Gilles Pagès 
email: gilles.pages@upmc.fr
  
Abass Sagna 
email: abass.sagna@ensiie.fr.
  
Recursive marginal quantization of the Euler scheme of a diffusion process

We propose a new approach to quantize the marginals of the discrete Euler diffusion process. The method is built recursively and involves the conditional distribution of the marginals of the discrete Euler process. Analytically, the method raises several questions like the analysis of the induced quadratic quantization error between the marginals of the Euler process and the proposed quantizations. We show in particular that at every discretization step t k of the Euler scheme, this error is bounded by the cumulative quantization errors induced by the Euler operator, from times t 0 = 0 to time t k . For numerics, we restrict our analysis to the one dimensional setting and show how to compute the optimal grids using a Newton-Raphson algorithm. We then propose a closed formula for the companion weights and the transition probabilities associated to the proposed quantizations. This allows us to quantize in particular diffusion processes in local volatility models by reducing dramatically the computational complexity of the search of optimal quantizers while increasing their computational precision with respect to the algorithms commonly proposed in this framework. Numerical tests are carried out for the Brownian motion and for the pricing of European options in a local volatility model. A comparison with the Monte Carlo simulations shows that the proposed method may sometimes be more efficient (w.r.t. both computational precision and time complexity) than the Monte Carlo method.

Introduction

Optimal quantization method appears first in [START_REF] Sheppard | On the Calculation of the Most Probable Values of Frequency-Constants, for Data Arranged According to Equidistant Divisions of Scale[END_REF] where the author studies in particular the optimal quantization problem for the uniform distribution. It has become an important field of information theory since the early 1940's. A common use of quantization is the conversion of a continuous signal into a discrete signal that assumes only a finite number of values.

Since then, optimal quantization has been applied in many fields like in Signal Processing, in Data Analysis, in Computer Sciences and recently in Numerical Probability following the work [START_REF] Pagès | A space quantization method for numerical integration[END_REF]. Its application to Numerical Probability relies on the possibility to discretize a random vector X taking infinitely many values by a discrete random vector X valued in a set of finite cardinality. This allows to approximate either expectations of the form Ef (X) or, more significantly, some conditional expectations like E(f (X)|Y ) (by quantizing both random variables X and Y ). Optimal quantization is used to solve problems emerging in Quantitative Finance as optimal stopping problems (see [START_REF] Bally | A quantization algorithm for solving discrete time multidimensional optimal stopping problems[END_REF][START_REF] Bally | A quantization tree method for pricing and hedging multidimensional American options[END_REF]), the pricing of swing options (see [START_REF] Bardou | Optimal quantization for pricing of swing options[END_REF]), stochastic control problems (see [START_REF] Corsi | Numerical approximation by quantization of control problems in finance under partial observations[END_REF][START_REF] Pagès | An Optimal markovian quantization algorithm for multidimensional stochastic control problems[END_REF]), nonlinear filtering problems (see e.g. [START_REF] Pagès | Optimal quantization methods for nonlinear filtering with discrete time observations[END_REF][START_REF] Pham | Approximation by quantization of the filter process and applications to optimal stopping problems under partial observation[END_REF][START_REF] Callegaro | An application to credit risk of a hybrid Monte Carlo-optimal quantization method[END_REF][START_REF] Profeta | Conditional hitting time estimation in a nonlinear filtering model by the Brownian bridge method[END_REF]), the pricing of barrier options (see [START_REF] Sagna | Pricing of barrier options by marginal functional quantization method[END_REF]).

In Quantitative Finance, several problems of interest amount to estimate quantities of the form

E f (X T ) , T > 0, (1) 
for a given Borel function f : R d → R, or involving terms like

E f (X t )|X s = x , 0 < s < t, (2) 
where (X t ) t∈[0,T ] is a stochastic diffusion process, solution to the stochastic differential equation

X t = X 0 + t 0 b(s, X s )ds + t 0 σ(s, X s )dW s , (3) 
where W is a standard q-dimensional Brownian motion starting at 0 independent of the R d -valued random vector X 0 , both defined on a probability space (Ω, A, P). The functions b : [0, T ] × R d → R d and the matrix-valued diffusion coefficient function σ : [0, T ] × R d → R d×q are Borel measurable and satisfy some appropriate Lipschitz continuity and linear growth conditions to ensure the existence of a strong solution of the stochastic differential equation (see [START_REF] Pagès | Pointwise convergence of the Lloyd algorithm in higher dimension[END_REF] and [START_REF] Pagès | Componentwise product quantization of an R d -valued Euler diffusion process with applications[END_REF] further on). Since in general the solution of ( 3) is not explicit, we have first to approximate the continuous paths of the process (X t ) t∈[0,T ] by a discretization scheme, typically, the Euler scheme. Given the (regular) time discretization mesh t k = k∆, k = 0, . . . , n, ∆ = T /n, the "discrete time Euler scheme" ( Xn t k ) k=0,...,n , associated to (X t ) t∈[0,T ] is recursively defined by

Xn t k+1 = Xn t k + b(t k , Xn t k )∆ + σ(t k , Xn t k )(W t k+1 -W t k ), Xn 0 = X 0 .
Then, once we have access to the discretization scheme of the stochastic process (X t ) t∈[0,T ] , the quantities (1) and ( 2) can be estimated by

E f ( Xn T ) (4) 
and E f ( Xn t k+1 )| Xn t k = x when t = t k+1 and s = t k .

Remark 1.1. (a) Note that, if b and σ both have linear growth in x uniformly in t ∈ [0, T ], then any strong solution to (3) (if any) and the Euler scheme satisfy for every p ∈ (0, +∞),

sup n≥1 E max k=0,...,n | Xn t k | p + E sup t∈[0,T ] |X t | p < +∞. (6) 
Hence, the above quantities (1), ( 2), ( 4), [START_REF] Bucklew | Multidimensional asymptotic quantization theory with r-th power distribution measures[END_REF], are well defined as soon as f has polynomial growth (when X is well defined).

(b) When b and σ are smooth with bounded derivatives, say C 4 b , the following weak error result holds for smooth functions f with polynomial growth (or bounded Borel functions under hypo-ellipticity assumptions on σ, see e.g. [START_REF] Bally | The law of the Euler scheme for stochastic differential equations (II): convergence rate of the density[END_REF][START_REF] Talay | Expansion of the global error for numerical schemes solving stochastic differential equations[END_REF]), the estimation of E f (X T ) by E f ( Xn T ) induces the following weak error:

Ef (X T ) -Ef ( Xn T ) ≤ C n with C = C b,σ,T > 0 and where n is the number of time discretization steps.

From now on, we will drop the exponent n and will denote X instead of Xn .

The estimation of quantities like (4) or [START_REF] Bucklew | Multidimensional asymptotic quantization theory with r-th power distribution measures[END_REF] can be performed by Monte Carlo simulations since the Euler scheme is simulable. Nevertheless, an alternative to the Monte Carlo method can be to use cubature formulas produced by an optimal quantization approximation method, especially in small or medium dimension (d ≤ 4 theoretically but, in practice, it may remain competitive with respect to the Monte Carlo method up to dimension d = 10, see [START_REF] Pagès | Functional quantization for numerics with an application to option pricing[END_REF]).

A quantization of an R d -valued random vector Y induced by a grid Γ ⊂ R d is a random vector Y Γ = π(Y ), where q : R d → Γ is a Borel function. Optimal quantization consists in specifying both π and Γ to minimize Y -Y Γ r for a given r ∈ (0, +∞) (we talk about quadratic optimal quantization when r = 2). Now, suppose that we have access to the optimal quantization or to some "good" (in a sense to be specified further on) quantizations X Γ k t k k=0,...,n (we will sometimes denote X t k instead of X Γ k t k to simplify notations) of the process ( Xt k ) k on the grids Γ k := Γ

(N k ) k = {x k 1 , . . . , x k N k } of size N k (
which is also called an N k -quantizer), for k = 0, . . . , n.

If X 0 is random, then we suppose that its distribution can be quantized. In this case X Γ 0 0 will be the optimal quantization of X 0 of size N 0 . If X 0 = x 0 is deterministic then Γ 0 = {x 0 } and X Γ 0 0 = x 0 . Suppose as well that we have access to or have computed (offline) the associated weights P( X Γ k t k = x k i ), i = 1, . . . , N k , k = 0, . . . , n (which are the distributions of the X Γ k t k ), and the transition probabilities p ij k = P( X

Γ k+1 t k+1 = x k+1 j | X Γ k t k = x k i )
for every k = 0, . . . , n -1, i = 1, . . . , N k , j = 1, . . . , N k+1 (in other words, the conditional distributions L( X

Γ k+1 t k+1 | X Γ k t k )).
Then, using optimal quantization cubature formula, the expressions ( 4) and ( 5) can be estimated by

