: Multi-Language Projects

Developers often rely on different programming languages
to implement different functionalities in a single project. The
second research question investigates the interoperability of

5

Table V
Programming Language Popularity—Developer Pool. Numbers and

percentages of developers that adopt different programming
languages.

Rank Language # Developers % Developers

1 ansi c 48,373 22.08%
2 ruby 34,878 15.92%
3 python 29,764 13.58%
4 java 27,567 12.58%
5 c++ 26,708 12.19%
6 php 22,790 10.40%
7 javascript 19,651 8.97%
8 sh 11,345 5.18%
9 perl 7,587 3.46%
10 c# 7,499 3.42%
11 objective c 6,405 2.92%
12 lisp 3,644 1.66%
13 haskell 2,026 0.92%
14 erlang 1,757 0.80%
15 pascal 1,161 0.53%
16 ml 408 0.19%
17 tcl 213 0.10%
18 jsp 151 0.07%
19 fortran 75 0.03%
20 yacc 67 0.03%
21 ada 48 0.02%
22 vhdl 48 0.02%
23 f90 28 0.01%
24 sed 8 0.00%
25 expect 7 0.00%
26 lex 5 0.00%
27 awk 4 0.00%
28 csh 3 0.00%
29 modula3 3 0.00%
30 cobol 1 0.00%

languages to identify the languages that are popularly used
in multi-language projects. We assume that two languages
are “interoperable” if they are used in a same project.

Table VI shows that scripting languages are ranked the
first in terms of interoperability. The top-1, JavaScript, is
used in over 18 thousands (21.81 %) of multi-language
projects, followed by Shell (14.80%), Ruby (11.62%), and
Python (9.22%). The C programming language, PHP, C++,
and Java also appear in respectively 9.09%, 7.32%, 5.44%
and 4.95% of the multi-language projects. On the other hand,
Haskell and ML are less interoperable, appearing in 0.55%
and 0.18% of the projects. The least interoperable languages
are VHDL, modula3, and Cobol which, together, appear in
less than 1% of multi-language projects.

We further survey the interoperability of languages by
detailing the relationships among them to establish how lan-
guages interoperate and which ones are mostly used together.
The relationship graph in Figure 4 gives an overview of how
languages interoperate within projects. The thicker the edge
between two nodes in the graph, the more projects contain
code in the two corresponding languages. We observe that
all languages interoperate with one another, though with
different degrees of interoperability. Shell is the language
that interoperates the most with other languages. Shell is
indeed a scripting language that is used in many projects to
write automation scripts for compilation, install, launch, etc.
A subset of languages that consists of shell, ansi c, ruby,
php, java, c++, c#, perl, javaScript, and python, are used
together more often than the others. Objective C appears

Table VI
Language Interoperability. Numbers and percentages of projects

written in multiple programming languages, that include different
programming languages.

Rank Language # Multi Language % Multi Language
Projects Projects

1 javascript 18,353 21.81%
2 sh 12,456 14.80%
3 ruby 9,782 11.62%
4 python 7,757 9.22%
5 ansi c 7,646 9.09%
6 php 6,160 7.32%
7 c++ 4,577 5.44%
8 java 4,163 4.95%
9 perl 3,841 4.56%
10 objective c 1,593 1.89%
11 c# 1,391 1.65%
12 lisp 1,239 1.47%
13 pascal 958 1.14%
14 jsp 925 1.10%
15 yacc 884 1.05%
16 awk 598 0.71%
17 lex 567 0.67%
18 haskell 464 0.55%
19 sed 405 0.48%
20 erlang 394 0.47%
21 tcl 243 0.29%
22 csh 241 0.29%
23 ada 187 0.22%
24 ml 153 0.18%
25 fortran 129 0.15%
26 exp 101 0.12%
27 f90 71 0.08%
28 vhdl 33 0.04%
29 modula3 10 0.01%
30 cobol 9 0.01%

to be less interoperable with others. ML and Haskell have
weak relationships with other languages.

Figure 4. Language Interoperability—All Languages. Relationships among
the 30 languages in Table I. The thicker a line between two languages, the
more projects contain code written in these two languages.

Figure 5 focuses on the interoperability of a subset of
mainstream languages. The graph shows that JavaScript
interoperates well with php and ruby, two other common
languages used in web programming.

Finally, in Figure 6, we explore the relationships between
ANSI C and all other languages. The graph reveals that C
interoperates well with many languages. This is possibly
related to the fact that mainstream languages, such as C++,
Java, Objective C, and C# are derivatives of C. Furthermore,
we note that C and C++ interoperate the best with each other.

6

Figure 5. Language Interoperability—Mainstream Languages. Rela-
tionships among mainstream languages. The thicker a line between two
languages, the more projects contain code written in these two languages.

Figure 6. Language Interoperability—ANSI C. Relationships between
ANSI C with other languages. The thicker a line between two languages,
the more projects contain code written in these two languages.

JavaScript, Shell and Ruby appear to be used together
with most of the languages. Ansi C and its derivatives,
which are syntaxically close, also interoperate very
well. Web programming languages are often used
together in projects.

C. RQ3: Programming Languages and Success

In the third research question, we investigate the lan-
guages used by successful projects. To estimate the success
of a project, we rely on the amount of interest shown to
the project that could be measured based on social coding
features of GitHub.

1) Watchers: A project is found successful user-wise if
many GitHub users watch its development. Table VII details
the average numbers of watchers per project containing code
in each programming languages. In this scenario, we con-
sider only one main language per project to reduce outliers
in multi-language projects. Objective-C is thus the language
of the most number of watched projects: on average 91
watchers per project. The median number of watchers, i.e.,
5, is also the highest. Erlang has the same median number

Table VII
Language and Project Success — Watchers. Means and medians of

numbers of watchers for projects written in different languages.

Rank Language Mean Median Significance

1 objective c 91.6 5 +
2 javascript 65.8 2 +
3 ruby 60.5 2 +
4 erlang 52.6 5 +
5 sh 28.8 1 +
6 python 26.8 1 -
7 php 24.8 2 -
8 yacc 24.3 1 -
9 c# 23.6 1 +
10 c++ 23.1 1 -
11 ansi c 19.7 1 +
12 lisp 17.3 1 +
13 java 16.8 1 -
14 ml 15.5 1 -
15 tcl 15.0 2 -
16 perl 12.2 1 -
17 haskell 10.0 1 -
18 fortran 9.9 1 -
19 f90 9.5 1 -
20 ada 8.9 1 +
21 pascal 7.2 1 -
22 lex 3.0 2 +
23 jsp 2.8 1 -
24 awk 2.2 2 -
25 csh 2.0 3 -
26 vhdl 1.9 1 -
27 sed 1.8 1 -
28 exp 1.0 1 +
29 modula3 1.0 1 +
30 cobol 1.0 1

of watchers as Objective-C, but there are 6 times more
Objective-C projects than Erlang’s. In terms of the average
number of watchers per project, JavaScript-based and Ruby-
based projects are also popular. Among mainstream com-
piled languages, C# and C++ appear the first, each of which
has on average 23 watchers per project. Projects using C or
Java as the main language have on average 19 or 16 watchers
respectively. Once again, Modula3 and Cobol appear at the
bottom of the ranking.

We use the Mann-Whitney-Wilcoxon (MWW) test, a non-
parametric statistical hypothesis test, to assess the statistical
significance of the difference between the distribution of
projects for a given language and the distribution of projects
for the next language in the table. The + sign, in the
Significance column, indicates that the mean value for the
corresponding language in a row is significantly higher than
the mean for the language in the following row. Otherwise,
a - sign is indicated. Projects written in Objective C have
significantly more watchers than those written in JavaScript
which in turn have significantly more watchers than those
written in Ruby.

2) Forks: GitHub also tracks the number of forks for
a given project. This number is a useful indication of the
number of non-team developers volunteering to participate
in the development of the project. Similar to the estimation
of interest using the number of watchers, we present mean
and median numbers of forks per project per language. The
detailed results are presented in Table VIII. Objective-C still
tops the ranking with an average of 12 forks and a median
value of 2. The Lex and C-Shell languages have the same
median value as Objective-C, but they are actually used in
relatively fewer projects (Cf. Table III). JavaScript and Ruby

7

Table VIII
Language and Project Success — Forks. Means and medians of

numbers of forks for projects written in different languages.

