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Recursive marginal quantization of an Euler scheme with
applications to local volatility models

GILLES PAGÈS ∗ ABASS SAGNA † ‡

Abstract

We propose a new approach to quantize the marginals of the discrete Euler diffusion process.
The method is built recursively and involes the conditional distribution of the marginals of the
discrete Euler process. Analytically, the method raises several questions like the analysis of the
induced quadratic quantization error between the marginals of the Euler process and the proposed
quantizations. We show in particular that at every discretization step tk of the Euler scheme, this
error is bounded by the cumulative quantization errors induced by the Euler operator, from times
t0 = 0 to time tk. For numerics, we restrict our analysis to the one dimensional setting and
show how to compute the optimal grids using a Newton-Raphson algorithm. We then propose a
close formula for the companion weights and the transition probabilities associated to the proposed
quantizations. This allows us to quantize in particular diffusion processes in local volatility models
by reducing dramatically the computational complexity of the search of optimal quantizers while
increasing their computational precision with respect to the algorithms commonly proposed in
this framework. Numerical tests are carried out for the Brownian motion and for the pricing of
European options in a local volatility model. A comparison with the Monte Carlo simulations
shows that the proposed method is more efficient (w.r.t. both computational precision and time
complexity) than the Monte Carlo method.

1 Introduction

Optimal quantization method appears first in [23] where the author studies in particular the optimal
quantization problem for the uniform distribution. It has become an important field of information
theory since the early 1940’s. A common use of quantization is the conversion of a continuous signal
into a discrete signal that assumes only a finite number of values.

Since then, optimal quantization is applied in many fields like in Signal Processing, in Data
Analysys, in Computer Sciences and recently in Numerical Probability from the seminal work [13]. Its
application to Numerical Probability relies on the possibility to discretize a random vector X taking
infinitely many values by a discrete random vector X̂ valued in a set of finite cardinality. This allows
to approximate either expectations of the form Ef(X) or more significantly some conditional expecta-
tions like E(f(X)|Y ) (by quantizing both randoms variables X and Y ). Optimal quantization is used
to solve some problems emerging in Quantitative Finance as optimal stopping problems (see [1, 2]),
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the pricing of swing options (see [4]), stochastic control problems (see [7, 15]), nonlinear filtering
problems (see e.g. [14, 20, 6, 21]), the pricing of barrier options (see [22]).

In Quantitative Finance, several problems of interest amounts to the estimation of quantities of the
form (for a given Borel function f : Rd → R)

E
[
f(XT )

]
, T > 0, (1)

or involving terms like
E
[
f(Xt)|Xs = x

]
, 0 < s < t, (2)

related to a stochastic diffusion process (Xt)t∈[0,T ] solution to the stochastic differential equation

dXt = b(t,Xt)dt+ σ(t,Xt)dWt, X0 = x0 ∈ Rd, (3)

where W is a standard q-dimensional Brownian motion starting at 0 and where the functions b :
[0, T ] × Rd → Rd and the matrix-valued diffusion coefficient function σ : [0, T ] × Rd → Rd×q
are Borel measurable and satisfy some appropriate conditions which ensure the existence of a strong
solution of the stochastic differential equation. Since in general the solution of (3) is not explicit we
have first to approximate the continuous paths of the process (Xt)t∈[0,T ] by a discretization scheme,
typically, the Euler scheme. Given the (regular) time discretization mesh tk = k∆, k = 0, · · · , n,
∆ = T/n, the "discrete time Euler process" (X̄tk)k, k = 0, · · · , n, associated to the previous diffusion
process (Xt)t∈[0,T ] is recursively defined by

X̄tk+1
= X̄tk + b(tk, X̄tk)∆ + σ(tk, X̄tk)(Wtk+1

−Wtk), X̄0 = X0.

Then, once we have access to the discretization scheme of the stochastic process (Xt)t∈[0,T ], the quan-
tities (1) and (2) can be estimated by

E
[
f(X̄T )

]
(4)

and
E
[
f(X̄tk+1

)|X̄tk = x
]
, when t = tk+1 and s = tk. (5)

Remark 1.1. (a) For smooth functions f or under hypoellipticity assumptions on σ (see e.g. [3, 24]),
the estimation of E(f(XT )) by E(f(X̄T )) induces the following weak error:

|Ef(XT )− Ef(X̄T )| ≤ C

n

with C = Cb,σ,T > 0 and where n is the number of time discretization steps.
(b) Also note that for every p ≥ 1,

E
(

sup
k=0,··· ,n

|X̄tk |
p
)
< +∞. (6)

The estimation of quantities like (4) or (5) can be performed using Monte Carlo simulations. Nev-
ertheless, an alternative to the Monte Carlo method can be to use cubature formulas produced by an
optimal quantization approximation method, especially in small or medium dimension (d ≤ 4 in the
theory but in practice it may remain competitive with respect to the Monte Carlo method up to dimen-
sion d = 10, see [17]).

In fact, suppose that we have access to the optimal quantization or to some “good” (in a sense
to be specified further on) quantizations (X̂Γk

tk
)k (we will sometimes denote X̂Γk

tk
by X̂tk to simplify

notations) of the process (X̄tk)k on the grids Γk := Γ
(Nk)
k = {xk1, · · · , xkNk} of size Nk (which

will be called an Nk-quantizer), for k = 0, · · · , n. Suppose as well that we have access or have
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computed (offline) the associated weights P(X̂Γk
tk

= xki ), i = 1, · · · , Nk; k = 0, · · · , n (which are

the distributions of the X̂Γk
tk

’s), and the transition probabilities p̂ijk = P(X̂
Γk+1

tk+1
= xk+1

j |X̂Γk
tk

= xki )
for every k = 0, · · · , n − 1; i = 1, · · · , Nk; j = 1, · · · , Nk+1 (in other words, the conditional
distributions L(X̂

Γk+1

tk+1
|X̂Γk

tk
)). Then, using optimal quantization method, the expressions (4) and (5)

can be estimated by

E
[
f(X̂Γn

tn )
]

=

Nn∑
i=1

f(xni )P
(
X̂Γn
tn = xNni

)
and

E
[
f(X̂

Γk+1

tk+1
)|X̂Γk

tk
= xki

]
=

Nk+1∑
j=1

p̂ijk f(xk+1
j ),

respectively. The remaining question to be solved is then to know how to get the optimal or at least
“good” grids Γk, for every k = 0, · · · , n, their associated weights and transition probabilities. In a
more general framework, as soon as the stochastic process (X̄tk)k (or the underlying diffusion process
(Xt)t≥0) can be simulated one may use stochastic gradient algorithm (CLVQ) or a randomized fixed
point procedure (Lloyd) to compute the (hopfully almost) optimal grids and their associated weights
or transition probabilities. In the special case of the one dimensional setting we can often use the
Newton-Raphson’s algorithm in several situations of interest. This deterministic algorithm leads to
more precise estimations and is dramatically faster than stochastic optimization methods.

To highlight the usefulness of our method, suppose for example that we aim to estimate the price
of a Put option with a maturity T , strike K and a present value X0 in a local volatility model where
the dynamics of the stock price process evolves following the stochastic differential equation (called
Pseudo-CEV in [11]):

dXt = rXtdt+ ϑ
Xδ+1
t√

1 +X2
t

dWt, X0 = x0, t ∈ [0, T ], (7)

where δ ∈ (0, 1) and ϑ ∈ (0, ϑ], ϑ > 0, and r stands for the interest rate. In this situation the
solution at time T , XT , is not known analytically and if we want to estimate the quantity of interest:
e−rTE(f(XT ), where f(x) := max(K − x, 0) is the (Lipschitz continuous) payoff function, we have
first of all to discretize the process (Xt)t∈[0,T ] as (X̄tk)k=0,··· ,n, with tn = T (using e.g. the Euler
scheme), and then estimate

e−rTE(f(X̄T ))

by optimal quantization. The only way to get the optimal grids and the associated weights in this
situation is to perform stochastic algorithms like the CLVQ (see e.g. [17]) or the Lloyd’s procedure
(see e.g. [9, 19]), even in the one dimensional framework. However, these methods may be very time
consuming. In this framework (as well as in the general local volatility model framework in dimension
d = 1), our approach allows us to quantize the diffusion process in the Pseudo-CEV model using
the Newton-Raphson algorithm to reduce dramatically the computational complexity of the search of
optimal quantizers while increasing their computational precision with respect to commonly proposed
algorithms. It is important to notice that the companion weights and the probability transitions associ-
ated to the quantized process are obtained by a closed formula so that the method involves by no means
Monte Carlo simulations. On the other hand, a comparison with Monte Carlo simulation for the pricing
of European options in a local volatility model also shows that the proposed method is more efficient
(with respect to both computational precision and time complexity) than the Monte Carlo method.

