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A note on solutions to controlled martingale problems

and their conditioning
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Abstract

In this note, we rigorously justify a conditioning argument which is often (explic-
itly or implicitly) used to prove the dynamic programming principle in the stochastic
control literature. To this end, we set up controlled martingale problems in an un-
usual way.
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1 Introduction

At the end of section 5 in [12], Y. Kabanov and C. Klüppelberg write: `The dynamic
programming principle (DPP) has a clear intuitive meaning. (. . . ) Our analysis in
the literature reveals that it is di�cult to �nd a paper with a self-contained and
complete proof even if the model of interest is of the simplest class, for instance,
a linear dynamics. Typically, some �formal� arguments are given indicating that
the �rigorous� proofs can be found elsewhere, preferably in treatises on controlled
Markov processes. Tracking further references, one can observe that they often deal
with slightly di�erent models, other de�nitions of optimality, �regular� controls and
so on. For instance, in Fleming and Soner [6] and Yong and Zhou [22], the concept
of control involves a choice of a stochastic basis.' The authors provide a complete
proof for their particular model by using a conditioning argument which, due to
the speci�c value function under consideration, reduces to a disintegration of the
Wiener measure.

For controlled di�usion processes problem, when the drift and di�usion coe�-
cients depend continuously on the control, Krylov [13, Chap.3,Thm.6] proves the
DPP by approximating the admissible controls by sequences of adapted processes
with simple paths. His proof includes the same result as our Theorem 3.3 below,
but restricted to these approximating admissible controls. Fleming and Soner [6,
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Chap.4, Sec.7] also proceed by approximating admissible controls; however they as-
sume that the di�usion coe�cient is smooth and strictly elliptic, which allows them
to use smoothness properties of the solutions to Hamilton�Jacobi�Bellmann equa-
tions. El Karoui, Huu Nguyen and Jeanblanc [3] prove the DPP in the context of
relaxed controls taking values in a compact and convex subset of the set of positive
Radon measures equipped with the vague convergence topology. In Bouchard and
Touzi [2] and Nutz [17], the authors invoke a �ow property whose proof does not
seem to be available in the literature and is not so obvious to us in general situations
(see our discussion in Section 4).

In their context of stochastic games problems, Fleming and Souganidis [7] de-
duce sub-optimality and super-optimality dynamic principles from a conditioning
property stated in their technical Lemma 1.11 whose proof is only sketched. As
this lemma (reduced to the case of stochastic control problems) is actually crucial
in several approaches to the DPP (see, e.g., its explicit or implicit use in Tang and
Yong [21, Sec.4], Yong and Zhou [22, Lemma 3.2], Borkar [1, Proof of Theorem 1.1,
Chap.3]), we �nd it useful to propose a precise formulation and a detailed justi�ca-
tion, and to enlighten that properly de�ned controlled martingale problems are key
ingredients in this context.

We here limit ourselves to examine stochastic control problems rather than
stochastic game problems as in [7], which avoids additional technicalities and heavy
notation.

2 Notation

Let W := C(R+,Rd) be the canonical space of continuous functions from R+ to Rd,
equipped with Wiener measure W. Denote the canonical �ltration by F = (Fs, s ≥
0) and the total σ-algebra by F :=

∨
s≥0Fs. Denote by 0 the null element in W.

For all t in R+, w in W, de�ne the stopped path of w at time t by wt∧· =
(wt∧s, s ≥ 0). For all w in W, the concatenation path w ⊗t w in W is de�ned by

(w ⊗t w)s :=

{
ws, if 0 ≤ s ≤ t,
ws + wt − wt, if s ≥ t.

Let now E be a Polish space. For all s in R+ and all E-valued Fs�random vari-
able f Doob's functional representation theorem (see, e.g., Lemma 1.13 in Kallen-
berg [10]) implies: f(w) = f(ws∧·) for all w in W. Similarly, let g be an arbitrary
E-valued F�progressively measurable process; then g(s, w) = g(s, ws∧·) for all (s, w)
in R+ ×W.

For all (t,w) in R+×W and all E-valued F�random variable f , de�ne the shifted
F�random variable f t,w by

∀w ∈W, f t,w(w) := f(w ⊗t w).