Rank Language Mean Median Significance

1 objective c 12.1 2 +
2 ruby 10.9 1 +
3 erlang 9.9 1 +
4 javascript 8.9 1 +
5 c# 6.4 1 -
6 php 6.1 1 +
7 sh 5.7 1 +
8 python 5.6 1 +
9 c++ 5.2 1 +
10 java 5.1 1 +
11 lisp 4.4 1 -
12 ansi c 4.2 1 -
13 ada 3.7 1 -
14 pascal 3.6 1 -
15 tcl 3.0 1 -
16 perl 2.9 1 -
17 ml 2.8 1 -
18 yacc 2.6 1 -
19 fortran 2.4 1 -
20 haskell 2.4 1 -
21 lex 2.3 2 -
22 f90 1.6 1 -
23 csh 1.5 2 -
24 jsp 1.4 1 -
25 vhdl 1.4 1 -
26 exp 1.0 1 -
27 sed 1.0 1 +
28 awk 1.0 1 +
29 modula3 1.0 1 +
30 cobol 1.0 1

are also still highly ranked. Overall, the results of analyzing
interest using the number of forks are in line with those
using the number of watchers.

Once again, the MWW test reveals that the differences
of mean values are statistically significant for Objective C,
Ruby, Erlang, JavaScript and a few more languages.

Objective C and Ruby appear to be the languages
that are used in projects that tend to draw the
most interest. A quick sampling of projects written
in Objective C shows that many of them are for iOS
(iPhone) applications.

D. RQ4: Programming Languages and Issues

To investigate the correlation between programming lan-
guages and issues, we compute the mean and median num-
bers of issues per project for each language. Since many
projects do not enable its issue tracker on GitHub as their
development activities occur in their own websites where
they have their own issue/bug tracking systems, we only
consider those projects with at least 1 issue reported in
GitHub. The results are presented in Table IX. C++ is the
language used in projects with the most issues reported (64
issues per project on average, and a median value of 6). ML
and C# follow in the ranking with an average of 55 and 50
issues per project.

Figure 7 shows the distribution of the number of issues
for the top-10 languages drawn as boxplots. Each boxplot
presents 5 vertical lines. From left to right, the first line indi-
cates the MINIMUM, i.e., the least value, excluding outliers
which are identified by the R system9 (when constructing a

9http://r-project.org

Table IX
Language and Issues. Means and medians of number of issues for

projects written in different programming languages.
Rank Language Mean Median Significance

1 c++ 64.4 6 -
2 ml 55.3 3 -
3 c# 50.6 9 -
4 fortran 46.7 8 -
5 pascal 46.3 3 -
6 php 41.8 7 -
7 ruby 40.3 8 +
8 java 37.8 6 -
9 ansi c 36.7 10 -
10 python 35.7 7 -
11 sh 31.1 6 -
12 erlang 30.7 10 -
13 lisp 30.5 5 -
14 haskell 30.1 4 +
15 javascript 29.3 8 +
16 objective c 23.3 6 +
17 perl 21.9 3 -
18 tcl 20.8 7 -
19 yacc 15.0 10 -
20 ada 13.0 25 -
21 jsp 5.3 2 -
22 f90 3.0 1 -
23 vhdl 2.0 2
24 csh - -
25 sed - -
26 awk - -
27 lex - -
28 exp - -
29 cobol - -
30 modula3 - -

Modified Boxplot). Data points on the left of this line are
outliers (determined by the R statistical computing tool).
The second line indicates the LOWER QUARTILE, i.e, 25
% of data points are on the left side of this line. The third
line is the MEDIAN, the middle of the dataset. The fourth
line indicates the UPPER QUARTILE, i.e., 25% of data
points are on the right side of this line. Finally, the fifth line
indicates the MAXIMUM, i.e., the greatest value, excluding
outliers (determined by the tool). All data points on the right
side of this line are outliers.

Aside from Pascal, ML, and Fortran, which are used by
few projects, the box plots are similar for the rest of the
languages. This suggests that there is no clear correlation
between a programming language and the number of issues
for the language. Finally, the results of the MWW tests,
which are included in the table, reveal that the differences
are not, for most of the languages, statistically significant.

●● ●● ●● ●● ●●● ● ●● ●●● ●● ● ●● ●● ●● ●● ● ● ●●●● ●●●● ●● ●● ●●● ● ●● ●● ●● ●● ●● ●●● ● ●● ●● ● ●● ● ●● ●● ●● ● ● ● ●● ● ● ●●●● ● ●● ●● ●● ●● ●●●● ●● ●●● ● ●●● ●● ● ● ● ●●●● ●●● ● ●● ●●●●● ●● ●● ● ●●●● ● ●●●● ●●●● ●● ● ●●●● ●●● ● ●● ●● ●● ● ●●● ● ●●● ● ● ●●● ●●●● ● ●● ●● ●● ●● ● ●●● ●● ●● ● ●● ● ●●● ●● ●●● ●● ● ●●●● ●●●● ● ●●● ● ● ● ●●●● ●● ●● ●●● ● ●● ● ●● ●● ● ●●●● ●● ●● ●●● ●●● ●●● ● ●● ● ● ●●● ●● ● ● ●● ●● ● ●● ● ●● ●● ●● ● ● ●● ● ●● ●● ● ●●●● ●● ●● ●●● ●●● ●● ●● ●● ●● ● ● ●● ● ●● ●● ● ●● ●● ● ● ●● ●● ●● ● ●● ● ● ●● ●●● ●● ●● ● ●●● ● ●● ●●● ●● ●● ● ●● ●●● ●● ● ●●● ● ●● ●●●● ●● ● ●● ●●● ● ●● ●● ●● ●● ● ●● ● ● ● ●●● ●● ●● ● ●● ●● ● ● ●●● ●● ●●● ●● ● ●● ●● ●●●●● ● ●● ●● ●●●● ●● ●● ●●●●● ● ●● ● ●● ●● ●●● ●●● ● ● ●●●● ● ●● ●●● ● ●● ●●● ●● ●

● ●● ●● ● ●● ●● ● ●● ● ●●●● ● ●● ● ●● ● ●●● ●●●●● ●●● ●●● ●● ●● ●● ●●●●● ●● ● ●● ●● ●● ● ● ●● ●●● ●● ●●● ● ● ● ●●● ● ●●● ● ● ● ●● ●● ●● ●●● ●● ●● ●● ●● ● ●●● ● ●● ● ●● ● ●● ●● ●● ●● ●●● ●● ●● ●● ●● ● ●●● ● ●●● ● ●●● ● ●●● ●● ●●● ● ●● ●● ●● ● ●● ● ●●● ●● ● ●● ●● ●● ●● ●●● ● ●●●● ●● ● ●●● ● ●

●● ● ●● ●●● ●●● ●● ●● ● ● ● ●● ● ● ●● ●● ●●●● ●●●● ● ●● ● ●● ● ● ●● ●● ● ●● ● ●●● ●●● ●●●● ●● ●●● ●● ● ●●● ●●●● ● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ● ●● ●● ● ● ●● ● ●● ● ●● ● ● ●●●● ●● ●● ● ●●●● ●● ●● ●● ●● ●● ● ●● ●● ● ●● ● ● ●●● ●● ●● ● ● ●● ●● ●●● ●● ●● ●● ● ●● ●●● ●● ●● ● ● ●● ●● ●● ●●● ●● ● ●● ● ●●● ● ●● ● ●● ● ●●● ●● ● ●● ●●● ● ●● ●● ●●● ●● ● ●● ●● ●● ●●● ●●● ● ●●●● ●● ●● ● ●● ●● ●● ● ● ●● ●●● ●●● ● ●●●● ● ●●● ●●●●● ●● ●● ●●● ●● ●● ●● ● ● ●●●●●● ●● ● ●●● ● ●● ●● ● ● ●● ●● ●● ●● ● ● ●● ●● ●● ●● ● ●● ● ● ●●●● ●● ● ●●● ●●●