Let us be more precise about our proposed method in the general setting where the diffusion
(Xt)t∈[0,T ] evolves following Equation (3). Let (X̄tk)k=0,··· ,n be the discrete Euler process, with step
T/n, associated to the diffusion (Xt)t∈[0,T ]. Our aim is in practice to compute the quadratic optimal
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quantizers (Γk) associated with the X̄k’s, for k = 0, · · · , n. Such a sequence (Γk) is defined for every
k = 0, · · · , n by

Γk ∈ argmin{D̄k(Γ),Γ ⊂ Rd, card(Γ) ≤ Nk}

where for every k = 0, · · · , n, the function D̄k(·) is called the distortion function associated to X̄tk

and is defined for every Nk-quantizer Γk by

D̄k(Γk) = E
∣∣X̄tk − X̂

Γk
tk

∣∣2 = E
(
d(X̄tk ,Γk)

2
)
.

Now, by conditioning with respect to X̄tk , we observe that we can connect the distortion function
D̄k+1(Γk+1) = E|X̄tk+1

− X̂Γk+1

tk+1
|2 associated to X̄tk+1

with the distribution of X̄tk by introducing
the Euler scheme operator as follows:

D̄k+1(Γk+1) = E
(
E(d(X̄tk+1

,Γk+1)2|X̄tk)
)

= E
(
E(d(X̄tk+1

,Γk+1)2|X̄k)
)

= E
[
d(Ek(X̄tk , Zk+1),Γk+1)2

]
(8)

where (Zk)k is an i.i.d. sequence of N (0; Iq)-distributed random vectors independent from X̄0 and
for every x ∈ Rd, the Euler operator Ek(x, Zk+1) is defined by

Ek(x, Zk+1) = x+ ∆b(tk, x) +
√

∆σ(tk, x)Zk+1.

Now, here is how we construct the algorithm. Given the distribution of X̄0, we quantize X̄0 and denote
its quantization by X̂Γ0

0 . We want now to quantize X̄t1 , which distribution is unknown. Keeping
in mind Equation (8) and setting X̃t1 := E0(X̂Γ0

0 , Z1), we may approximate the distortion function
D̄1(Γ1) by

D̃1(Γ1) = E
[
d(X̃t1 ,Γ1)2

]
= E

[
d(E0(X̂Γ0

0 , Z1),Γ1)2
]
.

We then define the marginal quantization of X̄t1 by X̂Γ1
t1

= ProjΓ1
(X̃t1). This leads us to consider

the sequence of marginal quantizations (X̂Γk
tk

)k=0,··· ,n of (X̄Γk
tk

)k=0,··· ,n, defined from the following
recursion:

X̃0 = X̄0

X̂Γk
tk

= ProjΓk(X̃tk) and X̃tk+1
= Ek(X̂Γk

tk
, Zk+1)

(Zk)k=1,··· ,n i.i.d.,N (0; Iq)-distributed, independent of X̄0.

From an analytical point of view, this approach raises some new challenging problems among
which the estimation of the quadratic error bound ‖X̄tk − X̂

Γk
tk
‖2 :=

(
E|X̄tk − X̂

Γk
tk
|2
)1/2, for every

k = 0, · · · , n. We will show in particular that for any sequences of (quadratic) optimal quantizers
Γk for X̃Γk

tk
, for every k = 0, . . . , n − 1, the quantization error ‖X̄tk − X̂Γk

tk
‖2 is bounded by the

cumulative quantization errors ‖X̃ti − X̂
Γi
ti
‖2 , for i = 0, · · · , k. Owing to the non-asymptotic bound

for the quantization errors ‖X̃ti − X̂
Γi
ti
‖2 , known as Pierce’s Lemma (which will be recalled further

on) we precisely show that for every k = 0, · · · , n, for any η ∈]0, 1],

‖X̄k − X̂Γk
k ‖2 ≤

k∑
`=0

a`N
−1/d
` ,

where a` = a`(b, σ, tk,∆, x0, L, η, d) is a positive real constant depending on the indicated parameters.
The paper is organized as follows. We recall first some basic facts about (regular) optimal quantiza-

tion in Section 2. The marginal quantization method is described in Section 3. We give in this section
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the induced quantization error. In section 4, we illustrate how to get the optimal grids using Newton-
Raphson’s algorithm and show how to estimate the associated weights and transition probabilities.
The last section, Section 5, is devoted to numerical examples. We first compare the recursive marginal
quantization of W1 with its regular marginal quantization (see Section 2), where (Wt)t∈[0,1] stands for
the Brownian motion and show the numerical performance of the marginal quantization method with
respect to the regular quantization method. Secondly, we use the marginal quantization method for the
pricing of an European Put option in a local volatility model (as well as in the Black-Scholes model)
and compare the results with those obtained from the Monte Carlo method.

NOTATIONS. We denote byM(d, q,R), the set of d×q real value matrices. IfA = [aij ] ∈M(d, q,R),
A? denotes its transpose and we define the norm ‖A‖ :=

√
Tr(AA?) = (

∑
i,j a

2
ij)

1/2, where Tr(M)

stands for the trace of M , for M ∈ M(d, d,R). For every f : Rd → M(d, q,R), we will set
[f ]Lip = supx 6=y

‖f(x)−f(y)‖
|x−y| . For x, y ∈ R, x ∨ y = max(x, y).

2 Background on optimal quantization

Let (Ω,A,P) be a probability space and let X : (Ω,A,P) −→ Rd be a random variable with dis-
tribution PX . The Lr-optimal quantization problem at level N for the random vector X (or for the
distribution PX ) consists in finding the best approximation ofX by a Borel function π(X) ofX taking
at most N values. Assuming that X ∈ Lr(P), we associate to every Borel function π(X) taking at
most N values, the Lr-mean error ‖X − π(X)‖r measuring the distance between the two random
vectors X and π(X) w.r.t. the mean Lr-norm, where ‖X‖r := (E|X|r)1/r and | · | denotes an arbitrary
norm on Rd. Then finding the best approximation of X by a Borel function of X taking at most N
values turns out to solve the following minimization problem:

eN,r(X) = inf {‖X − π(X)‖r, π : Rd → Γ,Γ ⊂ Rd, |Γ| ≤ N},

where |A| stands for the cardinality of A, for A ⊂ Rd. Now, let Γ = {x1, · · · , xN} ⊂ Rd be a
codebook of size N (also called an N -quantizer or a grid of size N ) and define a Voronoi partition
Ci(Γ)i=1,··· ,N of Rd, which is a Borel partition of Rd satisfying for every i ∈ {1, · · · , N},

Ci(Γ) ⊂
{
x ∈ Rd : |x− xi| = min

j=1,··· ,N
|x− xj |

}
.

Consider the Voronoi quantization ofX (simply called quantization ofX) by theN -quantizer Γ defined
by

X̂Γ =

N∑
i=1

xi1{X∈Ci(Γ)}.

Then, for any Borel function π : Rd → Γ = {x1, · · · , xN} we have

|X − π(X)| ≥ min
i=1,··· ,N

d(X,xi) = d(X,Γ) = |X − X̂Γ| P a.s

so that the optimal Lr-mean quantization error eN,r(X) reads

eN,r(X) = inf {‖X − X̂Γ‖r,Γ ⊂ Rd, |Γ| ≤ N}

= inf
Γ⊂Rd
|Γ|≤N

(∫
Rd
d(z,Γ)rdPX(z)

)1/r

. (9)
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Recall that for every N ≥ 1, the infimum in (9) is attained at least one codebook. Any N -
quantizer realizing this infimum is called an Lr-optimal N -quantizer. Moreover, when |supp(PX))| ≥
N then any Lr-mean optimal N -quantizer has exactly size N (see [10] or [13]). On the other hand,
the quantization error, eN,r(X), decreases to zero as the grid size N goes to infinity and its rate of
convergence is ruled by the so-called Zador Theorem recalled below. There also is a non-asymptotic
upper bound for optimal quantizers. It is called Pierce Lemma (we recall it below for the quadratic
case) and will allows us to put a finishing touches to the proof of the main result of the paper, stated in
Theorem 3.1.

Theorem 2.1. (a) (Zador, see [10]). Let X be an Rd-valued random vector such that E|X|r+η <
+∞ for some η > 0 and let PX = f · λd + Ps be the Lebesgue decomposition of PX with respect to
the Lebesgue measure λd and Ps denotes its singular part. Then

lim
N→+∞

N
1
d eN,r(P ) = Q̃r(PX) (10)

with

Q̃r(PX) = J̃r,d

(∫
Rd
f

d
d+r dλd

) 1
r

+ 1
d

= J̃r,d ‖f‖
1/r
d
d+r

∈ [0,+∞),

J̃r,d = inf
N≥1

N
1
d eN,r(U([0, 1]d)) ∈ (0,+∞),

where U([0, 1]d) denotes the uniform distribution over the hypercube [0, 1]d.

(b) (Pierce, see [10, 12]). Let η > 0. There exists a universal constant K2,d,η such that for every
random vector X : (Ω,A,P)→ Rd,

inf
|Γ|≤N

‖X − X̂Γ‖2 ≤ K2,d,η σ2,η(X)N−
1
d , (11)

where
σ2,η(X) = inf

ζ∈Rd
‖X − ζ‖2+η ≤ +∞.

