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In this note, we rigorously justify a conditioning argument which is often (explicitly or implicitly) used to prove the dynamic programming principle in the stochastic control literature. To this end, we set up controlled martingale problems in an unusual way.

Introduction

At the end of section 5 in [START_REF] Kabanov | A geometric approach to portfolio optimization in models with transaction costs[END_REF], Y. Kabanov and C. Klüppelberg write: `The dynamic programming principle (DPP) has a clear intuitive meaning. (. . . ) Our analysis in the literature reveals that it is dicult to nd a paper with a self-contained and complete proof even if the model of interest is of the simplest class, for instance, a linear dynamics. Typically, some formal arguments are given indicating that the rigorous proofs can be found elsewhere, preferably in treatises on controlled Markov processes. Tracking further references, one can observe that they often deal with slightly dierent models, other denitions of optimality, regular controls and so on. For instance, in Fleming and Soner [START_REF] Fleming | Controlled Markov Processes And Viscosity Solutions[END_REF] and Yong and Zhou [START_REF] Yong | Stochastic Controls. Hamiltonian Systems And HJB Equations[END_REF], the concept of control involves a choice of a stochastic basis.' The authors provide a complete proof for their particular model by using a conditioning argument which, due to the specic value function under consideration, reduces to a disintegration of the Wiener measure.

For controlled diusion processes problem, when the drift and diusion coecients depend continuously on the control, Krylov [START_REF] Krylov | Controlled Diusion Processes[END_REF]Chap.3,Thm.6] proves the DPP by approximating the admissible controls by sequences of adapted processes with simple paths. His proof includes the same result as our Theorem 3.3 below, but restricted to these approximating admissible controls. Fleming and Soner [START_REF] Fleming | Controlled Markov Processes And Viscosity Solutions[END_REF]Chap.4,Sec.7] also proceed by approximating admissible controls; however they assume that the diusion coecient is smooth and strictly elliptic, which allows them to use smoothness properties of the solutions to HamiltonJacobiBellmann equations. El Karoui, Huu Nguyen and Jeanblanc [START_REF] Karoui | Compactication methods in the control of degenerate diusions: existence of an optimal control[END_REF] prove the DPP in the context of relaxed controls taking values in a compact and convex subset of the set of positive Radon measures equipped with the vague convergence topology. In Bouchard and Touzi [START_REF] Bouchard | Weak dynamic programming principle for viscosity solutions[END_REF] and Nutz [START_REF] Nutz | A Quasi-Sure Approach to the Control of Non-Markovian Stochastic Dierential Equations[END_REF], the authors invoke a ow property whose proof does not seem to be available in the literature and is not so obvious to us in general situations (see our discussion in Section 4).

In their context of stochastic games problems, Fleming and Souganidis [START_REF] Fleming | On the existence of value functions of twoplayer, zero-sum stochastic dierential games[END_REF] We here limit ourselves to examine stochastic control problems rather than stochastic game problems as in [START_REF] Fleming | On the existence of value functions of twoplayer, zero-sum stochastic dierential games[END_REF], which avoids additional technicalities and heavy notation.

Notation

Let W := C(R + , R d ) be the canonical space of continuous functions from R + to R d , equipped with Wiener measure W. Denote the canonical ltration by F = (F s , s ≥ 0) and the total σ-algebra by F := s≥0 F s . Denote by 0 the null element in W. For all t in R + , w in W, dene the stopped path of w at time t by w t∧• = (w t∧s , s ≥ 0). For all w in W, the concatenation path w ⊗ t w in W is dened by

(w ⊗ t w) s := w s , if 0 ≤ s ≤ t, w s + w t -w t , if s ≥ t.
Let now E be a Polish space. For all s in R + and all E-valued F s random variable f Doob's functional representation theorem (see, e.g., Lemma 1.13 in Kallenberg [START_REF] Kallenberg | Foundations Of Modern Probability. Probability and its Applications Series[END_REF]) implies: f (w) = f (w s∧• ) for all w in W. Similarly, let g be an arbitrary E-valued Fprogressively measurable process; then g(s, w) = g(s, w s∧• ) for all (s, w) in R + × W.