●●● ●● ●●● ●● ● ●●●● ●● ●● ●● ●● ●● ● ●●● ●●● ●● ●● ●● ●● ●● ●● ● ●●● ● ● ●● ● ●●●● ● ●● ● ● ●● ● ●●● ●● ● ●●● ●● ●● ● ●●● ●● ●● ● ●● ●●●●● ●● ● ●● ●●● ●● ●● ●● ●● ●● ●●● ●● ● ●● ●● ● ●● ● ●● ● ●● ● ● ●● ●●●● ●● ● ● ●● ● ●●●●● ●●● ●● ●●● ●● ●●● ●●● ● ● ●● ●● ●●● ●●● ●●● ●●● ● ● ●● ●● ● ● ●●● ● ●● ● ● ●●● ● ● ●●● ●● ●● ● ● ●● ●●● ●● ● ● ●●● ●●● ●● ● ●● ● ●●● ●●●● ●● ● ●●●● ● ● ●●● ● ●●● ●●● ●●●● ●● ● ●● ● ●● ●● ●● ● ●●● ● ●● ● ●● ●● ● ●● ● ●● ●● ●●● ●●● ● ●● ●● ● ●● ● ● ●● ● ●●●● ●●● ● ●● ● ●● ●● ● ●● ● ● ●●● ●●● ● ●● ● ●● ●● ● ●●● ● ●● ●●●● ●●●● ●● ● ●●●●● ●●● ● ● ● ●● ● ●● ●● ●● ● ●● ●● ● ●● ● ●●● ●● ● ●● ●●● ●●●● ●●● ●● ● ● ●● ●● ●●●●●●● ● ● ●●●●● ●● ● ●● ● ●●● ● ● ●● ●● ●● ● ●● ●● ● ●● ● ●●● ● ● ● ●●● ● ● ●● ● ●● ●●● ● ●● ●●●●● ● ●●●● ●● ● ●● ● ●● ●● ● ●● ● ●● ●● ●● ● ●●● ● ● ●● ● ●●● ●●●●● ● ●● ●● ● ●●● ●● ●●● ● ●● ●● ● ●●● ●● ●● ● ●● ● ● ●●●● ●● ●●●●● ● ●●● ●● ● ●●●● ●● ● ●● ●● ●● ●●●●● ●●● ● ●●● ● ● ● ●●● ●● ● ●● ● ●● ● ●●● ●● ● ●●●●● ●● ●● ●● ●● ●● ● ●●●● ● ● ● ●● ●●● ● ●● ●● ● ●● ● ●● ● ● ●● ●● ● ● ●●● ● ●● ● ●● ●● ● ●●● ● ●●●● ● ●●●● ● ●● ●●● ●● ● ●● ●● ●●● ● ● ●●●●● ●● ●● ●● ●●●●● ●● ● ●● ●● ● ●●●●● ● ●● ●● ● ●●●● ●● ● ●● ●●● ● ● ●● ●● ● ●●●●● ●● ●● ● ●● ● ● ●●● ● ●● ●● ●●● ●● ● ●● ● ●●● ●●● ● ● ●●● ● ●●●● ●● ● ●●●● ● ●●

●● ● ●●● ●●● ● ● ●● ●● ●● ● ●●● ● ●● ●● ●● ●● ●●● ●● ●●● ●●●● ● ●● ●●●● ●● ●●● ●●● ●●● ●●● ●● ●● ●● ●●● ● ●●● ●● ●●●● ●● ●● ●● ●●● ● ●●● ● ●●● ●● ● ● ●● ●● ●●● ●● ●● ●● ●● ● ●● ●● ● ●● ● ●● ● ●●● ● ●●● ●● ●● ●● ●● ● ●●● ●● ●● ●● ●● ●● ● ● ●● ●●● ●● ●● ●● ● ●●● ●● ●●● ● ●● ● ●●● ● ●●●● ● ●● ●●● ●● ● ●● ●● ●●● ●● ●●● ● ●● ●● ●● ● ●●● ●● ● ●●● ●● ●●● ●● ●● ●● ●●● ●● ●● ● ●●● ●●●● ● ● ●● ● ●●● ●● ●●●●● ● ●●● ● ●● ●● ● ●● ● ●●● ●●● ●●● ●● ●● ●●● ● ●● ● ●● ● ●● ●● ●● ●● ● ● ●● ●●● ● ●● ●● ● ●● ●● ●● ● ● ●● ●● ● ●●● ●● ●● ●● ●●● ● ●● ● ●● ● ●● ●● ●● ●● ● ● ● ●● ●● ●● ●● ●●● ●● ●● ●●●●● ● ● ● ●● ●●●● ●●●

●● ●● ● ● ●● ● ●●

●

● ● ●●● ● ● ●● ●●●● ●●● ●● ●● ●● ●● ●● ● ● ● ●●● ● ● ● ●●● ●● ●● ● ●●● ●● ●●● ●● ●● ●● ● ●●●● ●●● ●● ● ●●● ●●●● ●● ● ●● ●● ●●● ● ●● ●●

● ●● ● ●

● ● ●● ● ●●● ●● ●● ●●● ● ● ●●● ● ●● ● ● ●● ● ●● ●● ●● ●● ●● ●●● ● ●●●● ● ● ●●● ●● ●● ●● ●● ● ●● ● ●● ●● ● ● ●● ●●● ●● ●● ● ●●● ●● ●●● ● ●●● ●● ● ●● ● ● ●● ● ● ●●● ● ●● ● ●● ● ●● ● ●●●● ●●● ●● ●●● ● ●● ●● ●● ●● ●● ●●●● ●● ●●● ●

python
ansi c

java
ruby
php

pascal
fortran

c#
ml

c++

1 10 100 1000 10000

of issues

Figure 7. Number of Issue Reports for the Top-10 Languages with the
Highest Average Number of Issue Reports

The prevalence of issue reports for a given project
does not appear to be correlated to the programming
language used to write the software code.

8

E. RQ5: Programming Languages and Teams

Finally, we investigate the constitution of development
teams based on the used language, so as to identify lan-
guages that are more “collaboration friendly”. We compute
the average and median numbers of developers per project
for each programming language.

Table X details the results on the average team size for
each programming language. The C programming language
is the top-1 language with an average of 46 developers per
project but a median value of 1. Once again, this average is
likely pulled up by operating system projects, such as the
Linux kernel (9395 contributors as of June 2012), which
usually involve a large number of developers. C++ ranks
the second; Ruby, another “popular language” in terms of
appearance in projects, is ranked the 5th.

Tcl, Erlang, Yacc, Expect, and C-Shell have a high median
of 2, but are used in a small set of projects (Cf. Table III),
making this finding statistically less reliable. Ruby, python,
and JavaScript projects show very distinct distributions of
team sizes and respectively have about 5 (5th), 4 (10th),
and 3 (19th) developers on average per project.

In Figure 8, the boxplot shows that the distributions of
team sizes may not be clearly correlated to languages. The
significance tests also confirm this fact as few the differences
of mean values are statistically significant for a limit number
of languages.

Table X
Language and Team Size. Means and medians of team sizes for

projects written in different programming languages.

Rank Language Mean Median Significance

1 ansi c 46.5 1 -
2 c++ 9.4 1 -
3 tcl 7.7 2 -
4 erlang 6.1 2 +
5 ruby 5.3 1 +
6 sh 4.8 1 -
7 java 4.7 1 -
8 perl 4.7 1 -
9 c# 4.5 1 -
10 php 4.3 1 +
11 python 4.1 1 +
12 lisp 4.1 1 -
13 ml 4.1 1 -
14 haskell 3.7 1 -
15 pascal 3.5 1 -
16 fortran 3.2 1 -
17 ada 3.0 1 -
18 objective c 2.9 1 +
19 javascript 2.8 1 -
20 yacc 2.4 2 -
21 exp 2.3 2 -
22 vhdl 2.0 1 -
23 jsp 1.8 1 -
24 f90 1.8 1 -
25 lex 1.7 1 -
26 sed 1.6 1 -
27 csh 1.5 2 -
28 modula3 1.3 1 -
29 awk 1.0 1 +
30 cobol 1.0 1

The top-3 languages with projects having highest
average team sizes are Ansi C, C++ and TCL. Ansi C
has a high mean due to the presence in our dataset
of highly distributively developed projects, such as
Linux, whose code are in Ansi C.