We will call Q̃r(PX) the Zador’s constant associated toX . From the Numerical Probability point of
view, finding an optimal N -quantizer Γ may be a challenging task. In practice (we will only consider
the quadratic case, i.e. r = 2 for numerical implementations) we are sometimes led to find some
“good” quantizations X̂Γ which are close to X in distribution, so that for every continuous function
f : Rd → R, we can approximate Ef(X) by

Ef
(
X̂Γ
)

=

N∑
i=1

pif(xi), (12)

where pi = P(X̂Γ = xi). We recall below the stationarity property for a quantizer.

Definition 2.1. An N -quantizer Γ = {x1, · · · , xN} inducing the quantization X̂Γ of X is stationary
if

∀ i 6= j, xi 6= xj , P (X ∈ ∪i∂Ci(Γ)) = 0, i = 1, · · · , N

and
E
(
X|X̂Γ

)
= X̂Γ. (13)
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We define the distortion function by

DN,2(Γ) = E|X − X̂Γ|2 =

∫
Rd
d(x,Γ)2dPX(x) =

N∑
i=1

∫
Ci(Γ)

|x− xi|2dPX(x), (14)

so that
e2
N,2(X) = inf

Γ∈(Rd)N
DN,2(Γ).

By definition, a stationary quantizer Γ = {x1, · · · , xN} is in fact an N -quantizer satisfying the sta-
tionary equality:

∇DN,2(Γ) = 0.

The following result justifies the interchange of the differentiation and the integral leading to (29) when
differentiating (14), see [10].

Proposition 2.2. The function DN,2 is differentiable at any N -tuple Γ ∈ (Rd)N having pairwise
distinct components and such that P (X ∈ ∪i∂Ci(Γ)) = 0. Furthermore, we have

∇DN,2(Γ) = 2
(∫

Ci(Γ)
(xi − x)dPX(x)

)
i=1,··· ,N

. (15)

For numerical implementations, the search of stationary quantizers is based on zero search recur-
sive procedures like Newton-Raphson algorithm for real valued random variables, and some algorithms
like Lloyd’s I algorithms (see e.g. [9, 19]), the Competitive Learning Vector Quantization (CLVQ) al-
gorithm (see [9]) or stochastic algorithms (see [16]) in the multidimensional framework. Optimal
quantization grids associated to multivariate Gaussian random vectors can be downloaded on the web-
site www.quantize.math-fi.com.

When approximating Ef(X) by Ef(X̂Γ) where Γ is an N -quantizer, the resulting error may be
bounded by the squared quantization error E|X − X̂Γ|2, depending on the regularity of the function f .
We next recall some error bounds induced from the approximation of Ef(X) by (12) (we refer to [17]
for further detail).

(a) Let Γ be a stationary quantizer and f be a Borel function on Rd. If f is a convex function then

Ef(X̂Γ) ≤ Ef(X). (16)

(b) Lipschitz functions:

– If f is Lipschitz continuous then for any N -quantizer Γ we have∣∣Ef(X)− Ef(X̂Γ)
∣∣ ≤ [f ]Lip‖X − X̂Γ‖2 ,

where

[f ]Lip := sup
x 6=y

|f(x)− f(y)|
|x− y|

.

– Let θ : Rd → R+ be a nonnegative convex function such that θ(X) ∈ L2(P). If f is
locally Lipschitz with at most θ-growth, i.e. |f(x) − f(y)| ≤ [f ]Lip|x − y|(θ(x) + θ(y))
then f(X) ∈ L1(P) and∣∣Ef(X)− Ef(X̂Γ)

∣∣ ≤ 2[f ]Lip‖X − X̂Γ‖2‖θ(X)‖2 .

(c) Differentiable functionals: if f is differentiable on Rd with an α-Hölder gradient∇f (α ∈ [0, 1]),
then for any stationary N -quantizer Γ,∣∣Ef(X)− Ef(X̂Γ)

∣∣ ≤ [∇f ]α‖X − X̂Γ‖1+α
2

.
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3 Recursive marginal quantization of a discrete stochastic diffusion pro-
cess

Let (Xt)t≥0 be a stochastic process taking values in a d-dimensional Euclidean space Rd and solution
to the stochastic differential equation:

dXt = b(t,Xt)dt+ σ(t,Xt)dWt, X0 = x0 ∈ Rd, (17)

where W is a standard q-dimensional Brownian motion starting at 0 and where b : [0, T ] × Rd → Rd
and the matrix diffusion coefficient function σ : [0, T ]×Rd →M(d, q,R) are measurable and satisfy
the global Lipschitz and linear growth conditions: for every t ∈ [0, T ],

|b(t, x)− b(t, y)| ≤ [b]Lip|x− y| (18)

‖σ(t, x)− σ(t, y)‖ ≤ [σ]Lip|x− y| (19)

|b(t, x)| ≤ L(1 + |x|) and ‖σ(t, x)‖ ≤ L(1 + |x|). (20)

L > 0. This guarantees the existence of a strong solution of (17). We also suppose that the matrix
σ is positive definite. Throughout the paper we will suppose that Rd is equipped with the canonical
Euclidean norm.

3.1 The algorithm

Consider the Euler scheme of the process (Xt)t≥0 starting from X̄0 = X0:

X̄tk+1
= X̄tk + ∆b(tk, X̄tk) + σ(tk, X̄tk)(Wtk+1

−Wtk),

where tk = kT
n , for every k ∈ {0, · · · , n}.

NOTATIONS SIMPLIFICATION. To alleviate notations, we set

Yk := Ytk (for any process Y evaluated at time tk)

bk(x) := b(tk, x), x ∈ Rd

σk(x) = σ(tk, x), x ∈ Rd.

Recall that the distortion function D̄k associated to X̄k may be wriiten for every k = 0, · · · , n− 1,
as

D̄k+1(Γk+1) = E
[
d(Ek(X̄k, Zk+1),Γk+1)2

]
where

Ek(x, z) := x+ ∆b(tk, x) +
√

∆σ(tk, x)z, x∈ Rd, z∈ Rq.
Now, supposing that X̄0 has already been quantized and setting X̃1 = E0(X̂Γ0

0 , Z1), we may approxi-
mate the distortion function D̄1 by

D̃1(Γ1) := E
[
d(X̃1,Γ1)2

]
= E

[
d(E0(X̂Γ0

0 , Z1),Γ1)2
]

=

N0∑
i=1

E
[
d(E0(x0

i , Z1),Γ1)2
]
P
(
X̂Γ0

0 = x0
i

)
.

This allows us (as it is already said in the introduction) to consider the sequence of (marginal)
quantizations (X̂Γk

k )k=0,··· ,n defined from the following recursion:

X̂Γk
k = ProjΓk(X̃k) and X̃k+1 = Ek(X̂Γk

k , Zk+1)

where X̃0 = X̄0 and (Zk)k=1,··· ,n is i.i.d.,N (0; Iq)-distributed, independent of X̄0.
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3.2 The error analysis

Our aim is now to compute the quantization error bound ‖X̄T − X̂T ‖2 := ‖X̄n− X̂Γn
n ‖2 . The analysis

of this error bound will be the subject of the following theorem, which is the main result of the paper.
Keep in mind that x0 = X0 = X̃0.

Theorem 3.1. Let the coefficients b, σ satisfy the assumptions (18), (19) and (20). Let for every
k = 0, · · · , n, Γk be a quadratic optimal quantizer for X̃k at level Nk. Then, for every k = 0, · · · , n,
for any η ∈]0, 1],

‖X̄k − X̂Γk
k ‖2 ≤ K2,d,η

k∑
`=0

a`(b, σ, tk,∆, x0, L, 2 + η)N
−1/d
` , (21)

where for every p ∈ (2, 3],

a`(b, σ, tk,∆, x0, L, p) := e
Cb,σ

(tk−t`)
p

[
e(κp+Kp)t` |x0|p +

eκp∆L+Kp

κp +Kp

(
e(κp+Kp)t` − 1

)] 1
p
,

with Cb,σ = [b]Lip + 1
2 [σ]2Lip, K2,d,η is a universal constant defined in Equation (11) and given in [12];

κp :=
((p+ 1)(p− 2)

2
+ 2pL

)
and Kp := 2p−1Lp

(
1 + p+ ∆

p
2
−1
)
E|Z|p, Z ∼ N (0; Id).

Let us make the following remarks.
Remark 3.1. It is important to notice that the constants a`(·, tk, ·, ·, ·, ·, p) do not explode when n goes
to infinity and we have

max
k,`=0,··· ,n

a`(·, tk, ·, ·, ·, ·, p) ≤ eCb,σ
T
p

[
e(κp+Kp)T |x0|p +

eκpTL+Kp

κp +Kp

(
e(κp+Kp)T − 1

)] 1
p
.

We also remark that κp ≤ 2(1 + p)L.