For all (t, w) in R + ×W and all E-valued Frandom variable f , dene the shifted Frandom variable f t,w by ∀w ∈ W, f t,w (w) := f (w ⊗ t w).

Notice that, the path w being xed, f t,w is independent of F t . Similarly, let g be any E-valued Fprogressively measurable process, dene the shifted Fprogressively measurable process by g t,w := (g t,w s , s ≥ 0). Again it is clear that g t,w is independent of F t .

Finally, denote W 2 by W. In all the sequel, we identify W with the canonical space of continuous functions from R + to R 2d . In particular, we naturally dene the ltration F = ( Fs , s ≥ 0), the σalgebra F, the concatenation of paths and the shifted processes on W, and the canonical element in W is usually denoted by w = (w, w ). Denote by U the collection of all U valued Bprogressively measurable processes and, for all t in R + , denote by U t the collection of all ν ∈ U independent of B t . Given a control ν in U, consider the following system of controlled stochastic dierential equations (SDEs):

dX s = b(s, X, ν s )ds + σ(s, X, ν s )dB s . (1) 
A strong solution to the equation ( 1) with control ν in U and initial condition

(t, x) in R + × W is a Bprogressively measurable process (X t,x,ν θ , θ ≥ 0) such that, for all θ in [t, +∞), X t,x,ν θ = x t + θ t b(s, X t,x,ν , ν s )ds + θ t σ(s, X t,x,ν , ν s )dB s , P -a.s. (2) 
and X t,x,ν θ = x θ for all θ in [0, t]. As U is Polish, one again can apply Doob's functional representation theorem: for all ν in U, there exists a F-progressively measurable function g ν from R + × W to U such that for all s in R + and ω in Ω,

ν s (ω) = g ν (s, B(ω)) = g ν (s, B s∧• (ω)).
Let t in R + and ω ∈ Ω be xed. Dene the shifted control process (ν t,ω s , s ≥ 0) as follows: for all ω in Ω,

s in R + ν t,ω s (ω) := g t,B(ω) ν (s, B(ω)) = g ν (s, B(ω) ⊗ t B(ω)) .
Notice that, for all xed ω, ν t,ω belongs to U t .

Stochastic control problems involve the choice of a class of admissible controls.

We now formulate our hypothesis on this class.

Hypothesis 3.2. Let A ⊂ U be the collection of admissible controls and A t be the subset of those which are independent of B t . We assume that, for all admissible control ν, t in R + and Palmost all ω in Ω, the shifted control ν t,ω is also admissible.

Theorem 3.3. Under Hypotheses 3.1 and 3.2, assume that there exists a unique strong solution to [START_REF] Borkar | Optimal Control Of Diusion Processes[END_REF] for all admissible control and initial condition. Let (t, x, ν) be in R + × W × A and τ be a nite Bstopping time. Then for all measurable function

f : W → R + , E f X t,x,ν B τ (ω) = F τ (ω), X t,x,ν τ ∧• (ω), ν τ (ω),ω , P(dω) -a.s., (3) 
where, for all

s in R + , y in W, µ in A s , F (s, y, µ) := E [f (X s,y,µ )] .
Remark 3.4. (i) To ensure the existence and uniqueness of a strong solution to [START_REF] Borkar | Optimal Control Of Diusion Processes[END_REF] for all control and initial condition, a sucient condition is that the functions b and σ are uniformly Lipschitz in x, i.e., there exists L > 0 such that for all s in R + , (x, y) in W and u in U ,

|b(t, x, u) -b(t, y, u)| + σ(t, x, u) -σ(t, y, u) ≤ L sup 0≤s≤t |x s -y s |.
For a proof, see, e.g., Rogers and Williams [START_REF] Rogers | Diusions, Markov processes, and Martingales[END_REF]. For more general conditions, see, e.g., Protter [START_REF] Protter | Stochastic integration and dierential equations[END_REF] or Jacod and Memin [START_REF] Jacod | Weak and strong solutions to stochastic dierential equations[END_REF].