● ●●● ● ●● ● ●●●●● ● ●● ●● ●● ● ● ●●●●● ●●●● ●●● ●● ● ●● ●● ●● ●●●● ● ●●● ● ●● ●● ●● ●●● ● ●● ●●●● ●● ● ● ● ●● ●●●●●● ● ●● ● ● ●● ● ●● ●●● ●●●● ●●● ●● ●● ●● ●●●● ● ●●●● ● ●●●● ●● ●● ●●● ●●● ● ●● ●● ●● ●● ●● ●● ● ●● ●● ● ●●● ●● ● ● ●●●●● ● ●●●● ● ● ●● ● ● ●●● ●● ●●● ●● ● ● ●●●● ●● ● ●● ●● ● ●●● ●●●●● ●● ●● ● ●● ●● ●● ● ●● ● ●●●●● ●● ●● ●● ●●●●● ●● ●●●●●● ●●●● ●● ●● ●● ●● ● ●● ● ●●● ● ●●●● ●● ● ●● ●●●● ●●●● ●●● ●● ● ●● ●●● ●● ●● ●● ●●●●● ● ●● ●● ● ●● ●●● ●● ●● ●●●●● ●● ● ●●●●● ●● ●● ●● ●● ●●●● ●● ● ●● ●●●● ●●● ●● ● ●● ●● ●● ● ●● ●●● ●● ● ●●● ●●●● ●● ●●● ● ●● ●● ●●● ●● ●●● ●● ● ●● ●● ● ● ●● ● ●●● ●●● ●● ● ●●● ● ● ●● ●● ●●● ●● ●● ● ● ● ●● ● ●● ●●●●● ●● ●●●● ●● ●●● ●●● ●● ● ●● ●● ●●●● ●● ●● ●● ● ●● ●● ●● ●●● ●● ●● ● ●● ●● ●●●● ●●● ● ●●●● ● ●● ● ●●● ● ●●● ●●●● ●●● ●● ●● ●● ●● ●● ●●● ●● ●● ● ●●● ●● ●● ●●●● ●● ●● ●●● ●●● ● ●● ●●● ● ●●● ●●●● ● ● ●●● ●● ● ● ● ●●● ●●● ●● ● ●●● ●●● ●● ● ●● ●●●● ●● ●●●● ●● ●●● ●● ●● ●● ●● ●● ● ●●● ●● ●● ●● ● ●● ● ●●●●●● ●●● ●● ●● ●●● ● ● ●●●●● ● ●● ●● ● ●● ●● ●● ●● ●● ●●●● ● ● ● ● ●● ●●●● ●●● ●● ●● ●●● ●●●● ●●● ●● ●● ●●● ● ● ●●● ● ● ●● ●●● ●● ●● ●●● ●●● ●● ●● ●● ●●●● ●● ● ● ●●●● ●●●● ● ●●● ● ● ●● ● ●● ● ● ●●● ●● ●● ●●● ●● ●●● ● ● ●● ● ● ●●● ● ●●● ●●● ● ●● ●● ●●● ● ●● ●●● ●●● ●●● ● ● ●●● ●● ● ●●●● ● ●●●● ●● ● ●● ●● ● ●●● ● ●●● ● ●●● ●●● ● ●● ●● ●● ●● ● ●●● ●● ●● ●● ●● ● ●●●● ● ●●●● ● ●●● ● ●● ●● ● ●●● ●●● ●● ●● ●● ●●●● ●● ●● ●● ●● ●● ●● ● ●● ● ●●● ●● ●●● ●●● ●● ● ●●●● ●●● ●●● ●● ●●● ●● ●●● ●● ●●●● ●●●●● ●● ●●● ● ●●●●● ●● ●●● ●●● ● ● ● ●●●●● ●●●● ●● ●●● ●● ●● ●●● ●●●●● ●●●●●●● ●● ●●● ● ●● ●● ●● ●●●● ●● ●●● ● ● ●● ● ●● ●● ●●● ●●● ●● ●● ●● ●●●● ●●● ●● ●●● ● ●●● ● ● ●●● ●● ●● ● ● ●● ●●● ●● ●● ●● ● ●●●● ●●● ●● ● ●●●● ●● ● ●●●●● ●●● ●●●●● ●● ● ●●● ● ●●● ●● ● ●●●● ● ● ● ●●● ● ●● ●●● ●● ●● ● ●●●● ●●●● ●●●● ● ● ● ●● ● ●●●● ● ● ●●● ● ●● ●●●●●●● ●● ●●● ●●● ●● ● ●● ●● ●● ● ●● ● ●● ●● ●●●● ●● ●● ●● ●● ●●●●● ● ●●● ●●● ● ●● ●● ●●●●●● ●●● ●●● ● ●●● ● ● ● ●● ● ●●● ● ● ●●●●● ● ●● ● ●● ● ● ●● ●● ●●● ●●●● ● ●● ●● ● ●●● ● ●● ●● ●● ●● ●● ●●● ● ● ●● ●●● ●●● ●●● ●●● ● ●● ● ●●●●● ● ● ●● ● ● ●● ●● ●●●● ● ● ●● ●● ● ● ● ●● ●● ●●● ●●●●● ● ● ●● ●●● ● ●●

●● ● ●●● ●● ●●●●● ●●● ●● ● ●●● ●● ● ●●●●● ●●●● ●● ●● ●● ● ●● ●● ●● ● ●● ● ●●● ●●● ●● ●●● ● ● ● ●● ● ● ● ●● ●●● ●●●● ● ●● ● ●●●●● ●● ● ●●● ●●● ● ●● ● ●●●●● ● ●●●● ●●● ●●● ●● ●●● ●● ●●●●●●● ●●● ●●●●● ● ● ● ●● ● ● ●● ●● ●● ●● ●●●● ● ●● ●●● ●● ● ●● ●● ●● ●● ● ●●● ● ●● ● ● ● ●● ●●●●● ●● ●●● ● ●●●● ●● ● ●● ● ● ●●● ●● ●●● ●●●● ●●● ●●● ●● ●● ●● ● ●●●● ●●● ●●● ●●● ●● ●● ● ●●● ● ●● ●●● ●● ● ●● ●● ● ● ●●●●●● ● ●●● ●● ● ●● ●● ● ●● ●●● ●● ● ● ●● ●●●●● ●●● ● ● ●●●●● ●● ●●●●● ●● ●●● ●● ● ● ● ●● ●●● ● ●● ● ●● ●● ●● ● ●● ●●●● ● ●●● ● ●● ●● ● ●●● ●● ●● ●● ●●●● ●● ●● ●●● ● ●● ●● ●● ● ● ● ●●●●● ●● ●●● ●●● ● ● ●● ●● ●●● ● ●● ●● ●● ●● ●● ●●●● ● ● ●●● ● ●● ●● ●●●● ●●● ●● ●●●● ●● ● ●● ●●● ●● ●●● ● ● ●●● ●●● ●●● ● ● ●● ●● ● ●●● ●● ●● ●●● ●

● ●● ●●● ●●● ●● ● ● ●●●● ●● ● ●●●● ●● ●●● ●● ●● ●●●● ●● ● ●● ● ●●●● ●● ● ●● ●●●●●●●● ●● ●●●●● ●●●● ●●● ●● ●●● ●●●●●●● ●● ● ●●●● ●● ●● ●●●● ●●● ●●●●●● ●● ●● ●●●● ●● ●● ●● ●● ●●● ●● ●● ●●● ●● ● ●● ● ●● ● ●●●● ●●● ● ●●●● ●●●●● ●● ●●● ●●●●●● ●●● ●●● ●● ●● ●●●● ●●● ● ●●● ●●● ●●●●● ●●● ●● ●● ● ●● ●●●●●● ●● ●●● ●●●● ●●●●● ● ●●● ●● ●●● ●●● ●●●● ● ●● ●●●● ●● ●● ●● ●●● ●●● ● ● ●● ●●● ●●●● ●●● ●● ●●● ●● ●● ● ●●●● ●● ●● ● ●● ●●● ● ●●● ●●●●● ●● ●● ●● ● ● ●●● ●● ● ●●● ●● ●●● ●● ● ●● ●●●● ●●● ● ●● ● ●● ●● ●●● ●● ●● ●●●● ●● ●●●●● ●● ●● ●● ●●● ●●● ●● ●● ● ●●● ●●●●●●● ●●●●● ●● ●● ● ●● ● ●●● ●● ●●●● ●● ●●● ●●●● ●●●● ●●●●● ●● ●● ●●●● ●● ● ●●● ●● ● ●● ● ●● ●●● ●●●●● ●●● ● ●● ●●●● ●●● ●● ●●● ● ●●● ●● ●● ● ● ●● ●● ●●●● ●●●● ●● ●● ●●●● ●● ● ● ●●●● ●●●● ●● ●● ●●●● ●● ●● ●●● ● ●● ● ● ●●●●● ●● ●●● ● ●● ●● ● ● ●● ●● ● ●● ●● ●●● ●●●●● ●●●● ●●● ●● ●● ●●● ●