E f ( X Γn tn ) = Nn i=1 f (x n i ) P X Γn tn = x Nn i , since t n = T and E f ( X Γ k+1 t k+1 )| X Γ k t k = x k i = N k+1 j=1 p ij k f (x k+1 j ),
respectively. The remaining question to be solved is then to know how to get the optimal or at least "good" grids Γ k , for every k = 0, . . . , n, their associated weights and transition probabilities. In a general framework, as soon as the stochastic process ( Xt k ) k (or the underlying diffusion process (X t ) t≥0 ) can be simulated one may use zero search stochastic gradient algorithm known as Competitive Learning Vector Quantization (CLVQ), see e.g. [START_REF] Pagès | Functional quantization for numerics with an application to option pricing[END_REF] or a randomized fixed point procedure (see e.g. [START_REF] Gersho | Vector Quantization and Signal Compression[END_REF][START_REF] Pagès | Optimal quadratic quantization for numerics: the gaussian case[END_REF][START_REF] Pagès | Pointwise convergence of the Lloyd algorithm in higher dimension[END_REF]) to compute the (hopefully almost) optimal grids and their associated weights or transition probabilities. In the special case of one dimension, we may rely on the deterministic counterpart of these procedures like fugy's algorithm or Lloyd method and, for few specific scalar distributions (the Normal distribution, the exponential distribution, the Weibull distribution, etc), to the Newton-Raphson's algorithm. In this last case, we can speak of fast quantization procedure since this deterministic algorithm leads to more precise estimations and is dramatically faster than stochastic optimization methods. As a typical example of implementation, quadratic optimal quantization grids associated to d-dimensional Normal distribution up to d = 10 can be downloaded at the website www.quantize.math-fi.com. To highlight the usefulness of our method, suppose for example that we want to price a Put option with a maturity T , a strike K and a present value X 0 in a local volatility model where the dynamics of the stock price process evolves following the stochastic differential equation (called Pseudo-CEV in [START_REF] Lemaire | Unconstrained Recursive Importance Sampling[END_REF]):

dX t = rX t dt + ϑ X δ+1 t 1 + X 2 t dW t , X 0 = x 0 , t ∈ [0, T ], (7) 
where δ ∈ (0, 1), ϑ ∈ (0, ϑ], ϑ > 0, and r stands for the interest rate. In this situation the (unique strong) solution X T , at time T , is not known analytically and if we want to estimate the quantity of interest: e -rT E(f (X T )), where f (x) := max(K -x, 0) is the (Lipschitz continuous) payoff function, we have first of all to discretize the process (X t ) t∈[0,T ] as ( Xt k ) k=0,...,n , with t n = T (using e.g. the Euler scheme), and then estimate e -rT E(f ( XT ))

by optimal quantization. The only way to produce optimal grids and the associated weights in this situation is to perform stochastic procedures like the CLVQ or randomized Lloyd's procedure (see e.g. [START_REF] Gersho | Vector Quantization and Signal Compression[END_REF][START_REF] Pagès | Pointwise convergence of the Lloyd algorithm in higher dimension[END_REF]), even in the one dimensional framework. However, these methods may be very time consuming. In this framework (as well as in the general local volatility model framework in dimension d = 1), our approach allows us to quantize the diffusion process in the Pseudo-CEV model using the Newton-Raphson algorithm. It is important to notice that the companion weights and the probability transitions associated to the quantized process are obtained by a closed formula so that the method involves by no means Monte Carlo simulations. On the other hand, a comparison with Monte Carlo simulation for the pricing of European options in a local volatility model also shows that the proposed method may sometimes be more efficient (with respect to both computational precision and time complexity) than the Monte Carlo method.

The recursive marginal quantization algorithm. Let us be more precise about our proposed method in the general setting where (X t ) t∈[0,T ] is a solution to Equation (3). Our aim is in practice to compute the quadratic optimal quantizers (Γ k ) 0≤k≤n associated with the Euler scheme ( Xt k ) 0≤k≤n . Such a sequence (Γ k ) is defined for every k = 0, . . . , n by

Γ k ∈ argmin{ Dk (Γ), Γ ⊂ R d , card(Γ) ≤ N k }
where the function Dk (•) is the so-called distortion function associated to Xt k , and is defined for every 

N k -quantizer Γ k by Dk (Γ k ) = E Xt k -X Γ k t k 2 = E dist( Xt k , Γ k )
Dk (Γ k ) = E dist(E k-1 ( Xt k-1 , Z k ), Γ k ) 2 (8) 
where (Z k ) k is an i.i.d. sequence of N (0; I q )-distributed random vectors independent from X0 and for every x ∈ R d , the Euler operator

E k-1 (x, Z k ) is defined by E k-1 (x, Z k ) = x + ∆b(t k-1 , x) + √ ∆σ(t k-1 , x)Z k .
Now, here is how we construct the algorithm. Given the distribution of X0 , we quantize X0 and denote its quantization by X Γ 0 0 . We want now to define the recursive marginal quantization of Xt 1 . Owing to Equation [START_REF] Frikha | Quantization based recursive Importance Sampling[END_REF] and given that the previous marginal X0 has already be quantized, we replace X0 by X Γ 0 0 , then, we set X t 1 := E 0 ( X Γ 0 0 , Z 1 ) and consider the induced distortion

D 1 (Γ) := E dist( X t 1 , Γ) 2 = E dist(E 0 ( X Γ 0 0 , Z 1 ), Γ) 2 ,
where Γ ⊂ R d and card(Γ) ≤ N 1 . The distortion function D 1 (•) is the one to be optimized in order to produce the optimal N 1 -quantizer Γ 1 . Consequently, we define the recursive marginal quantization of Xt 1 as the optimal quantization

X Γ 1 t 1 of X t 1 : X Γ 1 t 1 = Proj Γ 1 ( X t 1 )
, where

Γ 1 ∈ argmin{ D 1 (Γ), Γ ⊂ R d , card(Γ) ≤ N 1 }.
Once the optimal N 1 -quantizer Γ 1 is produced, we define as previously the recursive marginal quantization of Xt 2 as the optimal quantization X Γ 2 t 2 of X t 1 where

Γ 2 ∈ argmin{ D 2 (Γ), Γ ⊂ R d , card(Γ) ≤ N 2 } D 2 (Γ) = E dist( X t 2 , Γ) 2 and X t 2 := E 1 ( X Γ 1 1 , Z 2 ).
Repeating this procedure, we define the recursive marginal quantization of ( Xt k ) 0≤k≤n as the optimal quantizations ( X Γ k t k ) 0≤k≤n of the process

( X t k ) 0≤k≤n : ∀ k ∈ {0, . . . , n}, X Γ k t k = Proj Γ k ( X t k )
, with X 0 = X0 . This leads us to consider the sequence of recursive marginal quantizations ( X Γ k t k ) k=0,...,N of ( Xt k ) k=0,...,N , defined from the following recursion:

X 0 = X0 X Γ k t k = Proj Γ k ( X t k ) and X t k+1 = E k ( X Γ k t k , Z k+1 ), k = 0, . . . , n -1
where (Z k ) k=1,...,n is an i.i.d. sequence of N (0; I q )-distributed random vectors, independent of X0 .

From an analytical point of view, this approach raises some new challenging problems among which the estimation of the quadratic error bound

Xt k -X Γ k t k 2 := E| Xt k -X Γ k t k | 2 1/2
, for every k = 0, . . . , n. We will show in particular that for any sequence ( X Γ k t k ) 0≤k≤n of (quadratic) optimal quantization of ( X t k ) 0≤k≤n , the quantization error Xt k -X Γ k t k 2 , at the step k of the recursion, is bounded by the cumulative quantization errors

X t i -X Γ i t i 2 , for i = 0, • • • , k.
Owing to the nonasymptotic bound for the quantization errors X t i -X Γ i t i 2 , known as Pierce's Lemma (which will be recalled further on in Section 2) we precisely show that for every k = 0, . . . , n, for any η ∈]0, 1],

Xk -X Γ k k 2 ≤ k =0 a N -1/d ,
where a is a positive real constant depending on b, σ, ∆, x 0 , η (see Theorem 3.1 further on).

The paper is organized as follows. We recall first some basic facts about (regular) optimal quantization in Section 2. The marginal quantization method is described in Section 3. We give in this section the induced quantization error. In section 4, we illustrate how to get the optimal grids using a deterministic zero search Newton-Raphson's algorithm and show how to estimate the associated weights and transition probabilities. The last section, Section 5, is devoted to numerical examples. We first compare the recursive marginal quantization of W 1 with its regular marginal quantization (see Section 2), where (W t ) t∈[0,1] stands for the Brownian motion. Secondly, we use the marginal quantization method for the pricing of an European Put option in a local volatility model (as well as in the Black-Scholes model) and compare the results with those obtained from the Monte Carlo method. NOTATIONS. We denote by M(d, q, R) the set of d×q real-valued matrices. If A = [a ij ] ∈ M(d, q, R), A denotes its transpose and we define the norm A := Tr(AA ) = ( i,j a 2 ij ) 1/2 , where Tr(M ) stands for the trace of M , for M ∈ M(d, d, R). For every g : R d → M(d, q, R), we will set

[g] Lip = sup x =y g(x)-g(y) |x-y| . For x, y ∈ R, x ∨ y = max(x, y). For x ∈ R d and E ⊂ R d , dist(x, E) = inf ξ∈R d |x -ξ| (distance of x to E with respect to the current norm | . | on R d ).

Background on optimal quantization

Let (Ω, A, P) be a probability space and let X : (Ω, A, P) -→ R d be a random variable with distribution P X . Assume R d is equipped with a norm | . |. Assume X ∈ L r (P) i.e. X r := (E|X| r ) 1/r < +∞ for a given r ∈ (0, +∞) (E denotes the expectation with respect to P).

The L r -optimal quantization problem at level N for the random vector X (or, in fact, its distribution P X ) consists in finding the best approximation of X in L r (P) by a function π(X) of X where π : R d → R d is a Borel function taking at most N values. In formalized terms, this amounts out to solve the minimization problem:

e N,r (X) = inf X -π(X) r , π : R d → Γ, Γ ⊂ R d , |Γ| ≤ N ,
where |A| stands for the cardinality of a subset A ⊂ R d . Note that e N,r (X) only depends on the distribution P X of X.

Any Γ = {x 1 , . . . , x N } ⊂ R d of size N and any Borel function π : R d → Γ are both often called N -quantizer. The terminology grid (or a codebook in coding theory) of size N is more specifically used for Γ itself. The resulting random vector π(X) is called an N -quantization of X.

