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Noncommutative ricci curvature and dirac operator on B q [SU 2 ] at the fourth root of unity

We calculate the torsion free spin connection on the quantum group B q [SU 2 ] at the fourth root of unity. From this we deduce the covariant derivative and the Riemann curvature. Next we compute the Dirac operator of this quantum group and we give numerical approximations of its eigenvalues.

introduction

The quantum group B q [SU 2 ] and the 4-dimensional differential calculus with left basis 1-form are defined in [START_REF] Majid | q-Fuzzy spheres and quantum differentials on B q [SU 2 ] and U q (su 2 )[END_REF]. The goal of this article is to give the expression of the Dirac operator and of its eigenvalues.

First in the preliminaries, we give the description of the quantum group B q [SU 2 ] and the relation between its elements. We work here at the fourth root of unity which means that every fourth power of the elements of B q [SU 2 ] are 0 or 1.

Next we describe the right multiplication and the right coaction. Also, we define the Grassman variables (or 1-forms) and relations between its wedge products. Furthermore, we describe the relation between function and the Grassman variables.

As a consequance of the definition of the Maurer-Cartan form of this quantum group, we deduce the Maurer-Cartan equation. In addition we find the commutation relation between Grassman variables and each product of elements of B q [SU 2 ]. By the way we calculate the derivative of each product of functions. In any case, we find the projection on the Grassman variables of any function. Then we can compute the left and right coactions.

In fact there a Killing on this quantum which give the torsion and cotorsion equations. In other words, with the expression of the left and right coactions, we can deduce the spin connection in solving those equations. However, again with the expression of the left and right coaction, we can deduce the covariant derivative. Besides, with the expression of the covariant derivative, we find the Riemann curvature.

Moreover, with the expression of the spin connection and the antipode of this quantum group, we calculate the Dirac operator which is not similar to the one find by [START_REF] Majid | Riemannian Geometry of Quantum Groups and Finite Groups with Non Universal Differentials[END_REF]. With the expression of each partial derivative in a well chosen basis from the expression of the right translation operator, we were able to calculate numerically the eigenvalues of the Dirac operator found previously. This work is a copy of [START_REF] Majid | Noncommutative ricci curvature and Dirac operator on C q [SL 2 ] at roots of unity[END_REF] which is done for

C q [SL 2 ] instead of B q [SU 2 ].

Preliminaries

Here we fix notations in the conventions that we will use and do some preliminary computations, in Section 2.2. We let q 2 = 1. The quantum group A = B q [Su 2 ] has a matrix of generators u = α β β * δ (see [START_REF] Majid | q-Fuzzy spheres and quantum differentials on B q [SU 2 ] and U q (su 2 )[END_REF]) with relations

βα = q 2 αβ, δα = αδ, [β, β * ] = µα(δ -α), [δ, β] = µαβ, αδ -q 2 β * β = 1 (2.1)
where µ = 1q -2 . The coproduct and counit ǫ have the usual matrix coalgebra form. We denote the antipode or 'matrix inverse' by S.

We will also work with the dimensional Hopf algebra A = B q [Su 2 ] reduced at q a primitive 4'th root of unity. This has the further relations

β 4 = (β * ) 4 , α 4 = δ 4 = 1 (2.2)
where α 4 , β 4 , (β * ) 4 , δ 4 generate an undeformed B q [SU 2 ] central sub-Hopf algebra of the original B q [SU 2 ]. Note also that in the reduced case δ = α -1 (1+q 2 β * β) is redunant and dim(A) = 4 2 . in this case a basis of A is {α p , β r } for 0 ≤ p, r ≤ 3. Explicit computations are done via Mathematica for concreteness. Equations involving only the invariant differential forms do not directly involve the function algebra and are solved for all q 4 = 1 and q 2 = 1.