Before dealing with the proof of the theorem, we give below a lemma which will be used to
complete the proof of the theorem. The proof of the lemma is postponed to the appendix.

Lemma 3.2. Let the coefficients b, σ of the diffusion satisfy the assumptions (19) and (20). Then, for
every p ∈ (2, 3], for every k = 0, · · · , n,

E|X̃k|p ≤ e(κp+Kp)tk |x0|p +
eκp∆L+Kp

κp +Kp

(
e(κp+Kp)tk − 1

)
, (22)

where Kp and κp are defined in Theorem 3.1.

Let us prove the theorem.

Proof (of Theorem 3.1). First we note that for every k = 0, · · · , n,

‖X̄k − X̂k‖2 ≤ ‖X̄k − X̃k‖2 + ‖X̃k − X̂Γk
k ‖2 . (23)

Let us control the first term of the right hand side of the above equation. To this end, we first note that,
for every k = 0, · · · , n, the function Ek(·, Zk+1) is Lipschitz w.r.t. the L2-norm: in fact, for every
x, x′ ∈ Rd,

E|Ek(x, Zk+1)− Ek(x′, Zk+1)|2 ≤
(
1 + ∆

(
2[bk(.)]Lip + [σk(.)]

2
Lip

)
+ ∆2[bk(.)]

2
Lip

)
|x− x′|2

≤
(
1 + ∆

(
2[b]Lip + [σ]2Lip

)
+ ∆2[b]2Lip

)
|x− x′|2

≤ (1 + ∆Cb,σ)2|x− x′|2

≤ e2∆Cb,σ |x− x′|2,

9



where Cb,σ = [b]Lip + 1
2 [σ]2Lip does not depend on n. Then, it follows that for every ` = 0, · · · , k − 1,

‖X̄`+1 − X̃`+1‖2 = ‖E`(X̄`, Z`+1)− E`(X̂Γ`
` , Z`+1)‖2

≤ e∆Cb,σ‖X̄` − X̂Γ`
` ‖2

≤ e∆Cb,σ‖X̄` − X̃`‖2 + e∆Cb,σ,T ‖X̃` − X̂Γ`
` ‖2 . (24)

Then, we show by a backward induction using (23) and (24) that

‖X̄k − X̃k‖2 ≤
k∑
`=0

e(k−`)∆Cb,σ‖X̃` − X̂Γ`
` ‖2 .

Now, one deduces from Lemma 11 and then, from Lemma 3.2 that, for every k = 0, · · · , n, for any
η > 0

‖X̄k − X̂k‖2 ≤ K2,d,η

k∑
`=0

e(k−`)∆Cb,σσ2,η(X̃`)N
−1/d
`

≤ K2,d,η

k∑
`=0

e(k−`)∆Cb,σ‖X̃`‖2+ηN
−1/d
`

≤ K2,d,η

k∑
`=0

(
a`(b, σ, tk,∆, x0, L, 2 + η)

)1/(2+η)
N
−1/d
` ,

which is the announced result.

Remark 3.2. (a) When we consider the upper bound of Equation (21), a natural question is to deter-
mine how to dispatch optimally the sizesN0, · · · , Nn (for a fixed mesh of length n) of the quantization
grids when we wish to use a total “budget”N = N0 +· · ·+Nn of elementary quantizers (withNk ≥ 1,
for every k = 0, · · · , n). This amounts to solving the minimization problem

min
N0+···+Nn=N

n∑
`=0

a`N
−1/d
`

where a` = a`(b, σ, tn,∆, x0, L, 2 + η). This leads (see e.g. [1]) to the following optimal dispatching:
N0 = 1 (since X0 is not random) and for every ` = 1, · · · , n,

N` =

 a
d
d+1

`∑n
k=0 a

d
d+1

k

N

 ∨ 1,

so that Equation (21) becomes (for k = n)

‖X̄n − X̂Γn
n ‖2 ≤ K2,d,ηN

−1/d
( n∑
`=0

a
d
d+1

`

)1+1/d

and using the convexity inequality leads to

‖X̄n − X̂Γn
n ‖2 ≤ K2,d,ηN

−1/d(n+ 1)1+ 1
d

( n∑
`=0

1

n+ 1
a

d
d+1

`

)1+1/d

≤ K2,d,ηN
−1/d(n+ 1)1/d

n∑
`=0

a`.
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(b) If we assign Nk = N̄ := N/(n+ 1) points to each grid Γk, the error bound in Theorem 3.1 leads
to

‖X̄n − X̂Γn
n ‖2 ≤ K2,d,η

(n+ 1

N

)1/d
n∑
`=0

a`.

4 Computation of the marginal quantizers

We focus now on the numerical computation of the quadratic optimal quantizers of the marginal ran-
dom variable X̃tk+1

given the probability distribution function of X̃tk . Such a task requires the use of
some algorithms like the CLVQ algorithm, Lloyd’s algorithms (both requiring the computation of the
gradient of the distortion function) or Newton-Raphson’s algorithm (especially for the one-dimensional
setting) which involves the gradient and the Hessian matrix of the distortion (we refer to [17] for more
details).

Let X̂Γk
k be the quantization of X̃k induced y the grid Γk and let D̃k(Γk) = ‖X̃k − X̂Γk

k ‖2 be the
associated distortion function, for k = 0, · · · , n. Our aim is to compute the (at least locally) optimal
quadratic quantization grids (Γk)k=0,··· ,n associated with the X̃k’s, k = 0, · · · , n. Such a sequence of
grids (Γk)k=0,··· ,n is defined for every k = 0, · · · , n by

Γk ∈ argmin{D̃k(Γ),Γ ⊂ Rd, card(Γ) ≤ Nk}. (25)

Recall that the sequence of (marginal) quantizations (X̂k)k=0,··· ,n is defined by the following induction:

X̃0 = X̄0 (26)

X̂k = ProjΓk(X̃k) and X̃k+1 = Ek(X̂k, Zk+1) (27)

Zk
i.i.d∼ N (0; Iq), k = 1, · · · , n, and (Zk)k is independent from X̄0. (28)

Supposing that X̃k has already been quantized, we have for every k = 0, · · · , n− 1,

D̃k+1(Γk+1) = E
[
d(Ek(X̂k, Zk+1),Γk+1)2

]
=

Nk∑
i=1

E
[
d(Ek(xNki , Zk+1),Γk+1)2

]
P(X̂k = xNki ).

Then, owing to Proposition 2.2, the distortion function D̃k+1(Γk+1) is continuously differentiable as
a function of the Nk+1-quantizer Γk+1 (having pairwise distinct components) and its gradient is given
by

∇D̃k+1(xNk+1) = 2

[
Nk∑
i=1

E
(

1{Ek(xki ,Zk+1)∈Cj(Γk+1)}
(
xk+1
j −Ek(xki , Zk+1)

))
P(X̂k = xNki )

]
j=1,··· ,Nk+1

.

Remark 4.1. a) If Γk+1 is a quadratic optimal Nk+1-quantizer for X̃k+1 and if X̂Γk+1

k+1 denotes the
quantization of X̃k+1 on the grid Γk+1. Then Γk+1 is a stationary quantizer, i.e.,

∇D̃k+1(Γk+1) = 0. (29)

Equivalently, we have for every j = 1, · · · , Nk+1,

x
Nk+1

j =

∑Nk
i=1 E

(
Ek(xNki , Zk+1)1{Ek(x

Nk
i ,Zk+1)∈Cj(Γk+1)}

)
P(X̂k = xNki )∑Nk

i=1 P
(
Ek(xNki , Zk+1) ∈ Cj(Γk+1)

)
P(X̂k = xNki )

. (30)
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This also means that
E
(
X̃k+1

∣∣X̂k+1

)
= X̂k+1.

b) In higher dimension d ≥ 2, equations (29) and (30) allow us to compute stationary quantizers
for X̃k+1 using stochastic algorithms and Lloyd’s type algorithms, given that X̃k has already been
quantized.

As mentioned in [17], the usual CLVQ or Lloyd’s companion algorithms become quickly un-
tractable when the dimension d ≥ 2 due to the fact that we have to compute d-dimension integrals
on Voronoi cells. Moreover, in our setting the complexity of these algorithms will increase since we
have to compute additional d-dimensional integrals. For these reasons, we will restrict our analysis
to the one-dimensional setting where we will use the Newton-Raphson algorithm in RNk to perform
recursively quadratic optimal quantizers of the marginals X̃k given the distribution of X0.

4.1 The one dimensional setting

For k ∈ {0, · · · , n}, let ∇D̃k(Γk) and ∇2D̃k(Γk) denote respectively the gradient vector and the
hessian matrix of the distortion function D̃k. To simplify notations set, for k = 0, · · · , n − 1 and for
j = 1, · · · , Nk+1,

xk+1
j−1/2 =

xk+1
j + xk+1

j−1

2
, xk+1

j+1/2 =
xk+1
j + xk+1

j+1

2
, with xk+1

1/2 = −∞, xk+1
Nk+1+1/2 = +∞,

and let

xk+1,j−(x) :=
xk+1
j−1/2 −mk(x)

vk(x)
and xk+1,j+(x) :=

xk+1
j+1/2 −mk(x)

vk(x)
,

where vk(x) =
√

∆σk(x) andmk(x) = x+∆bk(x). We also denote by Φ0(·) and Φ′0(·) the probability
distribution function and the cumulative distribution function, respectively, of the standard Gaussian
distribution.