Such a grid Γ induces Voronoi diagrams or partitions

(C i (Γ)) i=1,...,N of R d defined as Borel parti- tions of R d satisfying ∀ i ∈ {1, • • • , N }, C i (Γ) ⊂ x ∈ R d : |x -x i | = min j=1,...,N |x -x j | .
To such a Voronoi partition is attached a nearest neighbor projection π Γ = N i=1 x i 1 C i (Γ) and a Voronoi Γ-valued quantization of X denoted X Γ = π Γ (X) reading:

X Γ = N i=1 x i 1 {X∈C i (Γ)} .
Then, for any Borel function π : R d → Γ and any (Borel) nearest neighbor projection π Γ ,

|X -π(X)| ≥ min i=1,...,N dist(X, x i ) = dist(X, Γ) = |X -π Γ (X)| = |X -X Γ |,
so that the optimal L r -mean quantization error e N,r (X) reads

e N,r (X) = inf X -X Γ r , Γ ⊂ R d , |Γ| ≤ N = inf Γ⊂R d |Γ|≤N R d dist(ξ, Γ) r P X (dξ) 1/r . (9) 
Let us recall the following basic facts:

-If | . | is an Euclidean norm, the boundary of the Voronoi are contained in finitely many hyperplanes so that, if the distribution of X assigns no mass to hyperplanes, two Γ-valued Voronoi quantizations of X are P-a.s. equal since they only differ on the boundaries of the Voronoi diagram.

-for every N ≥ 1, the infimum in ( 9) is a minimum since it is attained at least at one quantization grid Γ N, of size at most N . Any resulting Γ N, is called an L r -optimal quantizer at level N .

-If |supp(P X ))| ≥ N then any L r -mean optimal quantizer at level N has exactly full size N (see [START_REF] Graf | Foundations of Quantization for Probability Distributions[END_REF] or [START_REF] Pagès | A space quantization method for numerical integration[END_REF]).

-The L r -mean quantization error e N,r (X) decreases to zero as the level N goes to infinity and its sharp rate of convergence is ruled by the so-called Zador Theorem. There is also a non-asymptotic universal upper bound known as Pierce's Lemma. Both results hold for any norm on R d and are recalled below. This second result will allow us to put a finishing touch to the proof of our main theoretical result, stated in Theorem 3.1.

Theorem 2.1. (a) Zador Theorem, (see [START_REF] Graf | Foundations of Quantization for Probability Distributions[END_REF]). Let r > 0. Let X be an R d -valued random vector such that E|X| r+η < +∞ for some η > 0 and let P X = f • λ d + P s be the decomposition of P X with respect to the Lebesgue measure λ d where P s denotes its singular part. Then

lim N →+∞ N 1 d e N,r (X) = Q r (P X ) (10) 
where

Q r (P X ) = J r,d R d f d d+r dλ d 1 r + 1 d = J r,d f 1/r d d+r ∈ [0, +∞), J r,d = inf N ≥1 N 1 d e N,r U ([0, 1] d ) ∈ (0, +∞) and U ([0, 1] d ) denotes the uniform distribution over the hypercube [0, 1] d .
(b) Pierce Lemma (see [START_REF] Graf | Foundations of Quantization for Probability Distributions[END_REF][START_REF] Luschgy | Functional quantization and mean regularity of processes with an application to Lévy processes[END_REF]). Let r, η > 0. There exists a universal constant K r,d,η such that for every random vector X : (Ω,

A, P) → R d , inf |Γ|≤N X -X Γ r ≤ K r,d,η σ r+η (X)N -1 d , (11) 
where σ p (X) is the L p -pseudo-standard deviation of X defined by

σ p (X) = inf ζ∈R d X -ζ p ≤ +∞.
For more details on the universal contant K 2,d,η , we refer to [START_REF] Luschgy | Functional quantization and mean regularity of processes with an application to Lévy processes[END_REF]. We will call Q r (P X ) the Zador's constant associated to X.

From a Numerical Probability viewpoint, finding an optimal N -quantizer Γ may be a challenging task even in the quadratic canonical Euclidean case i.e. when r = 2 and | . | is the canonical Euclidean norm on R d . This framework is the case of interest for numerical applications. The starting point for numerical applications is to note that if we have access to a "good" quantization X Γ close enough to X in distribution, then, for every continuous function f : R d → R, we can approximate Ef (X) (when finite) by the cubature formula:

Ef X Γ = N i=1 p i f (x i ) (12) 
where p i = P( X Γ = x i ), i = 1, . . . , N . By access we mean to have numerical values for the grid Γ and its weights p i , i = 1, . . . , N , or equivalently to the distribution of X Γ .

Among all good quantizers, the so-called stationary quantizers defined below play an important role because they provide higher order cubature formulas (see below) and are also the only class of quantizers that can be reasonably computed owing to its connection with the critical point of the quadratic distortion also defined below.

Definition 2.1. A quantizer Γ = {x 1 , . . . , x N } of size N inducing the Voronoi quantization X Γ of X is stationary if (i) P (X ∈ ∪ i ∂C i (Γ)) = 0 (ii) E X| X Γ = X Γ P-a.s. (13) 
Equation (ii) can be re-written as

x i = E X | X ∈ C i (Γ) = E(X1 {X∈C i (Γ)} ) P(X ∈ C i (Γ)) , i = 1, . . . , N,
with the convention that the equality is always true when P(X

∈ C i (Γ)) = 0.
This notion of stationarity is closely related to the critical point of the so-called quadratic distortion

function defined on (R d ) N by D N,2 (x) = E min 1≤i≤N |X -x i | 2 = R d |ξ -x i | 2 P X (dξ), x = (x 1 , . . . , x N ) ∈ (R d ) N . ( 14 
)
This function is clearly symmetric. Its connection with the quadratic mean quantization errors is as follows: set Γ = {x i , i = 1, . . . , N } whose cardinality is at most N . Then, with obvious notations,

D N,2 (x) = E dist(X, Γ) 2 = R d dist(ξ, Γ) 2 P X (dξ) = a∈Γ Ca(Γ) |ξ -a| 2 P X (dξ).
As any grid of size at most N can be "represented" by some N -tuples (by repeating, if necessary, some of its elements), we deduce straightforwardly that

e 2 N,2 (X) = inf (x 1 ,...,x N )∈(R d ) N D N,2 (x 1 , . . . , x N ).
The function D N,2 is continuous but also differentiable at any N -tuple having pairwise distinct components with a P-negigible Voronoi partition boundary. The following proposition makes this more precise.

Proposition 2.2. (see [START_REF] Graf | Foundations of Quantization for Probability Distributions[END_REF][START_REF] Pagès | A space quantization method for numerical integration[END_REF]

) (a) The function D N,2 is differentiable at any N -tuple (x 1 , . . . , x N ) ∈ (R d ) N having pairwise distinct components and such that P (X ∈ ∪ i ∂C i (Γ)) = 0. Furthermore, we have ∇D N,2 (x 1 , . . . , x N ) = 2 C i (Γ) (x i -x)dP X (x) i=1,...,N (15) 
= 2 P(X ∈ C i (Γ))x i -E(X1 {X∈C i (Γ)} ) i=1,...,N . ( 16 
) (b) A grid Γ = {x 1 , . . . , x N } of full size N is stationary if and only if P (X ∈ ∪ i ∂C i (Γ)) = 0 and ∇D N,2 (Γ) = 0. (17) 
(c) If the support of P X has at least N elements, any L 2 -optimal quantizer at level N has full size and a P-negligible Voronoi boundary. Hence it is a stationary N -quantizer.

CONVENTION: To alleviate notations, we will often put grids of all size N as an argument of the distortion function D 2,N as well as for its gradient when its Voronoi boundary is negligible. This has already been done implicitly in the introduction.

When approximating Ef (X) by Ef ( X Γ ) and f is smooth enough (say C 1+α ) and Γ is a stationary N -quantizer, the resulting error may be bounded by the quantization error X -X Γ 2 . We briefly recall some error bounds induced from the approximation of Ef (X) by ( 12) (we refer to [START_REF] Pagès | Functional quantization for numerics with an application to option pricing[END_REF] for further details).

(a) Let Γ be a stationary quantizer and let f be a Borel function on

R d . If f is a convex function then Ef ( X Γ ) ≤ Ef (X). (18) 
(b) Lipschitz continuous functions:

-If f is Lipschitz continuous then for any N -quantizer Γ we have

Ef (X) -Ef ( X Γ ) ≤ [f ] Lip X -X Γ 2 .
-Let θ : R d → R + be a nonnegative convex function such that θ(X)

∈ L 2 (P). If f is locally Lipschitz with at most θ-growth, i.e. |f (x) -f (y)| ≤ [f ] Lip |x -y|(θ(x) + θ(y)) then f (X) ∈ L 1 (P) and Ef (X) -Ef ( X Γ ) ≤ 2[f ] Lip X -X Γ 2 θ(X) 2 .
(c) Differentiable functions: if f is differentiable on R d with an α-Hölder gradient ∇f (α ∈ [0, 1]), then for any stationary N -quantizer Γ,

Ef (X) -Ef ( X Γ ) ≤ [∇f ] α,Hol X -X Γ 1+α 2 .
3 Recursive marginal quantization of the Euler process

Let (X t ) t≥0 be a stochastic process taking values in a d-dimensional Euclidean space R d and solution to the stochastic differential equation:

dX t = b(t, X t )dt + σ(t, X t )dW t , X 0 ∈ R d , ( 19 
)
where W is a standard q-dimensional Brownian motion starting at 0 and where b : 

[0, T ] × R d → R d and the matrix diffusion coefficient function σ : [0, T ] × R d → M(d, q, R)
and the uniform global Lipschitz continuity assumption : for every t ∈ [0, T ] and every

x ∈ R d , |b(t, x) -b(t, y)| ≤ [b] Lip |x -y| and σ(t, x) -σ(t, y) ≤ [σ] Lip |x -y|. (21) 
In particular, this implies that

|b(t, x)| ≤ L(1 + |x|) and σ(t, x) ≤ L(1 + |x|) (22) 
with L = max [b] Lip , b(., 0) sup , [σ] Lip , σ(., 0) sup . These assumptions guarantee the existence of a unique strong solution of (19) starting from any x 0 ∈ R d .