Exterior algebra

We take the standard bicovariant exterior algebra on B q [SU 2 ] which has the lowest dimensional (4d) space of 1-forms [START_REF] Majid | q-Fuzzy spheres and quantum differentials on B q [SU 2 ] and U q (su 2 )[END_REF]. Thus, we take a basis {e The relations among 1-forms are obtained by setting to zero the kernel of Ψ-id, where Ψ is the crossed-module braiding (see [START_REF] Majid | q-Fuzzy spheres and quantum differentials on B q [SU 2 ] and U q (su 2 )[END_REF]).

The right module structure on 1-forms is defined via the commutation relations

[e a , α] q = [e a , β] q -1 = [e c , β] q = [e b , α] q -1 = [e b , γ] q = 0 [e a , γ] q = µαe b ; [e a , δ] q -1 = µβe b + qµ 2 αe a ; [e c , α] q = q 2 µβe a [e b , β] q -1 = µαe a ; [e b , δ] q = q 2 µγe a ; [e d , α] q -1 = µβe b [e d , β] q = µαe c + qµ 2 βe a ; [e d , γ] q -1 = µ(δ -α)e b [e d , δ] q = -µβe b + qµ 2 (δ -α)e a + µγe c ; [e c , γ] q -1 = µ(δ -α)e a + µαe d + qµ 2 βe b [e d , δ] q -1 = µ(q 2 -2)βe a + q 2 µβe d + qµ 2 αe c (3.5)
where [x, y] q = xyqyx and α, β, β * , δ ∈ B q [SU 2 ].

Exterior derivative and Lie bracket structure constants

The differential on the exterior algebra structure is defined by graded anticommutator d= µ -1 [θ, } where θ = e a + e d . in particular

de a = -e c ∧ e b ; de b = -e b ∧ (q -2 e a -e d ) de c = e c ∧ (e a -q 2 e d ) de d = e c ∧ e b (4.6) 
Lemma 1. For all invertible q 2 = 1 e a α p β r γ s = q p+s-r α p β r γ s e a + [r] q 2 µq p+s-r-1 α p+1 β r γ s-1 e b e b α p β r γ s = µq s-p-r+1 [r] q 2 α p+1 β r-1 γ s e a + (µq

r+s-p-2 [r] q 2 [s] q 2 α p+2 β r-1 γ s-1 -q s-p-r α p β r γ s )e b e c α p β r γ s = q p-r α p β r [µq -1 [s] q 2 γ(δ -q 2(1-s) α)e a + (q 2-r µ 2 [s] q 2 βγ + [s -1] q 2 q -s µ s α s-1 (δ -α))e b +q -s γ s e c + µq 1-s [s] q 2 αγ s-1 e d ] +(µq p-r+1 [r] q 2 α p+1 β r-1 + µq p+1 [p] q 2 α p-1 β r+1 )(q s γ s e a + µq s-1 [s] q 2 αγ s-1 e b ) e d α p β r γ s = q 2-p-r µ 2 [r] q 2 α p β r (1 + q 2 [p] q 2 )(q s γ s e a + µq s-1 [s] q 2 αγ s-1 e b ) + q s-r-p+1 µ[p] q 2 α p-1 β r+1 γ s e b +q r-p-1 µ[r] q 2 α p+1 β r-1 (µq -1 [s] q 2 γ(δ -q 2(1-s) α)e a +(q 2-s µ 2 [s] q 2 βγ + [s -1] q 2 q -s µ s α s-1 (δ -α))e b + q -s γ s e c + µq 1-s [s] q 2 αγ s-1 e d ) +q r-p α p β r (q -s γ s e d + q 1-s µ[2] q 2 γ s-1 (δ -α)e b ) (4.7)
where

[n] q 2 = (1-q 2n ) (1-q 2 )
and the negative powers of p, r, s are omitted.