(ii) We here suppose that b and σ are bounded to apply, in our Section 6, the theorem 6.1.3 in [START_REF] Stroock | Multidimensional Diusion Processes[END_REF] as it is stated. However, classical localization arguments allow one to deal, e.g., with functions satisfying: there exists C > 0 such that, for all

(t, x) in R + × W, sup u∈U (|b(t, x, u)| + σ(t, x, u) ) ≤ C 1 + sup 0≤s≤t |x s | .
(iii) Instead of considering positive functions f one may consider functions with suitable growth conditions at innity.

(iv) It is not clear how to dene the measurability of the function F . However Equality [START_REF] Karoui | Compactication methods in the control of degenerate diusions: existence of an optimal control[END_REF] shows that the r.h.s. is a measurable function of ω except on a B τ measurable null event (or, equivalently, is a r.v. dened on the Pcompletion of the σeld B τ ).

The proof of Theorem 3.3 is postponed to Section 6. We conclude this section by showing how it is used to solve stochastic control problems.

Let Φ : W → R + be a positive reward function. Dene the value function of the control problem by

V (t, x) := sup ν∈A E Φ(X t,x,ν ) . ( 4 
)
Proposition 3.5. Suppose that the conditions in Theorem 3.3 hold true. For all

(t, x) in R + × W, it holds V (t, x) = sup µ∈A t E Φ(X t,x,µ ) . (5)
Suppose in addition that the value function V is measurable. Then, for all (t, x) in R + × W and all B-stopping times τ taking values in [t, ∞), one has

V (t, x) ≤ sup ν∈A E V (τ, X t,x,ν τ ∧• ) . (6) 
Proof. Equality (5) follows from Theorem 3.3 in the particular case τ ≡ t. Then Theorem 3.3 readily implies (6).

Remark 3.6. Inequality [START_REF] Fleming | Controlled Markov Processes And Viscosity Solutions[END_REF] is the `easy' part of the dynamic programming principle (DPP). Equality [START_REF] Fleming | Optimal control of Markov processes[END_REF], combined with the continuity of the value function, is a key step to classical proofs of the dicult part of the DPP.
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Discussions on Theorem 3.3

The intutive meaning of Theorem 3.3 is as follows.

Given the probability space (Ω, B, P), suppose that (P ω, ω ∈ Ω) is a regular conditional probability distribution (r.c.p.d.) of P given B τ (for a denition, see, e.g., Stroock and Varadhan [START_REF] Stroock | Multidimensional Diusion Processes[END_REF]). For P-a.e. ω, one clearly has P ω(ν s = ν

τ (ω),ω s , s ≥ τ (ω)) = 1, P ω(X t,x,ν s = X t,x,ν s (ω), 0 ≤ s ≤ τ (ω)) = 1
, and (B s ) s≥τ (ω) is still a Brownian motion under P ω. Equality (3) would be obvious, when X t,x,ν solves the following equation under P and P ω for P-almost all ω:

X t,x,ν θ∨τ = X t,x,ν τ + θ∨τ τ b(s, X t,x,ν τ , ν s )ds + θ∨τ τ σ(s, X t,x,ν τ , ν s )dB s . (7) 
However this may not be true because the stochastic integral involved in [START_REF] Fleming | On the existence of value functions of twoplayer, zero-sum stochastic dierential games[END_REF] (or in (2)) depends on the reference probability measure.

One possible solution to this issue is to use a pathwise construction of stochastic integrals under dierent probability measures, that is, to construct a universal process such that (2) or ( 7) holds true under the probability measure P as well as the conditional probabilities P ω. For such a construction, see Nutz [START_REF] Nutz | Pathwise Construction of Stochastic Integrals[END_REF] and references therein, noticing that the construction in [START_REF] Nutz | Pathwise Construction of Stochastic Integrals[END_REF] uses the median limit which assumes the axiom of choice and the Continuum Hypothesis.