The algorithm

Consider the Euler scheme of the process (X t ) t≥0 starting from X0 = X 0 :

Xt k+1 = Xt k + ∆b(t k , Xt k ) + σ(t k , Xt k )(W t k+1 -W t k ),
where t k = kT n = k∆ for every k ∈ {0, . . . , n}.

NOTATION SIMPLIFICATION. To alleviate notations, we set

Y k := Y t k (for any process Y evaluated at time t k ) b k (x) := b(t k , x), x ∈ R d σ k (x) := σ(t k , x), x ∈ R d .
Recall that the distortion function Dk associated to Xk may be written for every k = 0, . . . , n -1, as

Dk+1 (Γ k+1 ) = E dist(E k ( Xk , Z k+1 ), Γ k+1 ) 2 where E k (x, z) := x + ∆b(t k , x) + √ ∆σ(t k , x)z, x ∈ R d , z ∈ R q .
Supposing that X0 has already been quantized by X Γ 0 0 and setting X 1 = E 0 ( X Γ 0 0 , Z 1 ), we may approximate the distortion function D1 (Γ 1 ) by

D 1 (Γ 1 ) := E dist( X 1 , Γ 1 ) 2 = E dist(E 0 ( X Γ 0 0 , Z 1 ), Γ 1 ) 2 = N 0 i=1 E dist(E 0 (x 0 i , Z 1 ), Γ 1 ) 2 P X Γ 0 0 = x 0 i .
This allows us (as already said in the introduction) to consider the sequence of recursive (marginal) quantizations ( X Γ k k ) k=0,...,n defined from the following recursion:

X Γ k k = Proj Γ k ( X k ) and X k = E k ( X Γ k k-1 , Z k ), k = 1, . . . , n, X 0 = X0 . ( 23 
)
where (Z k ) k=1,...,n is an i.i.d., sequence of N (0; I q )-distributed random vectors, independent of X0 .

The error analysis

Our aim is now to compute the quantization error bound XT -X T 2 := Xn -X Γn n 2 . The analysis of this error bound will be the subject of the following theorem, which is the main result of the paper. In this section, we assume for convenience that X 0 = X 0 = x 0 (which amounts to conditioning with respect to σ(X 0 ) since W and X 0 are independent). Theorem 3.1. Let the coefficients b, σ satisfy the assumptions [START_REF] Pagès | Componentwise product quantization of an R d -valued Euler diffusion process with applications[END_REF] and [START_REF] Pagès | Pointwise convergence of the Lloyd algorithm in higher dimension[END_REF]. Let for every k = 0, . . . , n, Γ k be a quadratic optimal quantizer for X k at level N k . Then, for every k = 0, . . . , n, for any η ∈ (0, 1],

Xk -X Γ k k 2 ≤ K 2,d,η k =1 a (b, σ, t k , ∆, x 0 , L, 2 + η)N -1/d (24)
where K 2,d,η is a universal constant defined in Equation [START_REF] Lemaire | Unconstrained Recursive Importance Sampling[END_REF] and, for every p ∈ (2, 3],

a (b, σ, t k , ∆, x 0 , L, p) := e C b,σ (t k -t ) p e (κp+Kp)t |x 0 | p + e κp∆ L + K p κ p + K p e (κp+Kp)t -1 1 p with C b,σ = [b] Lip + 1 2 [σ] 2 Lip , κ p := (p-1)(p-2) 2 + 2pL and K p := 2 p-1 L p 1 + p + ∆ p 2 -1 E|Z| p , Z ∼ N (0; I q ).
Let us make the following remarks. Remark 3.1. It is crucial for applications to notice that the real constants a (•, t k , •, •, •, •, p) do not explode when n goes to infinity and we have

sup n≥1 max 0≤ ≤k≤n a (•, t k , •, •, •, •, p) ≤ e C b,σ T p e (κp+K p )T |x 0 | p + e κpT L + K p κ p e (κp+K p )T -1 1 p ,
where

K p = 2 p-1 L p 1 + p + T p 2 -1 . We also remark that κ p ≤ 2(1 + p)L.
The proof of the theorem relies on the Lemma below, which proof is postponed to the appendix.

Lemma 3.2. Let the coefficients b, σ of the diffusion satisfy the assumptions (20) and [START_REF] Pagès | Pointwise convergence of the Lloyd algorithm in higher dimension[END_REF]. Then, for every p ∈ (2, 3], for every k = 0, . . . , n,

E| X k | p ≤ e (κp+Kp)t k |x 0 | p + e κp∆ L + K p κ p + K p e (κp+Kp)t k -1 , (25) 
where K p and κ p are defined in Theorem 3.1.

Let us prove the theorem.

Proof (of Theorem 3.1). First we note that for every k = 0, . . . , n,

Xk -X k 2 ≤ Xk -X k 2 + X k -X Γ k k 2 . ( 26 
)
Let us control the first term of the right hand side of the above equation. To this end, we first note that, for every k = 0, . . . , n, the function

E k (•, Z k+1 ) is Lipschitz w.r.t. the L 2 -norm: in fact, for every x, x ∈ R d , E|E k (x, Z k+1 ) -E k (x , Z k+1 )| 2 ≤ 1 + ∆ 2[b k ] Lip + [σ k ] 2 Lip + ∆ 2 [b k (.)] 2 Lip |x -x | 2 ≤ 1 + ∆ 2[b] Lip + [σ] 2 Lip + ∆ 2 [b] 2 Lip |x -x | 2 ≤ (1 + ∆C b,σ ) 2 |x -x | 2 ≤ e 2∆C b,σ |x -x | 2 , where C b,σ = [b] Lip + 1 2 [σ] 2
Lip does not depend on n. Then, it follows that for every = 0, . . . , k -1,

X +1 -X +1 2 = E ( X , Z +1 ) -E ( X Γ , Z +1 ) 2 ≤ e ∆C b,σ X -X Γ 2 ≤ e ∆C b,σ X -X 2 + e ∆C b,σ X -X Γ 2 . (27) 
Then, we show by a backward induction using ( 26) and ( 27) that (recall that

X 0 = X Γ 0 0 = x 0 ) Xk -X k 2 ≤ k =1 e (k-)∆C b,σ X -X Γ 2 .
Now, we deduce from Pierce's Lemma (Equation 11 in Theorem 2.1(b)) and Lemma 3.2 that, for every k = 0, . . . , n, for any η ∈]0, 1],

Xk -X k 2 ≤ K 2,d,η k =1 e (k-)∆C b,σ σ 2,η ( X )N -1/d ≤ K 2,d,η k =1 e (k-)∆C b,σ X 2+η N -1/d ≤ K 2,d,η k =1 a (b, σ, t k , ∆, x 0 , L, 2 + η)N -1/d ,
which is the announced result.

PRACTITIONER'S CORNER. (a) Optimal dispatching (to minimize the error bound). When we consider the upper bound of Equation ( 24), a natural question is to determine how to dispatch optimally the sizes N 1 , • • • , N n (for a fixed mesh of length n) of the quantization grids when we wish to use a total "budget"

N = N 1 + • • • + N n of elementary quantizers (with N k ≥ 1, for every k = 1, . . . , n).
Keep in mind that since X 0 is not random, N 0 = 1. The dispatching problem amounts to solving the minimization problem min

N 1 +•••+Nn=N n =1 a N -1/d
where a = a (b, σ, t n , ∆, x 0 , L, 2 + η). This leads (see e.g. [START_REF] Bally | A quantization algorithm for solving discrete time multidimensional optimal stopping problems[END_REF]) to the following optimal dispatching: for every = 1, . . . , n,

N =     a d d+1 n k=1 a d d+1 k N     ∨ 1,
so that Equation [START_REF] Sagna | Pricing of barrier options by marginal functional quantization method[END_REF] becomes at the terminal instant n:

Xn -X Γn n 2 K 2,d,η N -1/d n =1 a d d+1 1+1/d . ( 28 
)
(b) Uniform dispatching (complexity minimization). Notice that the complexity of the quantization tree (Γ k ) k=0,...,N for the recursive marginal quantization is of order n-1 k=0 N k N k+1 . Now, assuming that N 0 = 1 and that for every N k ≤ N k+1 , k = 0, . . . , n -1, we want to solve (heuristically) the problem

min n-1 k=0 N k N k+1 subject to n k=1 N k = N . (29) 
As

n-1 k=0 N 2 k ≤ n-1 k=0 N k N k+1 ≤ n k=1 N 2 k and N 0 = 1, this suggests that n-1 k=0 N k N k+1 ≈ n k=1 N 2 k .
Then, if we switch to

min n k=1 N 2 k /N 2 subject to n k=1 N k = N = min n k=1 q 2 k subject to n k=1 q k = 1 , (30) 
where q k = N k /N , it is well known that the solution of this problem is given by q k = 1/n, i.e., N k = N/n, for every k = 1, . . . , n. Plugging this in (29), leads to a sub-optimal, but nearly optimal, complexity equal to N 2 /n. In fact, any other choice leads to the global complexity

N 2 n-1 k=0 q k q k+1 ≥ N 2 n-1 k=0 q 2 k ≥ N 2 min n k=0 q 2 k subject to n k=0 q k = 1 > N 2 n
(provided q 0 is left free).