Proof

From the commutation relation (3.5), we deduce the commutation relations :

e a γ s = q s γ s e a + µq s-1 [s] q 2 αγ s-1 e b e b γ s = q s γ s e b e c α p = q p α p e c + µq p+1 [p] q 2 α p-1 βe a e c γ s = µq -1 [s] q 2 γ(deg -q 2(1-s) α)e a + (q 2-s µ 2 [s] q 2 βγ + [s -1] q 2 q -s µ s α s-1 (δ -α))e b +q -s γ s e c + µq 1-s [s] q 2 αγ s-1 e d e c β r = q -r β r e c + µq 1-r [r] q 2 αβ r-1 e a e b β r = q -r β r e b + q 1-r µ[r] q 2 αβ r-1 e a e d α p = q -p α p e d + q 1-p µ[p] q 2 α p-1 βe b e d β r = q r β r e d + q r-1 µ[r] q 2 αβ r-1 e c + µ 2 q 2-r [r] q 2 β r e a e d γ s = q -s γ s e d + q 1-s µ[2] q 2 γ s-1 (δ -α)e b (4.8)
These then give the commutation relations with basis elements as stated.

♠

From these, we easily obtain

d(α p β r ) = µ -1 ([p] q q -r (q -1)α p β r -q 1-r [p] q -1 (q -1)µ 2 [r] q 2 α p β r +µ 2 q -r [r] q 2 p-1 i=0 [2i + 1] -q α p-1 β r + [ r-1 i=0 q 1-i µ i [2i + 1] -q + q -1 [r] q -1 (1 -q)α p β r )e a -µq -1-r p-1 i=0 [2i + 1] -q α p-1 β r+1 e b + q 2r-2-i r-1 i=0 [2i + 1] -q α p β r-1 e c +(-µ -1 q r-1 (q -1)[p] q -1 α p β r -µ -1 [r] q (1 -q)α p β i+1 )e d
obeying the Leibniz rule.

Next, we will need the projection π : A → Λ 1 which characterises the above calculus as a quotient of the universal one, i.e. with df = f ∅π(f (2) ) for all f ∈ A. Here ∆f = f ∅ ⊗ f (2) is the Sweedler notation for the coproduct. Actually π can be obtained backwards from d as follows. Let the partial derivatives

∂ i : A → A be defined by df = i (∂ i f )e i . Then π(f ) = i e i ǫ(∂ i f ) (4.9)
in particular, we obtain

π(α) = q [2] q (qe a -e d ) π(β) = e c π(γ) = e b π(δ) = 1 [2] q [q 2 e d -(1 + q -1 )e a ] (4.10)
We use the formula (4.9) for the exterior derivative. For generic q we compute da separately. Finally, we need the braided-Lie algebra structure constants 

ad R = (id ⊗ π)∆ R , ad L = (π ⊗ id)δ L (4.11) where ∆ L = (S -1 ⊗ id) • τ • ∆ R
[2] q e b ⊗ (qe a -e d ) -q 2 e c ⊗ e b + e d ⊗ e b ad R (e c ) = e a ⊗ e c -q 2 e b ⊗ e c + 1 [2] q e c ⊗ (q 2 e d -(1 + q -1 )e a ) ad L (e a ) = -q 2 e b ⊗ e c -q 2 e b ⊗ e d + e b ⊗ (νe a + ξe d ) ad L (e d ) = -q 2 e c ⊗ e a -q 2 e c ⊗ e b + e c ⊗ λ(νe a + ξe d ) ad L (e b ) = -q 2 e b ⊗ e d -q 2 e b ⊗ e c + 1 [2] q (q 2 e d -(1 + q -1 )e a ) ⊗ e b ad L (e c ) = -q 2 e c ⊗ e a -q 2 e c ⊗ e b + q [2] q (qe a -e d ) ⊗ e c (4.12) 
where

ν = q 3 -24q 2 + 7q + 34 5q 3 -15q 2 -50q -30 = q 2 A a d (A a d ) 2 -(A a a ) 2 ξ = q 3 -15q -13 5q 3 -15q 2 -50q -30 = q 2 A a a -(A a d ) 2 + (A a a ) 2 λ = 1 + 2q + 2q 2 -2 + 2q 2 + q 3 (4.13)
We define by ad(e i ) = j,k ad(jk|i)e j ⊗e k , where we use the indices i, j, k to run through {e a , e b , e c , e d }.