4.1.1 Computing marginal quantizers with Newton-Raphson algorithm

Our procedure is recursive and we suppose that Γk (quantizer for X̃k) has been computed as well as the
companion weights: P(X̃tk ∈ Ci(Γk)), i = 1, · · · , Nk. Therefore, using the Newton-Raphson zero
search, a zero of the gradient can be computed via the following recursive procedure starting from a
given initial point Γ

(0)
k+1 ∈ RNk+1 :

Γ
(`+1)
k+1 = Γ

(`)
k+1 −

(
∇2D̃k+1(Γ

(`)
k+1)

)−1∇D̃k+1(Γ
(`)
k+1), ` = 0, 1, · · · , L− 1, (31)

where the components of ∇D̃k+1(Γk+1) are given for every Γ
(`)
k+1 := Γk+1 = (xk+1

1 , · · · , xk+1
Nk+1

),
` = 0, · · · , L − 1 (where L is the number of iterations of the Newton-Raphson procedure), and for
every j = 1, · · · , Nk+1, by

∂D̃k+1(Γk+1)

∂xk+1
j

=

Nk∑
i=1

{(
xk+1
j −mk(x

k
i )
)(

Φ′0(xk+1,j+(xki ))− Φ′0(xk+1,j−(xki ))
)

+ vk(x
k
i )
(
Φ0(xk+1,j+(xki ))− Φ0(xk+1,j−(xki ))

)}
P(X̃k ∈ Ci(Γk)).
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The diagonal terms of the Hessian matrix∇2D̃k+1(Γk+1) are given by:

∂2D̃k+1(Γk+1)

∂2xk+1
j

=

Nk∑
i=1

[
Φ′0(xk+1,j+(xki ))− Φ′0(xk+1,j−(xki ))

− 1

4vk(x
k
i )

Φ0(xk+1,j+(xki ))(x
k+1
j+1 − x

k+1
j )

− 1

4vk(x
k
i )

Φ0(xk+1,j−(xki ))(x
k+1
j − xk+1

j−1)
]
P(X̃k ∈ Ci(Γk))

and its sub-diagonal terms are

∂2D̃k+1(Γk+1)

∂xk+1
j ∂xk+1

j−1

= −1

4

Nk∑
i=1

1

vk(x
k
i )

(xk+1
j − xk+1

j−1)Φ0(xk+1,j−(xki ))P(X̃k ∈ Ci(Γk)).

The super-diagonals terms are

∂2D̃k+1(Γk+1)

∂xk+1
j ∂xk+1

j+1

= −1

4

Nk∑
i=1

1

vk(x
k
i )

(xk+1
j+1 − x

k+1
j )Φ0(xk+1,j+(xki ))P(X̃k ∈ Ci(Γk)).

A similar idea combining (vector or functional) optimal quantization with Newton-Raphson zero
search procedure is used in [8] in a variance reduction context as an alternative and robust method to
simulation based recursive importance sampling procedure to estimate the optimal change of measure.
Furthermore, the convergence of the modified Newton-Raphson algorithm to the optimal quantizer is
shown in the framework of [8] to be bounded by the quantization error. However, the tools used to
show it does not apply directly to our context and the proof of the convergence of our modified Newton
algorithm to an optimal quantizer is an open question.

4.1.2 Computing the weights and the transition probabilities

Once we have access to the quadratic optimal quantizers Γk of the marginals X̃k, for k = 0, · · · , n
(which are estimated using the Newton-Raphson algorithm described previously) we need to compute
the associated weights P(X̃k ∈ Cj(Γk)), j = 1 · · · , Nk, for k = 0, · · · , n or the transition probabili-
ties P(X̃k ∈ Cj(Γk)|X̃k−1 ∈ Ci(Γk−1)), i = 1, · · · , Nk, j = 1, . . . , Nk+1. We show in the next result
how to compute them.

Proposition 4.1. Let Γk+1 be a quadratic optimal quantizer for the marginal random variable X̃k+1.
Suppose that the quadratic optimal quantizer Γk for X̃k and its companion weights P(X̃k ∈ Ci(Γk)),
i = 1, · · · , Nk, are computed.

1. The transition probability P(X̃k+1 ∈ Cj(Γk+1)|X̃k ∈ Ci(Γk)) is given by

P(X̃k+1 ∈ Cj(Γk+1)|X̃k ∈ Ci(Γk)) =
(

Φ′0(xk+1,j+(xki ))−

Φ′0(xk+1,j−(xki ))
)
P
(
X̃k ∈ Ci(Γk)

)
. (32)

2. The probability P(X̃k+1 ∈ Cj(Γk+1)) is given for every j = 1, · · · , Nk+1 by

P
(
X̄tk+1

∈ Cj(Γk+1)
)

=

Nk∑
i=1

(
Φ′0(xk+1,j+(xki ))−

Φ′0(xk+1,j−(xki ))
)
P
(
X̃k ∈ Ci(Γk)

)
. (33)
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Proof. 1. For every k ∈ {1, · · · , n− 1}, for every i = 1, · · · , Nk and for every j = 1, · · · , Nk+1, we
have

P(X̃k+1 ∈ Cj(Γk+1)|X̃k ∈ Ci(Γk)) = P
(
X̃k+1 ∈ Cj(Γk+1)|X̂k = xNki

)
= P

(
X̃k+1 ≤ x

Nk+1

j+1/2|X̂k = xNki
)

− P
(
X̃k+1 ≤ x

Nk+1

j−1/2|X̂k = xNki
)

= Φ′0(xk+1,j+(xki ))− Φ′0(xk+1,j−(xki )).

2. We have for every k ∈ {1, · · · , n− 1} and for every j = 1, · · · , Nk+1,

P
(
X̃k+1 ∈ Cj(Γk+1)

)
= E

[
P
(
X̃k+1 ∈ Cj(Γk+1)|X̂k

)]
=

Nk∑
i=1

P
(
X̃k+1 ∈ Cj(Γk+1)|X̂k = xNki

)
P(X̃k ∈ Ci(Γk)).

Now, il follows from the first assertion that

P
(
X̃k+1 ∈ Cj(Γk+1)|X̂k = xNki

)
= Φ′0(xk+1,j+(xki ))− Φ′0(xk+1,j−(xki )).

This completes the proof.

5 Numerical examples

5.1 Numerical example for Brownian motion

We consider a real valued Brownian motion (Wt)t∈[0,1] and quantize the random variable W1 by both
regular marginal quantization and recursive marginal quantization methods. Denote by DM (Γ) the
regular quantization distortion associated toW1 and D̃k(Γk), k = 0, · · · , n, the sequence of distortions
associated to the Wtk ’s, k = 0, · · · , n, where n is the mesh size and Γk = {wk1 , · · · , wkNk} is a grid of
size Nk.

We recall that for a given grid size M , the optimal grid for the regular marginal quantization is
obtained by solving (using Newton-Raphson algorithm) the following minimization problem:

inf
Γ∈RM

DM (Γ) = E|W1 − ŴΓ
1 |2,

which corresponds to the optimal grid of the standard Gaussian distribution. On the other hand, the
sequence of recursive marginal quantization grids (Γk)k=0,··· ,n are defined for every k = 0, · · · , n by

Γk ∈ argmin{D̃k(Γ),Γ ⊂ R, card(Γ) ≤ Nk},

where

D̃k(Γ) := E
[
d(W̃tk ,Γ)2

]
=E
[
d
(
Ŵ

Γk−1

tk−1
+
√

∆Zk,Γ
)2]

=

Nk−1∑
i=1

E
[
d
(
wk−1
i +

√
∆Zk,Γ

)2]P(ŴΓk−1

tk−1
= wk−1

i

)
and ŴΓk−1

tk−1
is defined from the following recursion: ŴΓ0

0 = 0 and for ` = 1, · · · , k − 1,

W̃t` = Ŵ
Γ`−1

t`−1
+
√

∆Z` and ŴΓ`
t`

= ProjΓ`(W̃t`), (Z`)`=1,··· ,k is i.i.d., and N (0; 1)-distributed.
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We make a comparison of the quantization errors (the square root of the distortions) obtained from
both methods. The result is depicted in Figure 1. In these graphics we fix the mesh size n = 50 and
we make the total budget N = N1 + · · · + Nn (given that N0 = 1) of the grid sizes vary 50 by 50,
from 250 up to 5000. We choose the sizes Nk following two procedures: without (and with) optimal
dispatching, and for both procedures we compare the associated quantization errors with the regular
marginal quantization error. In concrete terms, here is how we choose the grid sizes Nk.