Another possible way is to extend to controlled SDEs the ow property enjoyed by strong solutions in the sense of Ikeda and Watanabe [START_REF] Ikeda | Stochastic Dierential Equations And Diusion Processes[END_REF]. However, as mentioned in the introduction, this property seems questionable to us for controlled SDEs [START_REF] Borkar | Optimal Control Of Diusion Processes[END_REF].

The issue is that, for each control process, Equality (2) holds true except on a null set which depends on this control.

We thus follow another strategy. We notice that (3) concerns the probability law of the controlled process. This leads us to introduce a controlled martingale problem formulation which allows us to justify (3) with weak conditions under which strong solutions may even not exist.
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Conditioning solutions to controlled martingale problems

The notion of controlled martingale problems appeared a long time ago: see, e.g.,

Fleming [START_REF] Fleming | Optimal control of Markov processes[END_REF]. They are usually posed on the state space of the controlled process.

Here we introduce a dierent formulation.

We start with dening new maps. Let b and σ satisfy the conditions in Hypothesis 3.1. Denote again U the collection of all U valued Fprogressively measurable processes and U t the subset of controls independent of F t . For all (t, ν) in R + × U,

dene the maps bt,ν : [t, ∞) × W → R d and σt,ν : [t, ∞) × W → S 2d by bt,ν (s, w) := b(s, w, ν s (w )) 0 , s ≥ t,
σt,ν (s, w) := σ(s, w, ν s (w ))

Id d , s ≥ t,
where w = (w, w ) is in W. These maps result from the following observation. Suppose that the equation ( 1) has a strong solution X t,x,ν as dened in Section 3.

Then the process Xt,x,ν := (X t,x,ν , B) solves

Xt,x,ν θ = x t B t + θ t bt,ν (s, Xt,x,ν )ds + θ t σt,ν (s, Xt,x,ν )dB s , θ ≥ t.
To these maps we associate the following dierential operator acting on functions

ϕ in C 2 (R 2d ): Lt,ν s ϕ( w) := bt,ν (s, w) • Dϕ( ws ) + 1 2
Tr āt,ν (s, w)D 2 ϕ( ws ) ,

where Tr stands for the trace operator and āt,

Now, for all t ≥ 0, ν be in U, and

ϕ in C 2 (R 2d ), dene the process ( M t,ν,ϕ θ , θ ≥ t) on the enlarged space W by M t,ν,ϕ θ ( w) := ϕ( wθ ) - θ t Lt,ν s ϕ( w)ds, θ ≥ t. (8) 
We now introduce our two notions of controlled martingale problems.

Denition 5.1. Given (t, x) in R + × W and ν in U, a probability measure Pt,x,ν on ( W, F) is a solution to the controlled martingale problem associated to (1) with control ν and initial condition (t, x) if, for all function ϕ in C 2 c (R 2d ), the process ( M t,ν,ϕ θ , θ ≥ t) is a F-martingale under Pt,x,ν , Pt,x,ν (w s = x s , ∀ 0 ≤ s ≤ t) = 1, and Pt,x,ν (w ∈ A) = W(A) for every A in F t , where W stands for the Wiener measure. Denition 5.2. Given (t, x, y) in R + × W and µ in U t , a probability measure Pt,x,y,µ on ( W, F) is a solution to the shifted controlled martingale problem associated to [START_REF] Borkar | Optimal Control Of Diusion Processes[END_REF] with control µ and initial condition (t, x, y) if, for all function ϕ in C 2 c (R 2d ), the process ( M t,µ,ϕ θ , θ ≥ t) is a F-martingale under Pt,x,y,µ and Pt,x,y,µ (w

s = x s , w s = y s , ∀ 0 ≤ s ≤ t) = 1.
Before stating our main result we reformulate Hypothesis 3.2 on the set of admissible controls in the context of the canonical space W.

Hypothesis 5.3. Let A ⊂ U be the collection of admissible controls and A t be the subset of those which are independent of F t . We assume that, for all admissible control ν, for all t in R + and W-almost all w in W, the shifted control ν t,w is also admissible.