Spin connection and Riemannian curvature

Still with q arbitrary, there is a natural ∆ R -covariant Killing metric in [START_REF] Majid | Riemannian Geometry of Quantum Groups and Finite Groups with Non Universal Differentials[END_REF] of the form η = e c ⊗ e b + q 2 e b ⊗ e c + e a ⊗ e aqe a ⊗ e dqe d ⊗ e a + q(q 2 + q -1)e d ⊗ e d [START_REF] Connes | Noncommutative Geometry[END_REF] q + ρθ ⊗ θ (5.14)

where ρ = q(1-q-q 2 ) 1+q is the natural choice for the Hodge * operator as explained in [START_REF] Gomez | Noncommutative cohomology and electromagnetism on C q [SL 2 ] at roots of unity[END_REF].This is the local cotangent space of C q [SL 2 ] with θ an intrinsic 'time' direction induced by noncommutative geometry. We can add any multiple of θ ⊗ θ and still retain ∆ R -invariance. For any such invariant metric, we have symmetry in the sense

∧(η) = 0 (5.15)
Moreover, the equations for a torsion-free and skew-metric-compatible 'generalised Levi-Civita' spin connection become independent of η and reduce to the torsion and 'cotorsion' equations [START_REF] Majid | Riemannian Geometry of Quantum Groups and Finite Groups with Non Universal Differentials[END_REF] :

de i + j,k A j ∧ e k ad L (jk|i) = 0, de i + j,k e j ∧ A k ad R (jk|i) = 0 (5.16)
in these equations we write A(e i ) ≡ A i , and a generalised spin connection is given by four such forms A a , A b , A c , A d obeying (??). in principle there is also an optional 'regularity' condition as explained in [START_REF] Majid | Riemannian Geometry of Quantum Groups and Finite Groups with Non Universal Differentials[END_REF] which ensures that the curvature is braided-Lie algebra valued. By the same arguments as above, this regularity condition can be written as i,j

A i ∧ A j ǫ(∂ i ∂ j f ) = 0, ∀f ∈ ker π (5.17)
Theorem 1. For generic q or for q an 4-th root of unity , if we define A i = A j i e j , there is a unique torsion-free and cotorsion free spin connection given by

A d d = A a a = 4 + 6q + 5q 2 + 3q 3 5 -4q 2 + 2q 3 A a d = A d a = -1 + 5q + 7q 2 + q 3 2 + 5q -4q 3 A b d = - 275 + 120q -140q 2 + 15q 3 -+ 106q + 14q 2 -84q 3 A c d = - 295 -655q -430q 2 + 48q 3 319 -112q -333q 2 + 99q 3 A b a = - 146 + 270q + 25q 2 -90q 3 14 -84q + 9q 2 + 106q 3 A c a = - 330 -285q -465q 2 + 292q 3 99 + 319q -112q 2 -333q 3 A c c = 1 + 2q + 2q 2 -2 + 2q 2 + q 3 A b b = -2 -3q + 3q 2 + 2q 3 2 + 5q -4q 3 (5.18)
The connection is not in general regular.

Proof Looking first at the torsion equation, we see that the coefficients of A are all to the left and hence its functional dependence is immaterial. We write out the equations using the form of ad R and de a from (4.12) and match coefficients of a absis of Λ 2 . This is a linear system : 