● ●● ●●●●●● ●●●●● ●●●● ● ●●● ●● ●●● ● ●●● ● ●● ●● ● ●● ●● ●●●●●●● ●● ● ●●●● ● ●● ●● ●● ● ● ●● ●●● ● ●● ●●● ●●●● ● ●● ●●● ●●● ●● ●● ●● ●● ●●●● ●● ●●● ●● ● ● ●● ●●● ●● ●● ●●●●●● ● ●●● ●● ●● ● ●● ●●● ●● ● ●●●●● ●● ● ●● ●● ●● ●● ●●● ●● ● ●● ●● ●● ●● ●● ● ● ● ●● ●● ●● ● ●●● ●● ●● ●●● ● ● ●● ● ● ●● ● ●● ● ● ●●●●●● ● ●●● ●●●● ● ● ●●●● ● ● ●● ●● ● ●● ●● ●●●● ● ●●● ● ●●●● ● ●●● ●● ●●●● ●●● ●●● ●● ● ●●● ● ●● ●● ●●● ●● ●●●●● ● ●●●●● ●● ●●● ●● ●●● ●● ●● ●● ●● ● ●● ●● ● ●● ●● ● ● ● ●● ●●●●● ● ●●● ●● ●●● ● ●●● ● ●● ●● ● ●●● ●●●● ●● ●●●● ●●● ●●●●● ● ●● ●●● ●●● ● ●●● ●●●● ● ● ●●●● ●●● ● ● ●●●● ● ●●● ●● ● ●●●●● ●● ● ●● ●● ● ●● ●● ●●● ● ●●●●● ● ●●●● ●●● ●● ●● ●● ● ●● ●● ●●● ● ●●●● ● ●● ● ● ●●● ●● ●●● ●● ●●●● ● ●● ●● ● ●●● ●●●●● ●● ●●●●●● ●● ●●●● ●● ● ●●● ●● ●●● ●●●●● ●●●● ●●● ● ●●● ●● ●●●● ●●●● ●●● ● ●● ● ●● ● ●●● ●●●● ●●● ●●●● ● ●● ● ● ●●●●● ●●● ● ●● ● ●●●●● ●● ●● ●●●● ● ●●● ●● ●● ●●● ●● ●● ● ● ● ●● ●●● ● ●● ●● ●● ●●● ●● ● ●●● ● ● ●● ● ●● ●● ●●● ●●● ●●●● ● ● ●● ●●● ●● ● ●●● ●● ●●● ●● ●● ●● ●●● ●● ● ●● ●● ● ● ●● ●●●● ● ●● ●●● ●● ●●● ● ●●●● ● ●●● ●● ●●● ● ●● ●●● ● ●● ● ●● ●● ●●● ● ● ●● ●● ●●● ● ●● ●●●● ●● ●● ●● ●●● ●● ●●●● ●● ●● ●●●●● ●●● ●● ●● ●●●● ●● ●● ● ●● ●● ● ●●●● ●●● ●●●●● ●● ●●●●● ● ●●●● ●● ●●●●● ●● ●●● ●●● ●● ● ●●● ●● ●● ●● ●●●●● ● ● ●● ●●●●●● ●●●● ● ●● ● ●●● ● ●●●●● ●● ●●● ●●● ● ● ●●● ● ● ●● ●● ● ●●●● ●●● ● ●●●●● ●● ●●●● ● ●● ●● ●● ●● ●●●● ●● ●●●●● ●●●● ●● ●● ●●● ● ● ●●● ● ● ●●● ● ●●●● ●●● ●●● ●● ●●● ● ●●● ●● ●●● ● ● ●● ●●●● ● ●●●● ●●●● ● ●●● ●●● ● ●● ●●● ● ●● ●●● ●● ●●● ●● ● ● ●●● ●●● ● ●●● ● ●● ● ●● ●● ●● ● ●● ● ●● ●● ●● ●● ●●● ●● ●●●● ●●● ●●● ● ● ●● ●● ●● ● ● ●●●●●● ●●● ● ●●●● ●●● ●● ● ● ● ● ●●● ●● ●●● ●● ● ● ●● ●● ● ●●●● ●●●● ●● ● ●●● ●●● ●●● ●● ● ●● ●●● ● ● ●● ●● ●● ●● ●●● ● ●●● ●●● ●● ● ●●●● ●●●●● ● ●●● ●● ●●●●●● ● ●● ● ●●● ● ●● ●●●● ● ●●●● ●● ● ●● ●●●●●● ●●● ●●●●●● ● ●● ● ●●●●● ● ● ●●● ●● ●●● ●●● ●● ●●●● ●● ●●●● ● ●●● ● ●●● ● ●●● ●●●● ● ● ●●● ●●● ●●●●● ● ●●● ●● ● ●● ●● ●●● ● ●● ● ●●● ●●● ● ●● ● ●●●● ● ● ●● ●●●●● ●● ●● ● ● ●● ●● ● ● ●●●●● ● ● ●●● ● ●●●● ●● ●● ● ●● ●●●● ● ●●● ● ●●● ●●● ●● ● ●●● ●●●● ●●●● ● ●●●●● ● ●●●● ●● ● ●●●●● ●● ●●● ●●●● ● ●●● ● ●●● ●●● ●● ●●● ● ●●● ●● ● ●●●● ●● ●● ● ● ●●● ● ●● ●● ●● ● ● ●●●●●● ●● ●●●● ● ●●● ● ●●● ●● ●●●● ● ●●●● ●●●●● ●●● ●● ●● ●●● ●● ● ●● ● ●● ●●●● ●●● ●● ●● ●● ●●● ●● ●● ●● ● ●● ●●●● ●● ● ●●● ● ●● ●● ● ●● ●●

● ●●● ● ●● ●●● ●● ●●●● ●● ●● ●●●● ● ● ●● ●●● ●●● ● ● ● ●●● ●● ●●● ● ●● ●●● ● ● ●● ●●● ●●● ●● ●● ●●● ●●●● ● ●●● ●●● ●● ● ●●● ●●●● ●● ● ●● ● ● ●●●●● ●●● ●● ●● ●● ●● ● ●● ● ● ●● ●●● ●●● ●● ●● ●● ●● ● ●● ●● ●● ● ●●●●●● ●● ●●● ● ●●● ● ●●●● ●●●● ●●●● ●● ●●● ●●● ●● ●● ● ●● ●● ●● ●●● ●● ●● ●● ●● ● ●● ●●●● ●● ●● ●●● ●● ● ● ●● ●●● ●●● ●● ● ●●● ●● ●● ●● ●●● ● ●●● ●● ●●● ● ●● ●● ● ● ● ●●● ●● ● ●●●●● ●● ●● ● ●●● ● ●● ●● ●● ●●● ●● ● ● ●●● ●● ●●● ●●●●●● ● ●● ●●●●●● ●●●● ●● ●● ●●● ●● ●● ●● ●● ● ●●● ●●●● ● ●●● ●●● ●● ●●● ●● ●●●●● ● ●● ●● ●●●●● ●● ●● ● ●●●●● ●●● ●●● ●●● ●●● ● ●● ●● ●●● ●●●● ●● ●● ● ●● ●●● ●● ●●●●● ●●● ●●● ●●●●● ●●●●●● ●●● ●● ● ●●●●●● ●●● ●● ●●● ●● ●● ●● ●● ●●● ●●● ●● ●●● ● ●●●● ●●● ● ●●●● ●● ● ●●●●● ●●● ●● ●●● ● ●●●●● ●● ●● ●● ●●●● ● ●●● ●● ●● ●●●●●● ●● ●●●● ● ●●● ● ●● ●●● ●● ●● ●●●● ●● ● ●●●● ●●● ●●● ● ●●● ●● ● ●● ●●● ● ●● ●●●● ● ● ● ●●● ●● ●● ● ●●● ●● ●● ●●●● ●● ●●● ●● ●● ● ●●● ● ● ●● ●●● ●● ●● ●● ●●●●● ●●● ●● ●●●●● ●●● ●● ●●●● ●●● ● ● ●● ●● ● ●●● ●● ● ●● ●●●●● ●● ●●● ● ●● ●● ●●●●● ●●● ●●●●● ●●● ●● ●●●● ●●●● ● ●● ● ●●● ●● ●●● ● ●● ●● ●●●● ●●● ●● ●●●● ●●● ● ●● ●●● ●● ●●● ●●● ●● ●● ●●● ●●●● ● ●●● ●● ● ●●●●● ● ●●● ● ●●● ●●● ●● ●●●●● ●●●●● ●