We now are in a position to rigorously state and prove the conditioning property which sustains the DPP. Theorem 5.4. Under Hypotheses 3.1 and 5.3, assume that there exists a unique solution to both martingale problems in Denitions 5.1 and 5.2 associated to [START_REF] Borkar | Optimal Control Of Diusion Processes[END_REF] for each admissible control and initial condition. Let (t, x, ν) ∈ R + × W × A, τ be a F-stopping time taking value in [t, ∞). Let ( Pt,x,ν w , w = (w, w ) ∈ W) be a regular conditional probability of Pt,x,ν given Fτ . Then Pt,x,ν w = Pτ(w),w,ν τ (w),w , Pt,x,ν (dw) -a.s.

Equality [START_REF] Jacod | Weak and strong solutions to stochastic dierential equations[END_REF] shows that the r.h.s. is a measurable function of w except on a Fτ measurable null event (see Remark 3.4 (iv) ).

Proofs

Proof of Theorem 5. [START_REF] Karoui | Capacities, measurable selection and dynamic programming[END_REF] The result is a direct consequence of the stability of the martingale property under conditioning (see, e.g., Theorem 1.2.10 in Stroock and

Varadhan [START_REF] Stroock | Multidimensional Diusion Processes[END_REF]). Let ( Pt,x,ν w , w = (w, w ) ∈ W) be a r.c.p.d. of Pt,x,ν given Fτ . From Theorem 6.1.3 in [START_REF] Stroock | Multidimensional Diusion Processes[END_REF], there exists a null set N in Fτ such that, for all function ϕ in C 2 c (R 2d ), the process ( M t,ν,ϕ θ , θ ≥ τ (w)) dened by ( 8) is a F-martingale under Pt,x,ν w for all w in W \ N . Let w in W \ N be xed. Observe that Pt,x,ν w bt,ν (s, w) = bτ(w),ν τ (w),w (s, w), ∀s ≥ τ (w) = 1, Pt,x,ν w σt,ν (s, w) = στ(w),ν τ (w),w (s, w), ∀s ≥ τ (w) = 1.

Hence, for all function ϕ in C 2 c (R 2d ), the process ( M τ ( w),ν τ (w),w ,ϕ , θ ≥ τ (w)) is a F-martingale under Pt,x,ν w . By uniqueness of the solution to the shifted controlled martingale problem associated to (1) with control ν τ ( w),w and initial condition (τ (w), w), we deduce that Pt,x,ν w = Pτ(w),w,ν τ (w),w for all w ∈ W \ N .

Proof of Theorem 3.3 Under the hypotheses of Theorem 3.3, the hypotheses of Theorem 5.4 are satised. Indeed, for all (t, x) in R + × W and ν in A, the law of (X t,x,ν , B) on the probability space (Ω, B, P) provides a solution to the controlled martingale problem associated to (1) with control ν and initial condition (t, x). The uniqueness follows directly from a corollary to Theorem 4.1.1 in Ikeda-Watanabe [START_REF] Ikeda | Stochastic Dierential Equations And Diusion Processes[END_REF] (or from Corollary 5.4.9 in Karatzas and Shreve [START_REF] Karatzas | Brownian Motion And Stochastic Calculus[END_REF]). Hence, for all (t, x, ν

) in R + × W × A, L P (X t,x,ν , B) = Pt,x,ν . (10) 
Similarly, for all µ be in A t , the law (X t,x,µ , y ⊗ t B) is the unique solution to the shifted controlled martingale problem associated to (1) with control µ and initial condition (t, x, y). Hence L P (X t,x,ν , y ⊗ t B) = Pt,x,y,ν . 

(ω) = g Y (B τ ∧• (ω)) = g Y (B(ω)).
The random time τ (w, w ) := τ (w ) on W clearly is an F-stopping time. Successively using [START_REF] Kallenberg | Foundations Of Modern Probability. Probability and its Applications Series[END_REF], [START_REF] Karatzas | Brownian Motion And Stochastic Calculus[END_REF] and ( 9), we obtain = E F τ (ω), X t,x,ν (ω), ν τ (ω),ω Y (ω) = E F τ (ω), X t,x,ν τ ∧• (ω), ν τ (ω),ω Y (ω) ,

E f X t,x,ν (ω) Y (ω) = E Pt,x,ν f ( 
where ( Pt,x,ν w , w ∈ W) is a r.c.p.d. of Pt,x,ν given Fτ . This completes the proof.