-e c ∧ e b + e c ∧ A b -q 2 e d ∧ A b + (νA a + ξA d ) ∧ e b = 0 e c ∧ e b -q 2 e a A c + e b ∧ A c + λ(νA a + ξA d ) ∧ e c = 0 -q -2 e b ∧ e a + e b ∧ e d - q [2] q (e b ∧ (A d -qA a )) -q 2 e c ∧ A b + e d ∧ A b = 0 -q -2 e c ∧ e a + e c ∧ e d + e a ∧ A c -q 2 e b ∧ A c + q 2 [2] q e c ∧ A d - (1 + q -1 ) [2] q (e c ∧ A a =
-µ(1 + q -2 ) -νA a a -ξA a d = 0 q -2 -νA d a -ξA d d = 0 -1 + A b b -νA c a -ξA c d ) = 0 A c c -q -2 λ(νA a a -ξA a d ) = 0 -1 -A c c -λ(νA b a + ξA b b ) νA d a + ξA d d = 0 -1 - q 3 [2] q (A a d -qA a a ) -µA b b = 0 1 - q [2] q (A d d -qA d a ) -q 2 A b b = 0 q [2] q (A c d -qA c a ) -q 2 A b b + A a b = 0 -q 2 A a b -µA c b = 0 A d b -q 2 A c b = 0 A a b = A c b = A d b = 0 -1 + A c c + 1 [2] q A a d -q 2 (1 + q -1 ) [2] q A a a = 0 1 + q 2 [2] q A d d - (1 + q -1 ) [2] q A d a = 0 A b c -A a c = 0 A d c = 0 -q 2 A c c + q 2 [2] q A b d - (1 + q -1 ) [2] q A b a = 0
With the help of mathematica, we find the only solution of this equations system which is (5.18).

♠

The covariant derivative Ω 1 → Ω 1 ⊗ A Ω 1 is comuted from [START_REF] Majid | Riemannian Geometry of Quantum Groups and Finite Groups with Non Universal Differentials[END_REF] ∇e i =j,k

A j ⊗ e k ad L (jk|i), ∀i (5.21) it obeys the usual derivation-like rule for covariant derivatives, so we need only give it on basic 1forms. For the above canonical spin connection it comes out (in a similar manner to solving the torsion equation in Theorem 1) as

∇e a = A b ⊗ (q 2 e c + q 2 e d -νe a -ξe d ) ∇e d = A c ⊗ (q 2 e a + q 2 e b + λ(νe a + ξe d )) ∇e b = A b ⊗ (q 2 e d + q 2 e c ) - 1 [2] q (q 2 A d + (1 + q -1 )A a ) ⊗ e b ∇e c = A c ⊗ (q 2 e a + q 2 e b ) - q [2] q (qA a -A c ) ⊗ e c (5.22)
Finally, for any connection, the Riemannian curvature is computed from [START_REF] Majid | Riemannian Geometry of Quantum Groups and Finite Groups with Non Universal Differentials[END_REF] Riemann = ((id

∧ ∇) -d ⊗ id) • ∇ (5.23)
or equally well from the curvature F = dA + A * A : ker ǫ → Ω 2 of A. When the connection is not regular, the latter Yang-Mills curvature does not descend to a map Λ 1 → Ω 2 (it is not 'Lie algebra valued but lives in the enveloping algebra of the braided-Lie algebra). However, this does not directly affect the Riemannian geometry (it merely complicates the geometry 'upstairs' on the quantum frame bundle) ; in the proof of [START_REF] Majid | Riemannian Geometry of Quantum Groups and Finite Groups with Non Universal Differentials[END_REF] Corol 3.8 one should simply omit the π in the argument of F for the relation to the Riemann curvature.

Proposition 1. The Riemann curvature

Ω 1 → Ω 2 ⊗ A Ω 1 of the canonical spin connection in Theorem 1 is Riemann(e a ) = A b ∧ A c ⊗ (e a + e b ) - q 3 [2] q A b ∧ (qA a -A c ) ⊗ e c + q 2 λA b ∧ A c ⊗ (νe a + ξe d ) Riemann(e b ) = q 2 A b ∧ (A c ⊗ (q 2 e a + q 2 e b + λ(νe a + ξe d )) - q [2] q (qA a -A c ) ⊗ e c ) Riemann(e c ) = q 2 A c ∧ (A b ⊗ (q 2 e c + q 2 e d -νe a -ξe d ) + A b ⊗ (q 2 e d + q 2 e c ) - 1 [2] q (q 2 A d -(1 + q -1 )A a ) ⊗ e b ) Riemann(e d ) = A c ∧ A b ⊗ (e c + e d ) -q 2 A c ∧ A b ⊗ (νe a + ξe d ) - q 2 [2] q A c ∧ (q 2 A d -(1 + q -1 )A a ) ⊗ e b
Proof Direct computation using the relations in the preliminaries and the formula (5.22) for ∇. Note that Riemann is a tensor, so that Riemann(f e a ) = f Riemann(e a ) for all f ∈ A, i.e. we need only give it on the basic 1-form.