B WITHOUT OPTIMAL DISPATCHING. For a given global budget N , we make an “equal grid size
dispatching” by choosingNk = N/n, for k = 1, · · · , n. If for exampleN = N1 + · · ·+Nn = 250, we
will have Nk = 5, for every k ∈ {1, · · · , n}. On the right hand side graphic of Figure 1, we depict the
marginal quantization errors (D̃n(Γn))1/2, for |Γn| = 5, · · · , 100, and the regular quantization errors
(DM (Γ))1/2, for M = |Γ| = 5, · · · , 100.

B WITH OPTIMAL DISPATCHING. In this case, the sizes Nk are obtained from the optimal dis-
patching procedure described in Remark 3.2. First of all, we have to choose the coefficients a` (ap-
pearing in Theorem 3.1) corresponding to the Brownian motion. Following, step by step, the proof of
Theorem 3.1 and setting η = 1 (keep in mind that in the Brownian case x0 = 0), we may choose for
` = 0, · · · , n = 50,

a` =

[√
2

π
(4 +

√
∆)(e2t` − 1)

]1/3

.

Making N vary from 250 to 5000, the optimal dispatching leads to the following sizes for the grid Γn:

|Γn| ∈ G = {6, 8, 9, 10, 11, 13, · · · , 123, 124, 126, 127}.

This means for example that, if N = 250, then the grids Γk, for k = 1, · · · , n = 50, are not of equal
size and |Γn| = Nn = 6; if N = 300 then Nn = 8; · · · ; and if N = 5000 then Nn = 127.

The graphic on the left hand side of Figure 1 depicts the marginal quantization errors (D̃n(Γn))1/2,
where |Γn| is given by the optimal dispatching procedure, and the regular quantization errors (DM (Γ))1/2

for M = |Γn| ∈ G.
CONCLUSION. The graphics of figure 1 and 2 lead to two observations. The first one is that both
recursive marginal quantization (without and with optimal dispatching) of W1 are more efficient than
its regular marginal quantization, especially when the regular quantization grid is of small size. In
fact, in the general setting, the search for the optimal grids associated to the marginals of a stochastic
process is based on the computation of the gradient (and the Hessian) of the associated distortion
function, which are some expectation with respect to these marginal random variables. Since the
recursive marginal quantization procedure is based on successive conditionings which are known to
reduce the variance, it is not surprising to observe that the recursive marginal quantization method is
more successful than the regular marginal quantization method.

The second conclusion is that the recursive marginal quantization method with the optimal dis-
patching of the grid size over discretization time steps outperform a setting where the grids are of
equal sizes, especially, when the global budget N = N1 + · · · + Nn is small. However, when N in-
creases, the recursive marginal quantization with optimal dispatching becomes more time consuming
and at the same time, both methods lead to almost the same results.

In fact, the following heuristic suggests that, in the general setting, the complexity of the recur-
sive marginal quantization method with optimal dispatching is greater than the one with equal size
allocation.

PRACTITIONER’S CORNER. Notice that the complexity of the quantization tree (Γk)k=0,··· ,n for
the recursive marginal quantization is of order

∑n−1
k=0 NkNk+1. Now, assuming that N0 = 1 and that
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Figure 1: Comparison of the regular marginal quantization (RQ) of W1 with its recursive marginal quantization (MQ)
(where W is a Brownian motion). Abscissa axis: n = 50 and the total budget N = N1 + · · · + Nn varies from 250 up to
5000. Ordinate axis: For a given N , (a) (right hand side graphics) we set Nk = N/n, for k = 1, · · · , n and depict the MQ
errors (D̃n(Γn))1/2, for |Γn| = 5, · · · , 100, and the RQ errors (DM (Γ))1/2, for M = |Γ| = 5, · · · , 100 ; (b) (left hand
side graphic) we depict the MQ errors (D̃n(Γn))1/2 where |Γn| is given by the optimal dispatching procedure, and the RQ
errors (DM (Γ))1/2 for M = |Γn|.
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Figure 2: Comparison of the recursive marginal quantization errors. Abscissa axis: n = 50 and the total grid sizes
N = N1+· · ·+Nn varies from 250 up to 5000. Ordinate axis: on one hand, we setNk = N/n, for k = 1, · · · , n and depict
the recursive marginal quantization errors (D̃n(Γn))1/2, for |Γn| = 5, · · · , 100 (MQ without optimal dispatching), and, on
the other hand, we depict the marginal quantization errors (D̃n(Γn))1/2 where |Γn| is given by the optimal dispatching
procedure (MQ with optimal dispatching).
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for every k = 0, · · · , n− 1, Nk ≤ Nk+1 we want to solve (heuristically) the problem

min
{ n−1∑
k=0

NkNk+1 subject to
n∑
k=1

Nk = N
}
. (34)

Since
∑n−1

k=0 N
2
k ≤

∑n−1
k=0 NkNk+1 ≤

∑n
k=1N

2
k and thatN0 = 1, this suggests that

∑n−1
k=0 NkNk+1 ≈∑n

k=1N
2
k . Then, if we switch to

min
{ n∑
k=1

N2
k/N

2 subject to
n∑
k=1

Nk = N
}

= min
{ n∑
k=1

q2
k subject to

n∑
k=1

qk = 1
}
, (35)

where qk = Nk/N , it is well known that the solution of the previous problem is given by qk = 1/n,
i.e., Nk = N/n, for every k = 1, · · · , n. Plugging the solution of (35) in (34), this leads to the
sub-optimal complexity N2/n. In fact, any other choice leads to the global complexity

n−1∑
0

qkqk+1N
2 ≥ N2

n−1∑
k=0

q2
k ≥ N2 min

{ n∑
k=0

q2
k ≥ subject to

n∑
k=0

qk = 1
}
>
N2

n
.

In the next section we propose an application of our method to the pricing of European options in
a local volatility models. We remark that when using the marginal quantization methods, we have to
choose a big global budgetN to reach good price estimates. As in the Brownian case, numerical results
show that both recursive marginal quantization methods (with and without optimal dispatching) lead
to the same price estimates (up to 10−3) whereas the complexity of the optimal dispatching method
becomes higher (as pointed out in the practitioner’s corner). This is why we will use in the following
section the recursive marginal quantization method without optimal dispatching procedure.

5.2 Pricing of European options in a local volatility model

5.2.1 The model

We consider a pseudo-CEV model (see e.g. [11]) where the dynamics of the stock price process is
ruled by the following SDE (under the risk neutral probability)

dXt = rXtdt+ ϑ
Xδ+1
t√

1 +X2
t

dWt, X0 = x0, (36)

for some δ ∈ (0, 1) and ϑ ∈ (0, ϑ] with ϑ > 0. The parameter r stands for the interest rate and
σ(x) := ϑ xδ√

1+x2
corresponds to the local volatility function. This model becomes very close to the

CEV model, specially when the initial value of the stock process X0 is large enough. In this case the
local volatility σ(x) ≈ ϑxδ−1.

We aim at computing the price of a European Put option with payoff (K − XT )+ = max(K −
XT , 0), where K corresponds to the strike of the option and T to its maturity. Then we have to
approximate the quantity

e−rTE(K −XT )+

where E stands for the expectation under the risk neutral probability. If the process (X̄tk)k denotes the
discrete Euler process at regular time discretization steps tk, with 0 = t0 < · · · < tn = T , associated
to the diffusion process (Xt)t≥0, this turns out to estimate

e−rTE(K − X̄T )+
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ϑ MC (105) MC (106) RMQ

0.5 0.0022 0.0018 0.0017
CI [0.0017;0.0028] [0.0017;0.0019]

0.6 0.0113 0.0111 0.0110
CI [0.0101;0.0125] [0.0107;0.0115]

0.7 0.0377 0.0373 0.0370
CI [0.0353;0.0401] [0.0366;0.0381]

0.8 0.0883 0.0876 0.0871
CI [0.0843;0.0923] [0.0863;0.0886]

0.9 0.1696 0.1659 0.1649
CI [0.1635;0.1756] [0.1640;0.1678]

1.0 0.267 0.271 0.271
CI [0.259;0.275] [0.269;0.274]

2.0 2.423 2.433 2.426
CI [2.387;2.459] [2.422;2.445]

3.0 5.424 5.492 5.478
CI [5.424;5.512] [5.471;5.512]

4.0 8.893 8.806 8.808
CI [8.801;8.986] [8.777;8.835]

Table 1: (Pseudo-CEV model) Comparison of the Put prices obtained from Monte Carlo (MC) simulations
(followed by its size) with associated confidence intervals (CI) and from the recursive marginal quantization
(RMQ) method. The parameters are: r = 0.15; δ = 0.5; n = 120; Nk = 400, ∀k = 1, · · · , n; T = 1; K = 100;
X0 = 100; and for varying values of ϑ.