(c) Comparison. If we consider the uniform dispatching N = N := N/n, = 1, . . . , n, the error bound in Theorem 3.1 becomes, still at at the terminal instant,

Xn -X Γn n 2 K 2,d,η n N 1/d n =1 a . (31) 
It is clear that the upper bound ( 28) is a sharper bound than (31) since, by Hölder's Inequality,

n =1 a d d+1 1+1/d < n 1/d n =1 a .
However, the uniform dispatching has smaller complexity than the optimal one.

Computation of the marginal quantizers

We focus now on the numerical computation of the quadratic optimal quantizers of the marginal random variable X t k+1 given the probability distribution function of X t k . Such a task requires the use of some algorithms like the CLVQ algorithm, the randomized Lloyd's algorithms (both requiring the computation of the gradient of the distortion function) or Newton-Raphson's algorithm (especially for the one-dimensional setting) which involves the gradient and the Hessian matrix of the distortion (we refer to [START_REF] Pagès | Functional quantization for numerics with an application to option pricing[END_REF] for more details). To ensure the existence of densities (or conditional densities) of the X t k+1 's (given X t k ), we suppose that the matrix σσ (t, x) is invertible for every (t, x) ∈ [0, T ]×R d .

For every k ∈ {0, . . . , n}, let X Γ k be the quantization of X k induced by a grid Γ ⊂ R d . Recall that the distortion function at level

N k ∈ N attached to X k is defined on (R d ) N k by D k (x) = E min 1≤i≤N k | X k -x i | 2 = min 1≤i≤N k |ξ -x i | 2 P X k (dξ), x = (x 1 , . . . , x N k ) ∈ (R d ) N k having in mind that, if Γ x = {x i , i = 1, . . . , N k }, then D k (x) = X k -X Γx k 2 2 .
Our aim is to compute the (at least locally) optimal quadratic quantization grids (Γ k ) k=0,...,n associated with the random vectors X k , k = 0, . . . , n. Such a sequence of grids is defined for every k = 0, . . . , n by

Γ k ∈ argmin X Γ k -X k 2 , Γ ⊂ R d , card(Γ) ≤ N k = argmin D k (x), x ∈ (R d ) N k (32)
where the sequence of (marginal) quantizations ( X k ) k=0,...,N is recursively defined by ( 23):

X k = E k ( X k-1 , Z k ), X k-1 = Proj Γ k-1 ( X k-1 ), k = 1, . . . , n, X 0 = X0 ,
where (Z k ) k=1,...,n is an i.i.d. sequence of N (0; I q )-distributed random vectors, independent of X0 .

By observing the above recursion and the optimization problem (32), we see that the optimal grids Γ k are defined recursively (which is not the case for regular marginal quantization developed in former works). At this point the interesting fact which motivates the whole approach is that the distortion function at time k + 1, D k+1 , k = 0, . . . , n -1, can in turn be written recursively from the grid Γ k already optimized at time k and the distortion function of Normal distribution.

Let D m,Σ N be the distortion function of the N m; Σ -distribution defined on (R d ) N by D m,Σ N (x) = E min 1≤i≤N |ΣZ + m -x i | 2 .
As X k has already been (optimally) quantized by a grid Γ k = {x k 1 , . . . , x k N k } to which are attached the weights

p k i = P( X k = x k i ), i = 1, . . . , N k , we derive from (23) that, for every x k+1 ∈ (R d ) N k+1 , D k+1 (x k+1 ) = E dist(E k ( X k , Z k+1 ), x k+1 ) 2 = N k i=1 E dist(E k (x k i , Z k+1 ), x k+1 ) 2 P( X k = x k i ) = N k i=1 p k i D m k i ,Σ k i N k+1 (x k+1 ) since E k (x k i , Z k+1 ) d = N m k i ; Σ k i with m k i = x k i + ∆b(t k , x k i ) and Σ k i = √ ∆σ(t k , x k i ), k = 0, . . . , n.
Then, owing to Proposition 2.2, the distortion function D k+1 is continuously differentiable as a function of the N k+1 -tuple x k+1 with pairwise distinct components. This follows from the fact that the distortion functions D m,Σ N k+1 are differentiable at such a N k+1 -tuple as soon as ΣΣ * is positive and definite.

Its gradient is given by

∇ D k+1 (x k+1 ) = 2 N k i=1 p k i ∂D m k i ,Σ k i N k+1 (x k+1 ) ∂x k+1 j j=1,...,N k+1 = 2 E N k i=1 p k i 1 {E k (x k i ,Z k+1 )∈C j (Γ k+1 )} x k+1 j -E k (x k i , Z k+1 ) j=1,...,N k+1 . ( 33 
) Remark 4.1. If Γ k+1 is a quadratic optimal N k+1 -quantizer for X k+1 and if X Γ k+1
k+1 denotes the quantization of X k+1 by the grid Γ k+1 , then ∇ D k+1 (Γ k+1 ) = 0 and Γ k+1 is a stationary quantizer, for

X k+1 i.e. E X k+1 X k+1 = X k+1 or equivalently Γ k+1 = {x k+1 i , i = 1, . . . , N k+1 } with x k+1 j = N k i=1 p k i E E k (x k i , Z k+1 )1 {E k (x k i ,Z k+1 )∈C j (Γ k+1 )} p k+1 j (34) 
and

p k+1 j = k i=1 p k i P E k (x k i , Z k+1 ) ∈ C j (Γ k+1 ) , j = 1, . . . , N k+1 . (35) 
APPLICATION TO THE COMPUTATION OF THE GRIDS. It follows from the stationarity Equations (33) on the one hand and (34) and (35) on the other hand that one can compute by a zero search stochastic gradient descent (known as CLVQ) or a randomized fixed point Lloyd algorithm time in a step by time step forward induction. In both cases, we are not only interested in the grids but by the whole distribution of X k so we need to implement a companion procedure to compute the weights p k i . Put in a different way, this simply means that the distribution of the random vectors X k can be simulated recursively.

However, in view of our applications, we need much more than these distributions: though the sequence ( X k ) k=0,...,n is not a Markov chain we need all its transitions L X k+1 | X k , k = 0, . . . , n -1, namely

p k ij = P X k+1 ∈ C j (Γ k+1 )| X k ∈ C i (Γ k ) = P X k+1 ∈ C j (Γ k+1 )| X k ∈ C i (Γ k ) = P E k (x k i , Z k+1 ) ∈ C j (Γ k+1 ) , i ∈ {1, . . . , N k }, j ∈ {1, . . . , N k+1 }. (36) 
Looking back at (35), it is clear that, whatever the adopted method is, these quantities are to be computed in the above procedure to have access to p k+1 j (this is but Bayes' formula). This optimization phase which is crucial for applications can become time consuming as the dimension d grows since it relies in fine on Monte Carlo simulations based on nearest neighbor searches. In fact when d is larger than 3 or 4 a variant should be devised to make the procedure reasonably fast (see [START_REF] Pagès | Componentwise product quantization of an R d -valued Euler diffusion process with applications[END_REF]). In fact all the above formulas can be expressed as d-dimensional integrals over (convex) Voronoi cells. In dimension 1, 2 or possibly 3 it can be still possible to compute some of such integrals (see Qhull website: www.qhull.org).

In the section below, we detail a 1-dimensional version which turns out to be extremely fast in practice, since it take advantage of the Newton-Raphson algorithm to perform a zero search procedure for ∇ D k .

The one dimensional setting

In a dimensional setting, we can canonically represent a grid Γ = {x 1 , . . . , x N } of full size N by a unique N -tuple with increasing components (x 1 , . . . , x N ). So from now on in this section, we will always make the abuse of notation that the symbol Γ will denote the N -tuple of its values in increasing order.

Computing marginal quantizers with Newton-Raphson algorithm

It is a well-known fact that if a distribution µ has a continuous density the resulting distortion functions D µ N are in fact twice differentiable at N -tuples with pairwise distinct components and negligible Voronoi diagram boundary, with an explicit, though rather involved, expression (see e.g. [START_REF] Pagès | Pointwise convergence of the Lloyd algorithm in higher dimension[END_REF]). So, as the distortion functions D m,Σ N associated to the N (m; Σ) are twice differentiable, in turn the distortion function of D k+1 is twice differentiable. Hence it is possible, at least formally, to write down a Newton-Raphson zero search procedure, indexed by ∈ N, where a current grid Γ ( ) k+1 is updated as follows:

Γ ( +1) k+1 = Γ ( ) k+1 -∇ 2 D k+1 (Γ ( ) k+1 ) -1 ∇ D k+1 (Γ ( ) k+1 ), ≥ 0, (37) 
starting from a Γ (0) ∈ R N k+1 (with increasing components). Of course, ∇ D k (Γ k ) and ∇ 2 D k (Γ k ) denote respectively the gradient vector and the Hessian matrix of the distortion function D k .