♠ 6 Dirac operator

The additional ingredient for a Dirac operator is a choice of spinor representation W of the frame quantum group and equivariant gamma-matrices γ : Λ 1 → End(W ). The spinor bundle in our case is just the tensor product A⊗W , which is the space of spinors. We take the 2-dimensional representation (i.e. a Weyl spinor) so a spinor has components

ψ α ∈ B q [SU 2 ] for α = 1, 2
Since Λ 1 for a differential calculus of B q [SU 2 ] was originally given in the endomorphism basis {e β α }, the canonical gamma-matrices proposed in [START_REF] Majid | Riemannian Geometry of Quantum Groups and Finite Groups with Non Universal Differentials[END_REF] are just the identity map in that basis. Or in terms of our above {e i } they provide the conversion according to γ(e i ) α β e β α = e i , γ(e a ) = 1 0 0 0 , γ(e a ) = 0 1 0 0 , etc. (6.24)

if we take more usual linear combinations e x , e y , e z , θ (where e x , e y are linear combinations of e b , e c ) then the gamma-matrices would have a more usual form of Pauli matrices and the identity, but this is not particularly natural when q = 1 given that our metric is not symmetric.

Using the {e β α basis, the canonical Dirac operator in [START_REF] Majid | Riemannian Geometry of Quantum Groups and Finite Groups with Non Universal Differentials[END_REF] is

(& & Dψ) α = ∂ α β ψ β -A(πS -1 )t γ β ) α γ ψ β (6.25) 
where

A = A α β e β α , df = ∂ α β (f )e β α , ∀A ∈ Ω 1 , f ∈ B q [SU 2 ] (6.26)
Proposition 2. The Dirac operator for the canonical spin connection on B q [SU 2 ] in Theorem 1 is

& & D = ∂ a -1+q -1 -q 1+q A a d + A a a + q 2 A b b ∂ b -1+q -1 -q 1+q A c d + A c a ∂ c -q 2 [2]q A b a + q [2]q A b d ∂ d -q 2 [2]q A d a + q [2]q A d d + q 2 A c c (6.27)
Proof From (4.9) for π, and the specific form of our spin connection from Theorem 1, we have

A(πS -1 α) = -A a + 1 + q -1 -q 1 + q A d A(πS -1 β) = -q 2 A c A(πS -1 γ) = -q 2 A b A(πS -1 δ) = q 2 [2] q A a - q [2] q A d (6.28)
We then convert to the spinor basis with (e i ) α β = γ(e i ) α β so, e.g. (e b ) 1 2 = 1 and its other components are zero. We then compute the matrix A α β = A(πS -1 t γ β ) α γ so that & & D = ∂ -A. We have

A 1 1 = 1 + q -1 -q 1 + q A a d -A a a -q 2 A b b A 2 1 = 1 + q -1 -q 1 + q A c d -A c a A 1 2 = q 2 [2] q A b a - q [2] q A b d A 2 2 = q 2 [2] q A d a - q [2] q A d d -q 2 A c c (6.29)
which gives the results as stated

♠

We see that the Dirac operator is not the naive ∂ that one might write guess without a spin connection. This is not the same phenomenon as for S 3 in [START_REF] Majid | Riemannian Geometry of Quantum Groups and Finite Groups with Non Universal Differentials[END_REF].