●● ●● ● ●●● ● ●● ●●● ●●●● ● ● ●● ●● ●● ●● ●● ● ●●● ●● ●●● ●●●● ●● ●● ●●● ● ● ●●● ●●● ●●●● ●● ● ●●● ●● ●● ● ●●● ●● ●● ● ●●●●●●●● ●● ●● ●● ●● ●●●● ● ●●● ● ●● ●●● ●●●●● ●● ● ●●● ●● ● ● ●●● ●● ● ● ●●● ●● ● ●● ● ●●●● ●● ●●● ● ● ●● ● ●●●● ●●●● ●●●● ● ●● ●● ●● ●● ● ●● ●●● ●● ●● ●● ●● ●● ●●● ●● ●●●● ●● ●●● ● ●● ●●● ●●● ●●● ●●● ●● ●● ●● ●● ●● ●● ● ●●● ●●●● ●●● ●● ● ●● ●● ●●● ● ●● ●●● ●●●●● ●●● ●●●● ●●● ●● ●●● ● ●● ●● ●● ● ● ● ●●● ●●●● ● ●●● ● ●● ● ●●●● ● ●●●●● ●●● ●●● ●● ●●● ●● ● ● ●●● ●● ●● ●●●●● ● ●● ●●● ●●●● ●●●● ●●●● ●● ●●● ● ● ●● ●● ● ●● ● ● ●●● ● ● ●● ●● ● ●● ●● ●● ●● ●●●● ● ●● ● ● ●●● ● ●●● ●● ●● ●● ● ●●●● ●● ● ● ●●●●● ●●●● ●● ● ●●● ●● ●●● ●● ● ●●●●●● ●● ●● ●●● ●●● ● ●● ●●●● ● ●● ●● ●● ●●●● ● ●● ●● ● ●● ●● ● ●●●● ●●● ● ● ●● ●● ●●● ●● ●●● ●●●● ●● ●●● ●● ● ●● ● ● ●● ●● ●● ●● ● ● ●●● ●● ● ●● ●●●● ●● ●● ●●● ● ● ● ● ●● ● ●● ●●● ●● ● ●● ● ●●● ●● ●● ●● ●● ●● ●●● ●● ●● ● ●●● ● ●●●● ●●●● ●●●●● ● ●●● ●● ● ●● ● ●●● ● ●● ●● ● ●● ●●● ● ●●●● ● ●● ●●● ● ●●● ●●● ●● ●●● ●●● ●●●● ● ●●●●● ● ●● ● ●● ●●●● ● ●● ●● ● ●● ●●●● ●●● ●●● ●● ● ●●● ● ●● ● ●● ●● ●●● ●● ● ●● ●● ●● ●●● ●●●● ●● ● ●● ● ●● ●● ● ●●●● ●●● ● ● ●● ●● ●●●●● ●● ●● ●●●● ●●● ●● ●●●● ● ●●● ●● ●●● ●● ●● ●● ●●● ● ●● ●●● ●●● ●●● ●● ●● ●● ● ●● ●● ● ●● ●● ● ●●●● ●●● ● ● ●● ●● ● ●●● ●● ● ●● ● ●●● ● ●●●● ●● ●● ●● ●●●●● ●● ●●●● ●●●●● ●● ●●● ●●●● ● ●●● ●● ● ● ● ●● ● ● ●● ●● ●● ● ●●● ●● ●●● ●●● ●●● ●●●●●● ●● ● ●●● ● ●●● ●●● ●●● ●● ●● ● ● ●●● ● ● ●●● ● ●●● ● ●● ● ●● ●●● ● ●● ●●●●● ●●● ●● ●● ●● ●● ● ●● ●● ● ●● ●●●● ● ● ● ● ●● ●● ●●●●● ●● ●●● ●●●● ●●● ●●● ●● ●●● ●●●● ● ●●● ●● ●● ●●● ● ● ●● ● ● ●● ●●● ● ●● ● ●●●●● ● ● ● ●● ●● ●● ●● ●●●● ●●● ●● ●●● ● ● ●●● ●● ● ● ●● ●●● ● ●● ● ●●●● ● ●●●● ●● ●● ●●● ● ● ●● ●●● ●● ●●● ●● ●● ●●● ●● ●● ●● ●●● ●●● ● ● ●●● ● ●● ● ●● ● ●● ●●● ●●● ● ● ●●●● ●●● ●●●● ● ● ●● ●● ●●● ●●●●●● ●● ● ●●● ●● ●●● ●●● ●● ●●●● ●● ● ● ●●●●● ● ●● ●●● ● ●●●● ●● ●●● ● ●● ● ●● ●●● ●●● ● ●●●● ● ●● ● ●●●● ●● ●●● ● ●●● ● ●● ●●●●● ● ●●●● ● ●●●● ●● ● ●● ●● ●●● ●● ● ●●● ● ●● ●●● ●● ●● ● ● ●●● ●● ●● ●● ●● ● ●●●●● ● ● ●●● ●●● ● ●● ● ●● ● ●● ●● ● ●●●●●● ● ●●● ●● ●● ●●●●● ●●● ● ●●● ●● ●●● ●● ●● ●● ●● ●● ●● ●●● ● ●●● ●● ● ●●●● ●● ●● ●●●●●● ●●● ●● ●●● ● ●●● ● ●● ●●●● ●● ●● ●●● ●●●● ●● ●●●● ●●●●●● ●●● ● ●●● ●● ● ●● ●● ● ●●● ●●● ●● ●● ●● ●●●●●● ●● ●●● ●● ●● ●● ●● ●● ● ●● ●●● ● ●●● ●● ●● ● ● ●● ●●● ●●●● ●●● ●● ●●● ● ●● ● ● ●●●● ●● ●●● ● ● ●● ●● ●●● ● ●●● ● ●●●● ●● ●●● ●● ● ●●● ● ●●●● ● ●● ●●●●● ● ●● ●● ●● ● ●●●● ● ●●●●●●● ●● ●● ●● ● ●● ● ●●●● ●● ● ● ●● ●● ●●● ● ● ●●● ● ●●● ● ●● ● ●● ●● ●● ●● ●● ●● ● ●● ● ●●● ●● ● ●●● ●● ●● ● ●● ● ●●● ● ●● ● ●●● ●●● ● ●● ●● ●●●● ●● ●● ●● ●● ●● ●● ● ● ● ●●● ●● ●● ●●● ● ● ●● ●● ● ●●● ● ●● ●●● ● ●● ●●● ● ● ●●● ●● ● ●● ●● ●●● ●●● ●●● ●● ●● ●●●● ● ●● ●●●● ● ● ●●●●● ●●●● ●● ●●● ●●●●● ●● ● ●● ● ● ●● ●● ●● ● ●●● ●● ● ●●● ●● ●● ● ●●●●● ●●● ●● ● ●● ●● ●● ●● ● ●●● ●● ●● ●● ● ●● ●●●● ● ●●● ●●● ●● ●●● ● ●●●●● ● ●● ●●● ●●● ●●● ● ●●● ●● ●● ●● ●●● ●● ● ●●● ●● ● ●● ●●● ● ●● ●●●● ●●● ●● ●●● ● ●●● ●● ●● ●● ●●●● ● ●● ● ●● ●● ●● ●● ● ●● ●● ●● ● ● ●● ●●●● ●● ●● ●● ● ●● ●●●● ●● ● ●● ●● ●● ●●●● ● ●●● ● ● ●● ● ● ● ● ●●● ●● ●● ● ●● ● ●●●● ●● ●●● ● ●●● ●●● ●● ● ●● ●●● ● ●●●● ● ●● ●●● ●● ●● ● ●●● ●● ●●● ●● ● ●● ●●● ●● ● ●●● ●●●● ● ●● ●● ●●● ● ●● ● ● ● ●●●● ● ● ●● ●● ●● ●● ● ●● ●●● ●●●● ●●●● ● ● ●●● ●● ● ●● ●●● ●● ●●● ●● ● ● ●●●●●● ●● ●● ●●● ● ●●● ● ●● ●● ●● ● ● ● ●●● ●● ●● ● ●● ●●● ●●● ●●● ●●● ●●●●● ●●●● ●●● ● ●●● ● ●● ● ●●● ●● ●● ●● ●● ●●●●● ● ●● ●● ●●●● ●●● ●● ●● ●● ● ●●● ●●● ●●●● ● ●● ●● ●● ●●●● ●●● ●● ● ●● ● ●●● ●● ●●● ●● ● ●●● ●●● ●● ●●● ●● ●● ●● ●● ●● ● ● ●● ●●●● ●● ●●● ●●●●● ●●● ●● ●●● ●●●●●● ●● ●● ● ● ●●● ● ●●● ●● ● ●●● ● ●● ●● ●● ● ●● ●● ● ●● ●●● ● ●●●● ● ●●●● ● ●●● ●● ●● ●●● ●● ● ●●●●● ● ●●● ● ●●● ●● ●●●● ●● ●●● ●● ●● ●● ● ●●●● ●● ●● ●●● ● ●●●● ●● ●● ●● ●●●● ● ●● ●●●● ●●● ●●● ● ●● ●● ● ●●● ●● ● ● ●● ● ●● ●● ● ●●● ● ●●● ●●●● ●●● ●● ● ● ●● ● ●● ●●● ●● ● ●● ● ●●●●● ●●●●●● ●● ●●● ●●● ●● ●● ● ●●●● ● ● ● ●●● ●● ● ●● ●●●● ● ●●● ●● ●● ●●●● ● ● ● ●● ● ●● ●●● ● ● ● ●● ●●● ●●● ●●●● ●● ● ●● ● ●●●● ●●● ●●● ●● ●● ●● ●● ●● ●● ●● ●●●● ● ● ●● ●● ●●● ●●● ●● ●● ● ● ●●● ●● ●● ● ●● ●● ● ●●● ●● ●●●●● ●● ● ●● ●●●●●● ● ●● ●● ● ●●● ●● ●●● ●●● ●● ●● ●●● ●● ● ●●● ●●● ● ● ● ● ●● ●●● ●● ●●●● ● ● ●●● ●● ●● ●●● ● ● ●●● ●● ●● ●●● ● ●●●● ●●● ●●● ● ●● ●● ●●●● ●● ●●● ●● ●●● ●●●● ● ●● ● ●● ● ●● ● ●●● ●● ● ● ●● ●●●● ● ●●●● ●● ●●●●●● ● ●● ● ●●●● ●● ●● ● ●●● ●● ●● ●● ●● ●● ● ●● ●● ●● ●●● ●●●●● ●●●●