K MC (105) MC (106) MC (107) RMQ

100 08.89 08.81 08.81 08.81
CI [08.80;08.99] [08.78;08.84] [08.80;08.82]

105 10.61 10.60 10.59 10.59
CI [10.51;10.72] [10.57;10.63] [10.58;10.60]

110 12.53 12.57 12.57 12.57
CI [12.42;12.64] [12.53;12.60] [12.56;12.58]

115 14.72 14.74 14.75 14.75
CI [14.60;14.84] [14.70;14.78] [14.75;14.77]

120 17.18 17.10 17.13 17.12
CI [17.04;17.31] [17.06;17.15] [17.11;17.14]

125 19.64 19.69 19.67 19.67
CI [19.50;19.78] [19.64;19.73] [19.65;19.68]

130 22.41 22.32 22.40 22.40
CI [22.26;22.56] [22.32;22.41] [22.38;22.41]

Table 2: (Pseudo-CEV model) Comparison of the Put prices obtained from Monte Carlo (MC) simulations
(followed by its size) with associated confidence intervals (CI) and from the recursive marginal quantization
(RMQ) method. The parameters are: r = 0.15; n = 120; Nk = 400, ∀k = 1, · · · , n; T = 1; ϑ = 4; X0 = 100;
and for varying values of K.
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by optimal quantization. We estimate this quantity by the recursive marginal quantization method
introduced in this paper and compare the numerical results with those obtained from standard Monte
Carlo simulations.

5.2.2 Numerical results

To deal with numerical examples we set δ = 0.5, X0 = 100, and choose the interest rate r = 0.15.
We discretize the price process using the Euler scheme with n = 120 (regular) discretization steps and
quantize the Euler marginal processes by our proposed method. We put all the marginal quantization
grid sizes Nk equals to 400 except for X̂0 = X0 = 100 which grid size is N0 = 1. We estimate the
price of the Put option by

E
[(
K − X̂Γn

tn

)+]
=

Nn∑
i=1

(K − xNni )+ P
(
X̂Γn
tn = xNni

)
(37)

where tn = T , and where Γn = {xNn1 , · · · , xNnNn} is the quantizer of size Nn computed from the
Newton-Raphson algorithm (with 5 iterations) and where the associated weight are estimated from
(33).

We compare the prices obtained from the recursive marginal quantization (RMQ) method with
those obtained by the Monte Carlo (MC) simulations even for various values of ϑ with a fixed strike
K = 100 (see Table 1) or for varying values of the strike K with a fixed ϑ = 4 (see Table 2). For
the Monte Carlo simulations we set the sample size Mmc equal to 105 and 106 for K = 100 and to
Mmc = 105, 106 and 107 when making the strike K varying.

Remark 5.1. (on the computation time) (a) Remark that all the quantization grids Γk of sizes Nk =
400, for every k = 1, · · · , n = 120, and there companion weights are obtained in around 1 minute from
the Newton-Raphson algorithm with 5 iterations. Computations are performed using Scilab software
on a CPU 2.7 GHz and 4 Go memory computer.
(b) It is clear that once the grids and the associated weights are available, the estimation of the price by
RMQ method using the sum (37) is instantaneous (compared to a Monte Carlo simulation).

Remark 5.2. (Initialization of the Newton-Raphson algorithm) Let 0 = t0 < · · · < tn be the time
discretization steps, let X0 = x be the present value of the stock price process and suppose that the
grid sizes Nk are all equal. Since the random variable X̄t1 ∼ N (m0(x); v2

0(x)), in order to compute
the (optimal) N1-quantizer for X̄t1 we initialize the algorithm to v0(x)zN1 + m0(x), where zN1 is
the optimal N1-quantizer of the N (0; 1). Once we get the optimal N1-quantization Γ1 for X̄t1 and
its companion weights, we initialize the algorithm to Γ1 to perform the optimal N2-quantizer for X̄t2
and its companion weights, · · · , and so on, until we get the optimal Nn-quantizer for X̄tn and the
associated weights. Notice that doing so we observe no failure of the convergence in all the considered
examples.

Remark 5.3. We show in Figure 3 and Figure 4 two graphics where we depict on the abscissa axis the
optimal grids (of sizes Nk = 150) and on the ordinate axis the corresponding weights. The dynamics
of the price process in Figure 3 is given by

dXt = rXtdt+ σXtdWt, X0 = 86.3

with r = 0.03, σ = 0.05 whereas its dynamics in Figure 4 is given by

dXt = rXtdt+ ϑ
Xδ+1
t√

1 +X2
t

dWt, X0 = 100

with r = 0.15, ϑ = 0.7, δ = 0.5.
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For our numerical examples, we remark first that in all examples the prices obtained by RMQ stay
in the confidence interval induced by the MC price estimates. On the other hand the prices obtained by
the RMQ method are more precise (more especially when ϑ = 4 and K grows away from 100) than
those obtained by the MC method when Mmc = 105 or 106. Consequently, the RMQ method seems
to be more efficient than the MC when the sample size is less than 106. However, when increasing the
sample size to Mmc = 107 the two prices become closer (up to 10−2).

Remark 5.4. We remark that when the Monte Carlo sample sample size Mmc = 107 it takes about
2 minutes and 30 seconds to get a price using the C programming language on the same computer
described previously. Then, in this situation, it takes much more time to obtain a price by MC method
than by RMQ.

To strengthen the previous conclusions related to the local volatility model we compare the two
methods in the Black-Scholes framework where the stock price process evolves following the dynam-
ics:

dXt = rXtdt+ σXtdWt, X0 = 100.

In this setting the true prices are available and will serve us as a support for comparisons. The parame-
ters are chosen so that the model remains close to the Pseudo-CEV model: r = 0.15 and σ ≈ ϑXδ−1

0 .
Numerical results are printed in Tables 3 and Table 4 and confirm our conclusions on the Pseudo-CEV
model. We notice that in the Black-Scholes model, the estimated prices from the RMQ method are
close to the true prices (the best absolute error is of order 10−5 for a volatility σ = 5% and the worse
absolute error 2.10−2 is achieved with high volatility: σ = 40%). This shows the robustness of the
RMQ method even for reasonably high values of the volatility.

σ MC (105) MC (106) RMQ True price Abs. error

0.05 0.0015 0.00178 0.00176 0.00177 1.10−5

CI [0.0012;0.0019] [0.0017;0.0019]
0.06 0.0116 0.0109 0.0109 0.0112 3.10−4

CI [0.0104;0.0128] [0.0106;0.0113]
0.07 0.0365 0.0370 0.0369 0.0373 4.10−4

CI [0.0342;0.0387] [0.0363;0.0378]
0.08 0.0876 0.0876 0.0869 0.0875 6.10−4

CI [0.0836;0.0915] [0.0863;0.0888]
0.09 0.1666 0.1644 0.1647 0.1654 7.10−4

CI [0.1607;0.1724] [0.1622;0.1658]
0.10 0.269 0.271 0.271 0.272 1.10−3

CI [0.261;0.277] [0.271;0.273]
0.20 2.444 2.431 2.424 2.427 3.10−3

CI [2.410;2.479] [2.420;2.442]
0.30 5.455 5.469 5.470 5.474 4.10−3

CI [5.395;5.515] [5.450;5.549]
0.40 8.680 8.787 8.790 8.792 2.10−3

CI [8.598;8.763] [8.760;8.813]

Table 3: (Black-Scholes model) Comparison of the Put prices obtained from Monte Carlo (MC) simula-
tions (followed by its size) with associated confidence intervals (CI) and from the marginal quantization (RMQ)
method with the associated absolute error (Abs. error) w. r. t. the true price. The parameters are: r = 0.15;
n = 120; Nk = 400, ∀k = 1, · · · , n; T = 1; K = 100; X0 = 100 for varying values of σ.
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K MC (105) MC (106) RMQ True price Abs. error

100 8.680 8.787 8.790 8.792 2.10−3

CI [8.598;8.763] [8.760;8.813]
105 10.805 10.739 10.744 10.750 6.10−3

CI [10.71;10.90] [10.71;10.90]
110 12.86 12.89 12.90 12.91 1.10−2

CI [12.76;12.96] [12.86;12.93]
115 15.29 15.24 15.26 15.27 1.10−2

CI [15.18;15.40] [15.21;15.28]
120 17.66 17.81 17.79 17.81 1.10−2

CI [17.54;17.79] [17.78;17.85]
125 20.56 20.50 20.50 20.52 1.10−2

CI [20.43;20.69] [20.46;20.54]
130 23.28 23.37 23.37 23.39 2.10−2

CI [23.14;23.42] [23.34;23.43]

Table 4: (Black-Scholes model) Comparison of the Put prices obtained from Monte Carlo (MC) simula-
tions (followed by the size of the MC between brackets) with associated confidence intervals (CI) and from the
marginal quantization (RMQ) method with the associated absolute error (Abs. error) w. r. t. the true price. The
parameters are: r = 0.15; n = 120; Nk = 400, ∀k = 1, · · · , n; T = 1; σ = 40%; X0 = 100 for varying values
of K.
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Figure 3: ("Black-Scholes model ") dXt = rXtdt + σXtdWt, X0 = 86.3, r = 0.03, σ = 0.05. Abscissa axis: the
optimal grids, X̂tk = xik, tk = k∆, ∆ = 0.02, k = 1, · · · , 25, i = 1, · · · , Nk. Ordinate axis: the associated weights,
P(X̂tk = xik), k = 1, · · · , 25, i = 1, · · · , Nk. X̂t1 is depicted in dots ’•’, X̂t25 is represented by the symbol ’*’, t1 = 0.02
and t25 = 0.5 and the remaining in continuous line
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Figure 4: ("Pseudo-CEV model") dXt = rXtdt+ϑ(Xδ+1
t /(1+X2

t )−1/2)dWt,X0 = 100, r = 0.15, ϑ = 0.7, δ = 0.5.
Abscissa axis: the optimal grids, X̂tk = xik, tk = k∆, ∆ = 0.02, k = 1, · · · , 25, i = 1, · · · , Nk. Ordinate axis: the
associated weights. X̂t1 is depicted in dots ’•’, X̂t25 is represented by the symbol ’*’, t1 = 0.02 and t25 = 0.5 and the
remaining in continuous line.