Proposition 3. For q = 1 the approximation of the eigenvalues of the Dirac operator (6.25) are given by 6.13535, for q = -ithe approximation of the eigenvalues of the Dirac operator (6.25) are given by the complex conjugate of (6.30) -4.96224 -0.188313i, -4.94028 -0.196129i, -4.86666 -0.199838i, -4.81671 -0.199838i, -3.8887 -1.36007i, -4.0635 -0.0761453i, -3.84125 -1.26724i, -3.7927 + 0.921684i, -3.86394 -0.0590435i, Proof It is easiest (and most natural mathematically) to compute the unnormalised ∂ where d = [θ, } without the factor µ -1 that was inserted for the classical limit. In the basis

-

Discussion

We use the powerful software Mathematica to solve the torsion cotorsion equation (5.16). We find a difficult solution for the Levi-Civita connection A because A a and A d have 4 components on the basis of 1-forms. When we tried to compute the lifting and the Ricci curvature as in [START_REF] Majid | Noncommutative ricci curvature and Dirac operator on C q [SL 2 ] at roots of unity[END_REF], we need Ψ but we didn't know how to calculate it. This gives rise to a very difficult Dirac operator (6.25). This case is very different of the case of D 6 given in [START_REF] Arm | Noncommutative geometry on the Dihedral group D 6[END_REF] because it is not the naive ∂ without a spin connection. We try to give an exact expression for the eigenvalues but the calculus time are too long and Mathematica was not able to finish it in a finit time. Finally, because we didn't know exactly the expression of the eigenvalues. We were not able to compute the eigenmodes of the Dirac operator found previously.

β α } = e a e b e c e d , where e 2 1 =( 3 . 3 )Ω 1 =

 1331 e b , etc., and form a right crossed module with right multiplication and the right coaction ∆ R (e β α ) = e δ γ ⊗ t γ α St β δ A ⊗ Λ 1 is spanned by left-invariant forms as a free left module over B q [SU 2 ]. These also generate the invariant exterior algebra Λ and Ω = A ⊗ Λ. Hence e a , e b , e c behave like usual forms or Grassmann variables and e a ∧ e d + e d ∧ e a + µe c ∧ e b = 0, e d ∧ e c + q 2 e c ∧ e d + µe a ∧ e c = 0 e b ∧ e d + q 2 e d ∧ e b + µe b ∧ e a = 0, e 2 d = µe c ∧ e b (3.4)

  is the right coaction converted to a left coaction and τ is the usual vector space flip. We have ad R (e a ) = e c ⊗ e bq 2 e d ⊗ e b + (νe a + ξe d ) ⊗ e b ad R (e d ) = -q 2 e a ⊗ e c + e b ⊗ e cλ(νe a + ξe d ) ⊗ e c ad R (e b ) = q

  0 (5.19) Because the relations between two forms e a ∧ e d + e d ∧ e a + µe c ∧ e b = 0 e d ∧ e c + q 2 e c ∧ e d + µe a ∧ e c = 0 e b ∧ e d + q 2 e d ∧ e b + µe b ∧ e a = 0 e 2 dµe c ∧ e b = 0 e d ∧ e a + e a ∧ e d + µe b ∧ e c = 0 e c ∧ e d + q 2 e d ∧ e c + µe c ∧ e a = 0 e d ∧ e b + q 2 e b ∧ e d + µe a ∧ e b = 0 (5.20) and (5.19) we obtain the equations

  [START_REF] Gomez | Noncommutative cohomology and electromagnetism on C q [SL 2 ] at roots of unity[END_REF].76238 + 0.838047i, -3.28813 -0.320025i, -2.97248 -0.288083i, 1.20446 -2.56874i, 2.37401 -1.45875i, 2.35204 -1.45093i, 1.17415 -2.48511i, 2.27843 -1.44722i, -2.65153 -0.260679i, 2.22847 -1.44722i, -2.56214 -0.239703i, -2.36421 -0.187262i, -2.29997 -0.184081i, 1.47527 -1.57091i, 1.2757 -1.58802i, 0.699899 -1.32703i, -0.288263 -1.46298i, -0.224021 -1.4598i, 0.384248 -1.35898i, -0.0260945 -1.40736i, 0.0632908 -1.38638i, 1.30046 -0.286992i, 1.25301 -0.379819i