To this end we need a closed form for the Hessian ∇ 2 D k+1 of D k+1 . We will rely on the expression (33) for the gradient ∇ D k+1 and take advantage of the fact that it can be reduced to the gradient of the distortion function of a Gaussian m + √ vZ, Z d = N (0; 1). We will denote by Φ 0 and Φ 0 the cumulative distribution function and the probability density function of the N (0; 1) distribution respectively and we will extensively take advantage of the obvious fact

x -∞ ξΦ 0 (ξ)dξ = -Φ 0 (x), x ∈ R.
To simplify notation, set for every k = 0, . . . , n -1 and every j = 1, . . . , N k+1 ,

x k+1 j-1/2 = x k+1 j + x k+1 j-1 2 , x k+1 j+1/2 = x k+1 j + x k+1 j+1 2 , with x k+1 1/2 = -∞, x k+1 N k+1 +1/2 = +∞,
and let us define for every

ξ ∈ R, v k (ξ) = √ ∆σ k (ξ), m k (ξ) = x + ∆b k (ξ), x k+1 j-(ξ) := x k+1 j-1/2 -m k (ξ) v k (ξ) and x k+1 j+ (ξ) := x k+1 j+1/2 -m k (ξ) v k (ξ) , k = 0, . . . , n -1.
Let Γ k+1 = (x k+1 , . . . , x k+1 N k+1 ) ∈ R N k+1 (we temporarily drop the dependence of all the grid points in to alleviate notations). Also have in mind that p k i = P( X k = x k i ). Then, for every j = 1, . . . , N k+1

∂ D k+1 (Γ k+1 ) ∂x k+1 j = N k i=1 p k i x k+1 j -m k (x k i ) Φ 0 (x k+1 j+ (x k i )) -Φ 0 (x k+1 j-(x k i )) + v k (x k i ) Φ 0 (x k+1 j+ (x k i )) -Φ 0 (x k+1 j-(x k i )) .
The diagonal terms of the Hessian matrix ∇ 2 D k+1 (Γ k+1 ) are given by:

∂ 2 D k+1 (Γ k+1 ) ∂ 2 x k+1 j = N k i=1 p k i Φ 0 (x k+1 j+ (x k i )) -Φ 0 (x k+1 j-(x k i )) - 1 4v k (x k i ) Φ 0 (x k+1 j+ (x k i ))(x k+1 j+1 -x k+1 j ) - 1 4v k (x k i ) Φ 0 (x k+1 j-(x k i ))(x k+1 j -x k+1 j-1 )
and its sub-diagonal terms are

∂ 2 D k+1 (Γ k+1 ) ∂x k+1 j ∂x k+1 j-1 = - 1 4 N k i=1 p k i 1 v k (x k i ) (x k+1 j -x k+1 j-1 )Φ 0 (x k+1 j-(x k i )).
The upper-diagonals terms are

∂ 2 D k+1 (Γ k+1 ) ∂x k+1 j ∂x k+1 j+1 = - 1 4 N k i=1 p k i 1 v k (x k i ) (x k+1 j+1 -x k+1 j )Φ 0 (x k+1 j+ (x k i )).
A similar idea combining (vector or functional) optimal quantization with Newton-Raphson zero search procedure is used in [START_REF] Frikha | Quantization based recursive Importance Sampling[END_REF] in a variance reduction context as an alternative and robust method to simulation based recursive importance sampling procedure to estimate the optimal change of measure. Furthermore, the convergence of the modified Newton-Raphson algorithm to the optimal quantizer is shown in the framework of [START_REF] Frikha | Quantization based recursive Importance Sampling[END_REF] to be bounded by the quantization error. However, the tools used to show it do not apply directly in our context and the proof of the convergence of our modified Newton algorithm to an optimal quantizer remains an open question.

Computing the weights and the transition probabilities

Once we have access to the quadratic optimal quantizers Γ k of the marginals X k , for k = 0, . . . , n (which are estimated using the Newton-Raphson algorithm described previously) we need to compute the associated weights P( X k ∈ C j (Γ k )), j = 1, . . . , N k , for k = 0, . . . , n or the transition probabilities

P( X k ∈ C j (Γ k )| X k-1 ∈ C i (Γ k-1
)), i = 1, . . . , N k , j = 1, . . . , N k+1 . We show in the next result how to compute them. Proposition 4.1. Let Γ k+1 be a quadratic optimal quantizer for the marginal random variable X k+1 . Suppose that the quadratic optimal quantizer Γ k for X k and its companion weights P(

X k ∈ C i (Γ k )), i = 1, • • • , N k , are computed.

The transition probability p

k ij = P X k+1 ∈ C j (Γ k+1 )| X k ∈ C i (Γ k ) is given by p k ij = p k i Φ 0 (x k+1 j+ (x k i )) -Φ 0 (x k+1 j-(x k i )) . ( 38 
)
2. The probability p k+1 j = P X k+1 ∈ C j (Γ k+1 ) is given for every j = 1, • • • , N k+1 by

p k+1 j = N k i=1 p k i Φ 0 (x k+1 j+ (x k i )) -Φ 0 (x k+1 j-(x k i )) . (39) 
Proof. 1. For every k ∈ {1, . . . , n -1}, for every i = 1, . . . , N k and for every j = 1, . . . , N k+1 , we have

P( X k+1 ∈ C j (Γ k+1 )| X k ∈ C i (Γ k )) = P X k+1 ∈ C j (Γ k+1 )| X k = x N k i = P X k+1 ≤ x N k+1 j+1/2 | X k = x N k i -P X k+1 ≤ x N k+1 j-1/2 | X k = x N k i = Φ 0 (x k+1 j+ (x k i )) -Φ 0 (x k+1 j-(x k i )).
2. We have for every k ∈ {1, . . . , n -1} and for every j = 1, . . . , N k+1 ,

P X k+1 ∈ C j (Γ k+1 ) = E P X k+1 ∈ C j (Γ k+1 )| X k = N k i=1 P X k+1 ∈ C j (Γ k+1 )| X k = x N k i P( X k ∈ C i (Γ k )).
Now, il follows from the first assertion that

P X k+1 ∈ C j (Γ k+1 )| X k = x N k i = Φ 0 x k+1 j+ (x k i ) -Φ 0 x k+1 j-(x k i ) .
This completes the proof.

5 Numerical examples

Numerical example for Brownian motion

We consider a real valued Brownian motion (W t ) t∈[0,1] and quantize the random variable W 1 by both regular marginal quantization and recursive marginal quantization methods. Denote by D reg M (Γ) the regular quantization distortion associated to W 1 and, for a given discretization mesh: t 0 = 0 < • • • < t n = 1 of size n, denote by D rec n (Γ n ) the distortion associated to the recursive quantization of W 1 at the end point t n = 1.

We recall that for a given grid size M ,

D reg M (Γ) = E|W 1 -W Γ 1 | 2 ,
where the optimal grid Γ for the regular marginal quantization is obtained by solving (using Newton-Raphson algorithm) the following minimization problem: inf Γ∈R M D reg M (Γ), which corresponds to the optimal grid of the standard Gaussian distribution. On the other hand,

D rec n (Γ n ) = E|W 1 -W Γn 1 | 2 ,
where Γ n is the n-th component of the sequence of recursive marginal quantization grids (Γ k ) k=0,...,n defined for every k = 0, . . . , n by

Γ k ∈ argmin{ D k (Γ), Γ ⊂ R, card(Γ) ≤ N k },
where

D k (Γ) := E dist( W t k , Γ) 2 =E dist W Γ k-1 t k-1 + √ ∆Z k , Γ 2 = N k-1 i=1 E dist w k-1 i + √ ∆Z k , Γ and W Γ k-1
t k-1 is defined from the following recursion: W Γ 0 0 = 0 and for = 1, . . . , k -1,

W t = W Γ -1 t -1 + √ ∆Z and W Γ t = Proj Γ ( W t ), (Z ) =1,...,k is i.i.d.
, and N (0; 1)-distributed.

Our aim is precisely to compare the regular quantizations error (D reg M (Γ)) 1/2 and the recursive quantizations error ( D rec n (Γ n )) 1/2 at time t n of size N n , for the same grid size M = N n (the choice of the grid size N n depends on the used dispatching procedure and is specified further). To compute the quantity D rec n (Γ n ), we need to know the distribution of the couple of random variables (W 1 , W Γn 1 ) or (W 1 , W 1 ), which distributions are unfortunately unknown. This leads us to consider the following approximation for D rec n (Γ n ):

D rec n (Γ n ) = Nn i=1 E |W 1 -w n i | 2 1 { W 1 ∈C i (Γn)} ≈ D rec n (Γ n ) := Nn i=1 E |W 1 -w n i | 2 1 {W 1 ∈C i (Γn)} .
Therefore, we compare in practice the two quantities ( D rec n (Γ n )) 1/2 and (D reg M (Γ)) 1/2 . To this end, we fix first the mesh size n = 50 and we make the total budget

N = N 1 + • • • + N n (given that N 0 = 1)
of the recursive grid sizes varying 50 by 50, from 250 up to 5000. We choose the sizes N k following two procedures: the optimal and the uniform dispatching.

Uniform dispatching. For a given global budget N , we make an "equal grid size dispatching" by choosing

N k = N/n, for k = 1, . . . , n. If for example N = N 1 + • • • + N n =
250, we will have N k = 5, for every k ∈ {1, . . . , n}. For comparison tool with the regular quantization method we choose the size M of the regular quantization equal to N n , for every fixed global budget N . The comparaison result is depicted on the right hand side graphic of Figure 1. In this figure, we plot the (approximated) recursive marginal quantization errors ( D rec n (Γ n )) 1/2 , for |Γ n | = 5, . . . , 100, and the regular quantization errors (D reg M (Γ)) 1/2 , for M = |Γ| = 5, . . . , 100. Optimal dispatching. In this case, the sizes N k are obtained from the optimal dispatching procedure described in the PRACTIONNER CORNERS, (a). First of all, we have to choose the coefficients a (appearing in Theorem 3.1) corresponding to the Brownian motion. Following, step by step, the proof of Theorem 3.1 and setting η = 1 (keep in mind that in the Brownian case x 0 = 0), we may improve our estimate for the coefficient a . Namely, we have (at time

t n = T ) a = 2 π (4 + √ ∆)(e 2t -1) 1/3 , = 1, . . . , n.
Making N vary from 250 to 5000, the optimal dispatching leads to the following sizes for the grid Γ n :

|Γ n | ∈ G = {6, 8, 9, 10, 11, 13, • • • , 123, 124, 126, 127}.
Notice that we just display the first and the last ones values of G because it is of size 96. Here is how to read these values. If we fix the size of the global budget to N = 250, then the optimization procedure described in the PRACTIONNER CORNERS, (a), will generate the optimal grid sizes N 1 , N 2 , . . . , N n inducing the minimal error bound in Theorem 3.1. In the set G, we only display the size N n = N 50 of the terminal grid Γ 50 which then is equal to 6 for N = 250. So, to compare the regular quantization method and the recursive procedure with optimal dispatching and global budget N = 250, we have to put the grid size M of the regular quantization method to M = 6. If the global budget N = 300 then we choose M = N n = 8, etc, and if N = 5000 then we choose M = N n = 127.