Conclusion and perspectives

We have rigorously justied a classical key argument in the proof of the DPP under weak hypotheses. To go further and prove the DPP, one usually needs that the value function satises some semi-continuity or continuity property (see, e.g., [START_REF] Borkar | Optimal Control Of Diusion Processes[END_REF][START_REF] Bouchard | Weak dynamic programming principle for viscosity solutions[END_REF][START_REF] Karoui | Compactication methods in the control of degenerate diusions: existence of an optimal control[END_REF][START_REF] Fleming | Controlled Markov Processes And Viscosity Solutions[END_REF][START_REF] Fleming | On the existence of value functions of twoplayer, zero-sum stochastic dierential games[END_REF][START_REF] Krylov | Controlled Diusion Processes[END_REF][START_REF] Tang | Finite horizon stochastic optimal switching and impulse controls with a viscosity solution approach[END_REF][START_REF] Yong | Stochastic Controls. Hamiltonian Systems And HJB Equations[END_REF] among many other references). Recent advances allow one to obtain the DPP without such regularity properties: see, e.g., Neufeld and Nutz [START_REF] Neufeld | Superreplication under Volatility Uncertainty for Measurable Claims[END_REF],

El Karoui and Tan [START_REF] Karoui | Capacities, measurable selection and dynamic programming[END_REF].

In principle, Theorems 3.3 and 5.4 can be extended to controlled stochastic dierential equations driven by Poisson random measures. However, even for uncontrolled systems, the uniqueness of solutions to classical martingale problems under weak hypotheses on the coecients is a dicult issue: see, e.g., Lepeltier and Marchal [START_REF] Lepeltier | Problème des martingales et équations différentielles stochastiques associées à un opérateur intégrodiférentiel[END_REF].

Finally, it is natural to dene an optimal control problem in terms of our controlled martingale problems by setting the value function as V (t, x) := sup ν∈A E Pt,x,ν [f (w)].

In view of Theorem 5.4, the conclusions in Proposition 3.5 hold true for V . Thus an interesting issue is to seek fairly general conditions on b and σ under which V satises the DPP and is a viscosity solution to a HamiltonJacobiBellmann equation.

  deduce sub-optimality and super-optimality dynamic principles from a conditioning property stated in their technical Lemma 1.11 whose proof is only sketched. As this lemma (reduced to the case of stochastic control problems) is actually crucial in several approaches to the DPP (see, e.g., its explicit or implicit use in Tang and Yong [21, Sec.4], Yong and Zhou [22, Lemma 3.2], Borkar [1, Proof of Theorem 1.1, Chap.3]), we nd it useful to propose a precise formulation and a detailed justication, and to enlighten that properly dened controlled martingale problems are key ingredients in this context.
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  Conditioning strong solutions to controlled SDEs Let (Ω, B, P) be a probability space embedded with a standard Brownian motion (B s , s ≥ 0). Denote by B = (B s , s ≥ 0) the natural ltration generated by the Brownian motion. Let in addition U be a Polish space. Hypothesis 3.1. Let b be a map from R + × W × U to R d and σ a map from R + × W × U to the space S d of square matrices of order d. Assume that: (i) b and σ are Borel measurable, (ii) for all u in U , b(•, •, u) and σ(•, •, u) are Fprogressively measurable, (iii) b and σ are bounded.

( 11 )

 11 Let (t, x, ν) in R + × W × A be xed. Let f : W → R + be a positive Fmeasurable function. Let Y be an arbitrary positive B τ random variable. From Doob's functional representation theorem, there exist a F-stopping time τ and an Fmeasurable positive function g Y dened on W such that τ (ω) = τ (B(ω)) and Y

E

  Pτ(w), w,ν τ (w),w [f (w)] g Y (w )