●●●● ●●●● ●● ●●● ●● ●● ● ●● ●● ●●●● ●●● ● ● ●●●● ●● ●● ●● ● ●●●● ●● ●● ●●● ●● ●● ●● ● ●●●● ● ●●● ●● ●●● ●● ●● ●●● ●●● ●● ●● ●● ●● ●●● ● ● ●●● ●●● ●● ● ●● ●● ●

● ●● ●● ●

●●●●●● ●●● ●● ●● ●● ●●● ● ●● ●● ●● ● ●●●●● ●● ●●●● ●●● ● ● ●●● ●●●● ●● ●● ● ●● ●●● ● ●● ● ●●● ●● ● ●● ● ● ●●●● ● ●●●● ●● ●● ●● ● ●● ●● ● ●●●● ●● ●● ●●●● ●● ●●● ● ●●●● ●● ●● ●● ●● ● ●● ● ●● ● ●● ●●● ●● ●●● ●●● ●● ●● ●● ●● ●● ●● ●● ●●● ●● ● ●● ● ● ●● ● ●●●●●● ● ●●● ●●●● ● ●● ●● ●●● ● ●●● ●●●● ● ●● ●● ● ●● ● ● ●●● ●●● ●●●● ● ●● ●● ●● ●● ●●● ●● ●● ● ●● ●● ● ● ●● ● ●● ● ●●●●● ●●● ● ●● ●●● ●●● ●●● ●●● ●● ●● ●● ●●●●● ● ● ●●● ●●● ●●● ●● ●●●●● ●●● ●● ●● ●●●● ●● ●● ● ●● ●●● ●● ●● ●●● ●●●●●● ●●● ● ●●● ●● ●● ● ● ●● ● ●● ●●● ●● ● ●● ●● ● ●● ●● ●● ●● ●●● ● ● ●● ●●● ●● ●● ● ●● ● ● ●● ●● ●● ● ●●● ●● ●● ●●● ● ●● ●● ●● ●● ●● ●●●● ● ● ●● ●●● ●●●● ● ●●● ● ● ●●● ●●● ●● ●● ●●● ●● ● ●●●● ●● ●● ●● ●●● ● ● ●●● ● ●● ●● ●●● ●● ● ●● ●● ●●● ● ●● ●● ●● ●● ●●● ●● ● ●● ●● ●●● ●● ●● ●●● ●● ●●● ● ●●● ●●● ●●● ●● ●● ●●●● ●● ● ● ●● ●● ●● ●● ● ●●● ●● ●● ●●● ●●● ● ●● ●●●● ● ● ●●● ●●●● ●●● ●●●●● ●● ●●● ●●●●● ● ●● ●●● ● ●● ●●● ●● ●● ●● ● ●● ● ●● ● ●● ●● ●● ● ●●● ●● ●●●● ● ● ●●●● ● ● ●● ●●● ●● ● ●● ● ●● ● ●● ●●●● ● ●●● ● ●● ●● ●● ●●●● ● ●●● ●● ●● ●●●● ●● ● ● ●● ●●● ●●● ● ●●● ● ●●●● ●●●● ● ●●● ●● ●● ●●● ●●● ● ●● ● ●● ● ●● ● ●●●● ●●●●●●● ●●● ● ●●●● ●●● ●● ●● ●● ●●● ●● ●●● ● ●●● ● ●● ●● ●● ●● ● ●● ● ●●●● ●● ●● ●●● ●●●● ● ●●● ● ●●● ●● ●● ● ●●● ●● ● ●● ● ●●●● ●● ●● ●● ●● ● ●● ●● ●● ●● ●●●● ●● ●

●● ●● ● ●● ●● ●●●● ●●● ●●●● ●●●●● ●●● ●●● ● ●● ●● ● ●● ●● ● ●●● ●● ●● ●●● ●●● ●●● ● ●●● ●●●● ● ●●● ●● ●● ●● ●● ● ●●● ●● ● ●●● ●● ●● ●●● ● ● ●●● ●●● ●● ●●● ● ●●● ● ●●● ● ●● ● ● ●● ● ● ●●● ●●●● ● ●● ●●● ●● ●● ● ●●● ●● ●● ● ●● ●● ●● ● ●●● ●●● ●●●● ●● ●●● ●● ●●●● ● ●●●● ● ●●● ●● ●● ●● ●●● ●●● ●● ●●● ● ●●●● ● ●●● ●● ●● ●●● ●● ●● ● ●● ● ●● ● ●● ●●●● ●● ● ●● ●● ●● ●● ●● ●● ● ●●●● ● ●●●● ●● ●● ●● ●● ● ●● ● ●● ● ● ●● ●● ●● ●● ●● ● ●● ●●●● ● ● ● ●●● ● ● ● ●●● ● ●● ●●● ●● ●● ● ●●● ●● ●●● ●● ●● ● ●● ● ●●● ●●● ●● ●●● ●● ● ●● ● ●● ● ● ● ●●● ● ●● ● ●●● ● ●●●●● ● ● ● ●● ● ●●●●●● ● ●●●● ●● ●● ●● ●● ● ●● ●● ●●●● ● ●●● ● ●● ●● ● ● ●●● ●● ●●●● ●● ●● ●●● ●●●● ● ●● ●● ●●● ● ●● ●● ● ●●●●● ●●● ●●●●● ●●●●● ●●● ●●●● ● ●● ● ●● ●● ●● ● ● ●● ●● ●●●● ● ●● ● ● ●● ●● ●●● ●● ●● ●● ● ●●● ● ●● ●● ●● ●● ●● ●● ●●●●● ● ● ●●● ●●●● ●●●● ●● ●●● ● ●●● ● ●● ●● ● ●●●● ●●● ●● ● ●● ● ● ●●● ●●● ●● ●● ●● ● ●●● ● ● ●● ●●● ●● ●● ● ●● ●● ● ● ●●● ●● ●● ● ●● ●● ●●●●●● ●● ● ● ●●● ●●● ●● ●● ● ●●●●● ●● ●●●●● ● ●●● ● ●● ● ●●● ●●●●● ●● ● ●●● ●●● ●●● ● ●●● ● ● ●●●●●● ●● ●● ● ●●● ●● ●● ●●● ●● ●● ●●●● ●●●● ● ● ● ●●● ● ●●● ●●● ●● ● ●●● ●● ● ●●● ●● ●● ● ● ●●● ●●● ● ●● ●● ●● ●● ●● ● ● ●● ●●●● ●●● ● ● ●●●●●● ● ●● ●● ●● ●● ●●● ●● ● ●● ●● ● ●● ●● ●● ●● ●● ●●● ● ●● ● ●● ●● ●● ●● ● ●●● ● ●●●● ● ●●● ●●● ●● ● ●● ●●● ●● ●● ●● ● ●●● ● ●●● ● ●●● ●●● ●●● ●● ●● ●● ●● ●● ● ●● ●● ●●● ●● ●● ● ● ●● ●●● ●●● ●●●● ● ●● ●● ● ●●● ●●●●● ● ●●●● ●● ●● ● ●●● ●●● ● ● ●● ●●● ●● ● ●●● ● ●● ●● ●●● ●● ●● ●● ● ●●● ● ● ● ●● ●●● ●●●● ● ● ●● ●●● ●● ●●● ●●● ● ●● ● ●● ●●● ● ● ●● ●●● ● ●●●● ●●● ● ●●● ● ● ● ●● ●● ●● ●● ●●●● ●●● ●● ● ●●● ● ●●● ●● ●●● ● ●● ● ●● ●●● ●● ● ●● ●●● ●●● ● ● ●●●● ●●● ●●●● ●● ●●●● ● ●●●● ●●● ●●● ● ●● ●●● ●● ●●●● ●●● ●● ● ●● ●●● ● ●● ● ●● ●●● ●●●● ● ●●●●● ●●●●● ●●●●●●●●●● ●● ●● ● ●●● ● ● ●● ●●● ● ● ●●● ●● ● ●●● ●●●● ●● ●●● ●●● ●● ●● ●●● ● ●● ● ●● ● ●●● ●● ● ●● ● ●●● ●●●● ● ● ●● ● ●●●● ●● ●●●● ●●● ●● ●●● ● ● ●●● ●●●● ●● ●● ● ●● ●● ●●● ●●● ●● ● ●● ●● ●● ●● ●● ●●● ●● ● ●● ●●●● ●● ●●● ● ● ●●●●● ● ●● ●●●●● ●●● ●● ●●● ●● ●● ●●● ● ●● ● ● ●●● ●● ●●● ●● ● ● ●●●● ●●● ●● ●●●

php
c#

perl
java

sh
ruby

erlang
tcl

c++
ansic

1 10 100 1000 10000

of developers

Figure 8. Size of Development Teams for the Top-10 Programming
Languages with the Highest Average Size of Development Teams

V. THREATS TO VALIDITY

This study bears some threats to validity mainly related
to the datasets we rely on.