The comparaison result is depicted on the left hand side of Figure 1. So, this figure plots the (approximated) recursive quantization errors ( D rec n (Γ n )) 1/2 , where |Γ n | is given by the optimal dispatching procedure, and the regular quantization errors , for |Γn| = 5, . . . , 100 (MQ without optimal dispatching), and, on the other hand, we depict the (approximated) recursive quantization errors ( D rec n (Γn)) 1/2 where |Γn| is given by the optimal dispatching procedure (MQ with optimal dispatching).

(D reg M (Γ)) 1/2 for M = |Γ n | ∈ G.

Conclusion.

The graphics of figure 1 and 2 suggest two observations. The first one is that, when the global budget N is too small, the regular quantization of W 1 is, as expected, more efficient than both recursive marginal quantizations (without and with optimal dispatching). But, when this global budget N increases, the absolute error between regular and recursive quantization methods fades and becomes close to zero up to 10 -2 .

The second conclusion is that the recursive marginal quantization method with the optimal dispatching of the grid size over discretization time steps outperforms a setting where the grids are of equal sizes. However, when N increases, the recursive marginal quantization with optimal dispatching becomes, as expected, more time consuming while both methods yield almost the same results (the errors are equal up to 10 -2 ).

In the next section we propose an application of our method to the pricing of European options in a local volatility models. We remark that when using the marginal quantization methods, we have to choose a big global budget N to reach good price estimates. Like in the Brownian case, numerical results show that both recursive marginal quantization methods (with optimal and uniform dispatching) lead to the same price estimates (up to 10 -3 ) whereas the complexity of the optimal dispatching method becomes higher (as pointed out in the practitioner's corner). This is why we will use in the following section the recursive marginal quantization method with uniform dispatching procedure.

Pricing of European options in a local volatility model

The model

We consider a pseudo-CEV model (see e.g. [START_REF] Lemaire | Unconstrained Recursive Importance Sampling[END_REF]) where the dynamics of the stock price process is ruled by the following SDE (under the risk neutral probability)

dX t = rX t dt + ϑ X δ+1 t 1 + X 2 t dW t , X 0 = x 0 , (40) 
for some δ ∈ (0, 1) and ϑ ∈ (0, ϑ] with ϑ > 0. The parameter r stands for the interest rate and σ(x) := ϑ x δ √ 1+x 2 corresponds to the local volatility function. This model becomes very close to the CEV model, specially when the initial value of the stock process X 0 is large enough. In this case the local volatility σ(x) ≈ ϑx δ-1 .

We aim at computing the price of a European Put option with payoff (K -X T ) + = max(K -X T , 0), where K corresponds to the strike of the option and T to its maturity. Then we have to approximate the quantity e -rT E(K -X T ) +

where E stands for the expectation under the risk neutral probability. If the process ( Xt k ) k denotes the discrete Euler process at regular time discretization steps t k , with 0 = t 0 < • • • < t n = T , associated to the diffusion process (X t ) t≥0 , this turns out to estimate e -rT E(K -XT ) + by optimal quantization. We estimate this quantity by the recursive marginal quantization method introduced in this paper and compare the numerical results with those obtained from standard Monte Carlo simulations. (followed by its size) with associated confidence intervals (CI) and from the recursive marginal quantization (RMQ) method method with equal grid size allocation N k = 300 or N k = 400, ∀k = 1, . . . , n. The parameters are: r = 0.15; n = 120; N k = 400, ∀k = 1, . . . , n; T = 1; ϑ = 4; X 0 = 100; and for varying values of K.

Numerical results

To deal with numerical examples we set δ = 0.5, X 0 = 100, and choose the interest rate r = 0.15.

We discretize the price process using the Euler scheme with n = 120 (regular) discretization steps and quantize the Euler marginal processes by our proposed method. For k = 1, . . . , n, we put all the marginal quantization grid sizes N k equal to 300 and then, to 400 (recall that X 0 = X 0 = 100 and N 0 = 1). We estimate the price of the Put option by

E K -X Γn tn + = Nn i=1 (K -x Nn i ) + P X Γn tn = x Nn i ( 41 
)
where t n = T , and where

Γ n = {x Nn 1 , • • • , x Nn
Nn } is the quantizer of size N n computed from the Newton-Raphson algorithm (with 5 iterations) and where the associated weight are estimated from (39).

We compare the prices obtained from the recursive marginal quantization (RMQ) method with those obtained by the Monte Carlo (MC) simulations for various values of ϑ with a fixed strike K = 100 (see Table 1) or for varying values of the strike K with a fixed ϑ = 4 (see Table 2). For the Monte Carlo simulations we set the sample size M mc equal to 10 5 and 10 6 for K = 100 and to M mc = 10 5 , 10 6 and 10 7 when making the strike K varying.

Remark 5.1. (on the computation time) (a) Remark that all the quantization grids Γ k of sizes N k = 300 (and N k = 400), for every k = 1, . . . , n = 120, and there companion weights are obtained in around 40 seconds (and 1 minute) from the Newton-Raphson algorithm with 5 iterations. Computations are performed using Scilab software on a CPU 2.7 GHz and 4 Go memory computer. (b) It is clear that once the grids and the associated weights are available, the estimation of the price by RMQ method using the sum (41) is instantaneous.

Remark 5.2. (Initialization of the Newton-Raphson algorithm) Let 0 = t 0 < • • • < t n be the time discretization steps, let X 0 = x be the present value of the stock price process and suppose that the grid sizes N k are all equal. Since the random variable Xt 1 ∼ N (m 0 (x); v 2 0 (x)), in order to compute the (optimal) N 1 -quantizer for Xt 1 we initialize the algorithm to v 0 (x)z N 1 + m 0 (x), where z N 1 is the optimal N 1 -quantizer of the N (0; 1). Once we get the optimal N 1 -quantization Γ 1 for Xt 1 and its companion weights, we initialize the algorithm to Γ 1 to perform the optimal N 2 -quantizer for Xt 2 and its companion weights, • • • , and so on, until we get the optimal N n -quantizer for Xtn and the associated weights. Notice that doing so we observe no failure of the convergence in all the considered examples.

Remark 5.3. We show in Figure 3 and Figure 4 two graphics where we depict on the abscissa axis the optimal grids (of sizes N k = 150) and on the ordinate axis the corresponding weights. The dynamics of the price process in Figure 3 is given by dX t = rX t dt + σX t dW t , X 0 = 86.3 with r = 0.03, σ = 0.05 whereas its dynamics in Figure 4 is given by

dX t = rX t dt + ϑ X δ+1 t 1 + X 2 t dW t , X 0 = 100
with r = 0.15, ϑ = 0.7, δ = 0.5.

For our numerical examples, we remark first that in all examples the prices obtained by RMQ (of sizes N k = 300 and N k = 400, ∀k = 1, • • • , n) stay in the confidence interval induced by the MC price estimates. On the other hand the prices obtained by the RMQ (of sizes N k = 400) method are more precise (more especially when ϑ = 4 and K grows away from 100) than those obtained by the MC method when M mc = 10 5 or 10 6 . Consequently, the RMQ method seems to be more efficient than the MC when the sample size is less than 10 6 . However, when increasing the sample size to M mc = 10 7 the two prices become closer (up to 10 -2 ). We also remark that, up to 10 -2 , the prices obtained from RMQ of both different sizes (N k = 300 and N k = 400) are equal.

Remark 5.4. We remark that when the Monte Carlo sample size M mc = 10 6 (resp. M mc = 10 7 ) it takes about 1 minute and 40 seconds (resp. 2 minutes and 30 seconds) to get a price using the C programming language on the same computer described previously. Then, in this situation, it takes much more time to obtain a price by MC method than by RMQ for a fixed precision in the price approximations.

To strengthen the previous conclusions related to the local volatility model we compare the two methods in the Black-Scholes framework where the stock price process evolves following the dynamics:

dX t = rX t dt + σX t dW t , X 0 = 100.

In this setting the true prices are available and will serve us as a support for comparisons. The parameters are chosen so that the model remains close to the Pseudo-CEV model: r = 0.15 and σ ≈ ϑX δ-1 0 . Numerical results are printed in Tables 3 andTable 4 and confirm our conclusions on the Pseudo-CEV model. We notice that in the Black-Scholes model, the estimated prices from the RMQ (for both size choice) method are close to the true prices (the best absolute error is of order 10 -5 for a volatility σ = 5% and the worse absolute error 2.10 -2 is achieved with high volatility: σ = 40%). This shows the robustness of the RMQ method even for reasonably high values of the volatility. Then, the result follows since |a + ξ| p-2 ≤ |a| p-2 + |u| p-2 since p -2 ∈ [0, 1]) and |ξ| ≤ |u|.

We are now in position to prove Proposition 3.2.

Proof. (of Lemma 3.2.) The proof will be split into three steps. STEP 1. Let A be a d×q-matrix. We prove that for any random variable Z such that E(Z) = 0 and Z ∈ L p (Ω, A, P) STEP 3. Now, owing to the previous step and to the fact that for every k = 1, . . . , n, Z k is independent from X k-1 , we have

E| X k | p = E E(|E k ( X k-1 , Z k )| p | X k-1 ) ≤ e κp∆ + K p ∆ E| X k-1 | p + e κp∆ L + K p ∆.
Since by construction, X k is a stationary quantizer (with respect to X k ) for every k = 0, . . . , n, we get The last inequality follows from the fact that e (κp+Kp)∆ -1 ≥ (κ p + K p )∆.