Appendix

The proof of Lemma 3.2 needs a additional result we give below as a lemma.

Lemma. Let a ∈ Rd et let p ∈ (2, 3]. Then, ∀u ∈ Rd,

|a+ u|p ≤ |a|p + p|a|p−2(a|u) +
p(p+ 1)

2

(
|a|p−2|u|2 + |u|p

)
. (38)

Proof. Define the function g(u) = |u|p, ∀u = (u1, · · · , ud) ∈ Rd. We have (denoting by u? the
transpose of the the row vector u ∈ Rd),

∇g(u) = p|a+ u|p−1 a+ u

|a+ u|
and ∇2g(u) = p(p− 2)|a+ u|p−2 (a+ u)?(a+ u)

|a+ u|2
.

It follows from Taylor-Lagrange formula that

|a+ u|p = |a|p + p|a|p−2(a|u) +
p(p− 1)

2

|a+ ξ|p−2

|a+ u|2
∣∣u?((a+ u)?(a+ u)

)
u
∣∣+ p|a+ ξ|p−2|u|2,

where (·|·) stands for the inner product and where ξ = λuu, λu ∈ [0, 1]. However, owing to Cauchy-
Schwarz inequality we have ∣∣u?((a+ u)?(a+ u)

)
u
∣∣ ≤ |a+ u|2|u|2
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so that

|a+ u|p ≤ |a|p + p|a|p−2(a|u) +
p(p− 1)

2
|a+ ξ|p−2|u|2 + p|a+ ξ|p−2|u|2

≤ |a|p + p|a|p−2(a|u) +
p(p+ 1)

2
|a+ ξ|p−2|u|2.

Then, the result follows since |a+ ξ|p−2 ≤ |a|p−2 + |ξ|p−2 (because p− 2 ∈ (0, 1]) and |ξ| ≤ |u|.

We are now in position to prove Proposition 3.2.

Proof. (of Lemma 3.2.) The proof will be split into three steps.
STEP 1. Let A be a d×q-matrix. We prove that for any random variable Z such that E(Z) = 0 and
Z ∈ Lp(Ω,A,P)

E|a+
√

∆AZ|p ≤
(

1 +
(p+ 1)(p− 2)

2
∆
)
|a|p + ∆

(
1 + p+ ∆

p
2
−1
)
‖A‖pE|Z|p,

where ‖A‖2 = Tr(AA?). In fact, it follows from Equation (38) that

|a+
√

∆AZ|p ≤ |a|p + p∆
1
2 |a|p−2(a|AZ) +

p(p+ 1)

2

(
|a|p−2∆|AZ|2 + ∆

p
2 |AZ|p

)
.

Applying Young’s inequality with conjugate exponents p′ = p
p−2 and q′ = p

2 , we get

|a|p−2∆|AZ|2 ≤ ∆
( |a|p
p′

+
|AZ|p

q′

)
,

which leads to

|a+
√

∆AZ|p≤|a|p + p∆
1
2 |a|p−2(a|AZ) +

p(p+ 1)

2

(∆

p′
|a|p +

(∆

q′
+ ∆

p
2

)
|AZ|p

)
≤|a|p

(
1 +

p(p+ 1)

2p′
∆
)

+ p∆
1
2 |a|p−2(a|AZ) + ∆

(p(p+ 1)

2q′
+ ∆

p
2
−1
)
|AZ|p.

Taking the expectation yields (owing to the fact that E(Z) = 0)

E|a+
√

∆AZ|p ≤
(

1 +
(p+ 1)(p− 2)

2
∆
)
|a|p + ∆

(
1 + p+ ∆

p
2
−1
)
E|AZ|p.

As a consequence, we get

E|a+
√

∆AZ|p ≤
(

1 +
(p+ 1)(p− 2)

2
∆
)
|a|p + ∆

(
1 + p+ ∆

p
2
−1
)
‖A‖pE|Z|p.

STEP 2. Keeping in mind the result of the first step and setting for every t ∈ [0, T ] and x ∈ Rd,
a := x+ ∆b(t, x) and A := σ(t, x), we get (owing to the linear growth assumption on the coefficients
of the diffusion process)

|a| ≤ |x|(1 + L∆) + L∆ and ‖A‖p ≤ Lp(1 + |x|p),

where Lp = 2p−1Lp. It follows that (keep in mind that p ∈ (2, 3])

|a|p ≤ (1 + 2L∆)p
( 1 + L∆

1 + 2L∆
|x|+ L∆

1 + 2L∆

)p
≤ (1 + 2L∆)p

( 1 + L∆

1 + 2L∆
|x|p +

L∆

1 + 2L∆

)
≤ (1 + 2L∆)p|x|p + (1 + 2L∆)p−1L∆.
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Then, we derive

E|a+
√

∆AZ|p ≤
(

1 +
(p+ 1)(p− 2)

2
∆
)

(1 + 2L∆)p|x|p

+
(

1 +
(p+ 1)(p− 2)

2
∆
)

(1 + 2L∆)p−1L∆

+∆Lp

(
1 + p+ ∆

p
2
−1
)

(1 + |x|p)E|Z|p.

Using the inequality 1 + u ≤ eu, for every u ∈ R, we finally get

E|a+
√

∆AZ|p ≤
(
eκp∆ +Kp∆

)
|x|p +

(
eκp∆L+Kp

)
∆,

where κp :=
(

(p+1)(p−2)
2 + 2pL

)
and Kp := Lp

(
1 + p+ ∆

p
2
−1
)
E|Z|p.

STEP 3. Now, owing to the previous step and to the fact that for every k = 1, · · · , n, Zk is independent
from X̂k−1, we have

E|X̃k|p = E
[
E(|Ek(X̂k−1, Zk)|p|X̂k−1)

]
≤
(
eκp∆ +Kp∆

)
E|X̂k−1|p +

(
eκp∆L+Kp

)
∆.

Since by construction, X̂k is a stationary quantizer (with respect to X̃k) for every k = 0, · · · , n, we get

E|X̃k|p =
(
eκp∆ +Kp∆

)
E
∣∣E(X̃k−1|X̂k−1)

∣∣p +
(
eκp∆L+Kp

)
∆

≤
(
eκp∆ +Kp∆

)
E
(
E(|X̃k−1|p|X̂k−1)

)
+
(
eκp∆L+Kp

)
∆ (Jensen’s inequality)

=
(
eκp∆ +Kp∆

)
E|X̃k−1|p +

(
eκp∆L+Kp

)
∆.

We show by induction that for every k = 1, · · · , n,

E|X̃k|p ≤
(
eκp∆ +Kp∆

)kE|X̃0|p +
(
eκp∆L+Kp

)
∆
k−1∑
j=0

(
eκp∆ +Kp∆

)j
≤ eκp∆k

(
1 +Kp∆e

−κp∆
)k|x0|p +

(
eκp∆L+Kp

)
∆
k−1∑
j=0

eκp∆j
(
1 +Kp∆e

−κp∆
)j
.

Using the inequality 1 + u ≤ eu, for every u ∈ R, yields

E|X̃k|p ≤ eκp∆k
(
1 +Kp∆

)k|x0|p +
(
eκp∆L+Kp

)
∆
k−1∑
j=0

eκp∆j
(
1 +Kp∆

)j
≤ e(κp+Kp)∆k|x0|p +

(
eκp∆L+Kp

)
∆
k−1∑
j=0

e(κp+Kp)∆j

= e(κp+Kp)tk |x0|p + ∆
(
eκp∆L+Kp

)e(κp+Kp)tk − 1

e(κp+Kp)∆ − 1

≤ e(κp+Kp)tk |x0|p +
(
eκp∆L+Kp

)e(κp+Kp)tk − 1

κp +Kp
.

The last inequality follows from the fact that e(κp+Kp)∆ − 1 ≥ (κp +Kp)∆.
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