Origin of datasets: Our empirical findings are based on
open source projects found on GitHub which lead to results
that may not generalize to the universe of software projects
produced by developers. We have not considered legacy
projects that are still in use but not actively developed on
GitHub either. Other practices behind the corporate wall may
lead to a different popularity ranking of the languages that
programmers are paid to work with. Nonetheless, our find-
ings remain relevant as many companies, such as Facebook
and Google, release some of their software as open source
and invest in open source projects that appear on GitHub.
Furthermore, companies are likely to hire developers based
on the skills they can justify and that can be leveraged,
implying that languages used for open source development
are unlikely unrelated to those used in corporations.

Size of datasets: This study is limited to 100,000
projects. Though a sizeable sample, it cannot equate the
millions of software programs whose code can be retrieved
from the World Wide Web [1]. GitHub alone contains over
1 million public repositories. It is to be noted however that
our findings on 100,000 projects, in the case of language
appearance in projects, are inline with the ranking provided
by GitHub10. This suggests that our sample dataset is
representative of the universe of GitHub projects.

VI. RELATED WORK

The history, the fundamentals, the trends, and the evo-
lution of programming languages have been the subject
of numerous studies in the literature. As early as 1963,
the proliferation of programming languages has lead Rosen
Saul to produce a “historical” survey of programming lan-
guages [9]. That study was then enriched in 1966 to account
for further developments [10], and the author has proposed a
10-year summary in times where Cobol and Fortran were the
languages used in most of the world production systems and
were believed to remain so into “the foreseeable future” [12].
Sammet has also discussed in this epoch the fundamentals

10https://github.com/languages

9

of programming languages, addressing both used languages
and unimplemented concepts [13].

A number of research work has also gone into defining
what makes a programming language popular while others
have proposed explanations to how some languages have
outlived community expectations and others were early
abandoned. In his work on the longevity of languages,
Mashey has suggested that early successes in programming
languages such as C have built such an ecosystem that
it may have become prohibitively costly to move to new,
and possibly, better languages [8]. In earlier work, Wadler
has discussed why no one uses functional languages [16].
We have however found that, 15 years later, Haskell and
ML have not disappeared and are still lead languages in a
significant portion of software development projects. More
recently, Derk has written an essay from a historical per-
spective [3] where she concludes that the language quality
itself is not important, one must rather look at the application
domain the language is fit for. This suggestion appears to
relate to some of our findings: JavaScript and Ruby are fit
for web programming which, with today’s rush into social
media, is a strongly evolving application area. Thus the
popularity of these languages appears to be high, despite
common critics on different aspects of the languages.

Listing programming languages is relatively easy. Many
websites, such as Wikipedia, enumerate hundreds of lan-
guages. Ranking languages in terms of popularity is however
more challenging. Most attempts have indirectly inferred the
popularity of languages by using different non-programming
indicators: what languages are most sought in the job market;
which ones are most referred to in fora; etc.

Ranking based on search engines’ hits: The TIOBE
software research firm, based in the Netherlands, publishes
every month the TIOBE programming community index [15]
where they provide the trends for Turing Complete [14]
programming languages that have entries in Wikipedia. They
base their index on the number of hits from Alexa’s11 top
web sites with search facilities, including known search
engines such as Google, Bing, Yahoo! and Baidu, and others:
Blogger, wikipedia, Amazon, Youtube, etc. In their June
2012 report, TIOBE’s analysts confirm the increase in trend
for the Haskell programming language that they have been
observing for some time. Nonetheless, it is to be noted
that the TIOBE index is not about the best programming
language or the language in which most lines of code have
been written. Instead, TIOBE’s index is an indication of the
buzz surrounding a programming language.

Ranking based on real usage: The above depicted web-
sites indirectly investigate the popularity of programming
languages supposedly because it is impossible to “look over
programmers shoulders and note what languages they’re
coding in” [6]. Yet, the momentum of Open Source software

11http://www.alexa.com

has flooded the world wide web with all-size, all-type
and all-purpose software projects in repositories that track
information on every aspect of the development. GitHub
is one example of hosting platform where such studies
can be conducted on real-world projects. To the best of
our knowledge, Drew Conway was the first to exploit
information from GitHub to investigate the popularity of
programming languages [2]. He directly relied on GitHub’s
language popularity ranking which is based on the number
of projects they appear in, and compares12 it with data
on developer questions on StackOverflow. In our study
however, we investigate beyond the appearance in projects.
We consider the actual usage of the language in the code
base compared to other the languages.

VII. CONCLUSION AND FUTURE WORK

Programming languages come and go. Only a few are
adopted and thrive. While many scientific studies have
discussed how to create a good programming language and
why some languages become popular, less attention has been
paid to the actual popularity of languages.

In this paper, we describe the findings of our empirical
study on a sizeable dataset of 100,000 projects. This study
corroborates different assumptions made in the literature on
the popularity of programming languages. We have found
that earlier popular languages, such as C, are still current
with a large code base, while the rush in web development
has made JavaScript and Ruby pervasive. Finally, Objective-
C, a language tightly related to the products of a successful
vendor, namely Apple, has also been gaining much attention.

Our study is based on the snapshot of software projects
in development as of 2012. In future work, we plan to
investigate the evolution in the popularity of programming
languages, and whether the importance of a language can
drastically change during a project development cycle. We
also plan to consider a bigger dataset with 1 million projects
from both GitHub and other project hosting sites.

REFERENCES

[1] J. M. Bieman and V. Murdock, “Finding code on the world wide
web: A preliminary investigation,” in SCAM, 2001.

[2] D. Conway, “Ranking the popularity of programming languages,”
http://www.dataists.com/2010/12/, 2010.

[3] M. Derk, “What makes a programming language popular?: an
essay from a historical perspective,” in ONWARD, 2011.

[4] R. T. Fielding, “Architectural styles and the design of network-
based software architectures,” Ph.D. dissertation, University of
California, Irvine, 2000.

[5] J. Fuegi and J. Francis, “Lovelace babbage and the creation of the
1843 ’notes’,” Annals of the History of Computing, IEEE, vol. 25,
no. 4, pp. 16–26, 2003.

[6] R. S. King, “The top 10 programming languages,” http://spectrum.
ieee.org/at-work/tech-careers/.

[7] J. Loeliger, Version Control with Git: Powerful Tools and Tech-
niques for Collaborative Software Development. O’Reilly, 09.

[8] J. R. Mashey, “Languages, levels, libraries, and longevity,” Queue,
vol. 2, no. 9, pp. 32–38, Dec. 2004.

12See http://redmonk.com/sogrady/2012/09/12/language-rankings-9-12/

10

[9] S. Rosen, “Programming systems and languages: a historical
survey,” in AFIPS, 1964, pp. 1–15, reprinted in [11].

[10] ——, Programming systems and languages. Some recent develop-
ment, 1966, in [11], pp. 23-27.

[11] ——, Programming systems and languages. McGraw Hill, 1967.
[12] ——, “Programming systems and languages 1965-1975,” Com-

mun. ACM, vol. 15, no. 7, pp. 591–600, Jul. 1972.
[13] J. E. Sammet, Programming Languages: History and Fundamen-

tals. Prentice-Hall, Inc., 1969.
[14] M. Sipser, Introduction to the Theory of Computation, 1st ed.

International Thomson Publishing, 1996.
[15] TIOBE, “Tiobe programming community index definition,”

http://www.tiobe.com/index.php/content/paperinfo/tpci/tpci
definition.htm.

[16] P. Wadler, “Why no one uses functional languages,” SIGPLAN
Not., vol. 33, no. 8, pp. 23–27, Aug. 1998.

11