E| X k | p = e κp∆ + K p ∆ E E( X k-1 | X k-1 ) p + e κp∆ L + K p ∆ ≤ e κp∆ + K p ∆ E E(| X k-1 | p | X k-

  are measurable and satisfy b(., 0) and σ(., 0) are bounded on [0, T ]

Figure 1 :

 1 Figure 1: Comparison of the regular quantization (Regular quantization) of W1 with its recursive marginal quantization (Marginal quantization) (where W is a Brownian motion). Abscissa axis: n = 50 and the total budget N = N1 + • • • + Nn varies from 250 up to 5000. Ordinate axis: For a given N , (a) (left hand side graphic) we depict the recursive quantization errors ( D rec n (Γn)) 1/2 where |Γn| is given by the optimal dispatching procedure, and the regular quantization errors (D reg M (Γ)) 1/2 for M = |Γn|; (b) (right hand side graphics) we set N k = N/n, for k = 1, . . . , n and depict the recursive quantization errors ( D rec n (Γn)) 1/2 , for |Γn| = 5, . . . , 100, and the regular quantization errors (D reg M (Γ)) 1/2 , for M = |Γ| = 5, . . . , 100.

Figure 2 :

 2 Figure 2: Comparison of the recursive marginal quantization errors. Abscissa axis: n = 50 and the total grid sizes N = N1 + • • • + Nn varies from 250 up to 5000. Ordinate axis: on one hand, we N k = N/n, for k = 1, . . . , n and depict the (approximated) recursive quantization errors ( D rec n (Γn)) 1/2, for |Γn| = 5, . . . , 100 (MQ without optimal dispatching), and, on the other hand, we depict the (approximated) recursive quantization errors ( D rec n (Γn)) 1/2 where |Γn| is given by the optimal dispatching procedure (MQ with optimal dispatching).

(

  followed by its size) with associated confidence intervals (CI) and from the recursive marginal quantization (RMQ) method with equal grid size allocation N k = 300 or N k = 400, ∀k = 1, . . . , n. The parameters are: r = 0.15; δ = 0.5; n = 120; T = 1; K = 100; X 0 = 100; and for varying values of ϑ.

Figure 3 :Figure 4 :

 34 Figure 3: ("Black-Scholes model ") dXt = rXtdt + σXtdWt, X0 = 86.3, r = 0.03, σ = 0.05. Abscissa axis: the optimal grids, Xt k = x i k , t k = k∆, ∆ = 0.02, k = 1, . . . , 25, i = 1, . . . , N k . Ordinate axis: the associated weights, P( Xt k = x i k ), k = 1, . . . , 25, i = 1, . . . , N k . Xt 1 is depicted in dots '•', Xt 25 is represented by the symbol '*', t1 = 0.02 and t25 = 0.5 and the remaining in continuous line
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 211221 |x| p ) E|Z| p .Using the inequality 1 + u ≤ e u , for every u ∈ R, we finally getE|a + √ ∆AZ| p ≤ e κp∆ + K p ∆ |x| p + e κp∆ L + K p ∆,where κ p := (p-1)(p-2) 2pL and K p := L p 1 + p + ∆ p E|Z| p .
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 1111111 [START_REF] Bally | A quantization algorithm for solving discrete time multidimensional optimal stopping problems[END_REF] ) + e κp∆ L + K p ∆ (Jensen's inequality)= e κp∆ + K p ∆ E| X k-1 | p + e κp∆ L + K p ∆.We show by induction that for every k = 1, . . . , n,E| X k | p ≤ e κp∆ + K p ∆ k E| X 0 | p + e κp∆ L + K p ∆ k-κp∆ + K p ∆ j ≤ e κpk∆ 1 + K p ∆e -κp∆ k |x 0 | p + e κp∆ L + K p ∆ k-K p ∆e -κp∆ j .Using the inequality 1 + u ≤ e u , for every u ∈ R, yieldsE| X k | p ≤ e κpk∆ 1 + K p ∆ k |x 0 | p + e κp∆ L + K p ∆ k-K p ∆ j ≤ e (κp+Kp)k∆ |x 0 | p + e κp∆ L + K p ∆ k-(κp+Kp)j∆ = e (κp+Kp)t k |x 0 | p + ∆ e κp∆ L + K p e (κp+Kp)t k -1 e (κp+Kp)∆e (κp+Kp)t k |x 0 | p + e κp∆ L + K p e (κp+Kp)t k -1 κ p + K p .

Table 1 :

 1 (Pseudo-CEV model) Comparison of the Put prices obtained from Monte Carlo (MC) simulations

	ϑ	MC (10 5 )	RMQ (N k = 300)	MC (10 6 )	RMQ (N k = 400)
	0.5	0.0022	0.0016	0.0018	0.0017
	CI	[0.0017; 0.0028]		[0.0017; 0.0019]	
	0.6	0.0113	0.0108	0.0111	0.0110
	CI	[0.0101; 0.0125]		[0.0107; 0.0115]	
	0.7	0.0377	0.0367	0.0373	0.0370
	CI	[0.0353; 0.0401]		[0.0366; 0.0381]	
	0.8	0.0883	0.0867	0.0876	0.0871
	CI	[0.0843; 0.0923]		[0.0863; 0.0886]	
	0.9	0.1696	0.1644	0.1659	0.1649
	CI	[0.1635; 0.1756]		[0.1640; 0.1678]	
	1.0	0.267	0.270	0.271	0.271
	CI	[0.259; 0.275]		[0.269; 0.274]	
	2.0	2.423	2.425	2.433	2.426
	CI	[2.387; 2.459]		[2.422; 2.445]	
	3.0	5.424	5.475	5.492	5.478
	CI	[5.424; 5.512]		[5.471; 5.512]	
	4.0	8.893	8.804	8.806	8.808
	CI	[8.801; 8.986]		[8.777; 8.835]	

Table 2 :

 2 (Pseudo-CEV model) Comparison of the Put prices obtained from Monte Carlo (MC) simulations

Table 3 :

 3 (Black-Scholes model) Comparison of the Put prices obtained from Monte Carlo (MC) simulations

(followed by its size) with associated confidence intervals and from marginal quantization (RMQ) method with equal grid size allocation N k = 300 or N k = 400, ∀k = 1, . . . , n, with the associated absolute error (under each displayed RMQ price) w. r. t. the true price. The parameters are: n = 120; T = 1; r = 0.15; K = 100; X 0 = 100 for varying values of σ.

Table 4 :

 4 (Black-Scholes model) Comparison of the Put prices obtained from Monte Carlo (MC) simulations (followed by the size of the MC between brackets) with associated confidence intervals and from the marginal quantization (RMQ) method with equal grid size allocation N k = 300 or N k = 400, ∀k = 1, . . . , n, with the associated absolute error (under each displayed RMQ price) w. r. t. the true price. The parameters are: n = 120; T = 1; r = 0.15; σ = 40%; X 0 = 100 for varying values of K.
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  A p E|Z| p , where A 2 = Tr(AA ). In fact, it follows from Equation (42) that A p E|Z| p . STEP 2. Keeping in mind the result of the first step and setting for every t ∈ [0, T ] and x ∈ R d , a := x + ∆b(t, x) and A := σ(t, x), we get (owing to the linear growth assumption on the coefficients of the diffusion process)|a| ≤ |x|(1 + L∆) + L∆ and A p ≤ L p (1 + |x| p ),where L p = 2 p-1 L p . It follows that (keep in mind that p ∈ (2, 3]) 2L∆) p |x| p + (1 + 2L∆) p-1 L∆.

		E|a +	√	∆AZ| p ≤ 1 +	(p -1)(p -2) 2	∆ |a| p + ∆ 1 + p + ∆	p 2 -1
	|a +	√	∆AZ| p ≤ |a| p + p∆	1 2 |a| p-2 (a|AZ) +	p(p -1) 2	|a| p-2 ∆|AZ| 2 + ∆	p 2 |AZ| p .
	Applying Young's inequality with conjugate exponents p = p p-2 and q = p 2 , we get
											|a| p-2 ∆|AZ| 2 ≤ ∆	|a| p p	+	|AZ| p q	,
	which leads to						
	|a +	√	∆AZ| p ≤|a| p + p∆	1 2 |a| p-2 (a|AZ) +	p(p -1) 2	∆ p	|a| p +	∆ q	+ ∆	p 2 |AZ| p
								≤|a| p 1 +	p(p -1) 2p	∆ + p∆	1 2 |a| p-2 (a|AZ) + ∆	p(p -1) 2q	+ ∆
			E|a +	√	∆AZ| p ≤ 1 +	(p -1)(p -2) 2	∆ |a| p + ∆ 1 + p + ∆
	As a consequence, we get
		E|a +	√	∆AZ| p ≤ 1 +	(p -1)(p -2) 2	∆ |a| p + ∆ 1 + p + ∆	p 2 -1
										|a| p ≤ (1 + 2L∆) p 1 + L∆ 1 + 2L∆	|x| +	1 + 2L∆ L∆	p
											≤ (1 + 2L∆) p 1 + L∆ 1 + 2L∆	|x| p +	L∆ 1 + 2L∆
	≤ (1 + Then, we derive
							E|a +	√ ∆AZ| p ≤ 1 +	(p -1)(p -2) 2	∆ (1 + 2L∆)

p 2 -1 |AZ| p .

Taking the expectation yields (owing to the fact that

E(Z) = 0) p 2 -1 E|AZ| p . p |x| p + 1 + (p -1)(p -2) 2 ∆ (1 + 2L∆) p-1 L∆ +∆L p 1 + p + ∆

P W Γ k-1 t k-1 = w k-1 i
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