Notice that, the path w being �xed, f t,w is independent of Ft. Similarly, let g be
any E-valued F�progressively measurable process, de�ne the shifted F�progressively
measurable process by gt,w := (gt,ws , s ≥ 0). Again it is clear that gt,w is independent
of Ft.

Finally, denote W2 by W̄. In all the sequel, we identify W̄ with the canonical
space of continuous functions from R+ to R2d. In particular, we naturally de�ne
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the �ltration F̄ = (F̄s, s ≥ 0), the σ�algebra F̄ , the concatenation of paths and
the shifted processes on W̄, and the canonical element in W̄ is usually denoted by
w̄ = (w,w′).

3 Conditioning strong solutions to controlled

SDEs

Let (Ω,B,P) be a probability space embedded with a standard Brownian motion
(Bs, s ≥ 0). Denote by B = (Bs, s ≥ 0) the natural �ltration generated by the
Brownian motion. Let in addition U be a Polish space.

Hypothesis 3.1. Let b be a map from R+ ×W × U to Rd and σ a map from
R+ ×W × U to the space Sd of square matrices of order d. Assume that:
(i) b and σ are Borel measurable,
(ii) for all u in U , b(·, ·, u) and σ(·, ·, u) are F�progressively measurable,
(iii) b and σ are bounded.

Denote by U the collection of all U�valued B�progressively measurable processes
and, for all t in R+, denote by U t the collection of all ν ∈ U independent of Bt. Given
a control ν in U , consider the following system of controlled stochastic di�erential
equations (SDEs):

dXs = b(s,X, νs)ds + σ(s,X, νs)dBs. (1)

A strong solution to the equation (1) with control ν in U and initial condition (t,x)
in R+ ×W is a B�progressively measurable process (Xt,x,ν

θ , θ ≥ 0) such that, for
all θ in [t,+∞),

Xt,x,ν
θ = xt +

∫ θ

t
b(s,Xt,x,ν , νs)ds+

∫ θ

t
σ(s,Xt,x,ν , νs)dBs, P− a.s. (2)

and Xt,x,ν
θ = xθ for all θ in [0, t].

As U is Polish, one again can apply Doob's functional representation theorem:
for all ν in U , there exists a F-progressively measurable function gν from R+ ×W
to U such that for all s in R+ and ω in Ω,

νs(ω) = gν(s,B(ω)) = gν(s,Bs∧·(ω)).

Let t in R+ and ω̂ ∈ Ω be �xed. De�ne the shifted control process (νt,ω̂s , s ≥ 0) as
follows: for all ω in Ω, s in R+

νt,ω̂s (ω) := gt,B(ω̂)
ν (s,B(ω)) = gν (s,B(ω̂)⊗t B(ω)) .

Notice that, for all �xed ω̂, νt,ω̂ belongs to U t.
Stochastic control problems involve the choice of a class of admissible controls.

We now formulate our hypothesis on this class.

Hypothesis 3.2. Let A ⊂ U be the collection of admissible controls and At be
the subset of those which are independent of Bt. We assume that, for all admissible
control ν, t in R+ and P�almost all ω̂ in Ω, the shifted control νt,ω̂ is also admissible.
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Theorem 3.3. Under Hypotheses 3.1 and 3.2, assume that there exists a unique
strong solution to (1) for all admissible control and initial condition. Let (t,x, ν) be
in R+×W×A and τ be a �nite B�stopping time. Then for all measurable function
f : W→ R+,

E
[
f
(
Xt,x,ν

) ∣∣∣Bτ] (ω) = F
(
τ(ω), Xt,x,ν

τ∧· (ω), ντ(ω),ω
)
, P(dω)− a.s., (3)

where, for all s in R+, y in W, µ in As,

F (s,y, µ) := E [f (Xs,y,µ)] .

Remark 3.4. (i) To ensure the existence and uniqueness of a strong solution to (1)
for all control and initial condition, a su�cient condition is that the functions b and
σ are uniformly Lipschitz in x, i.e., there exists L > 0 such that for all s in R+,
(x,y) in W̄ and u in U ,

|b(t,x, u)− b(t,y, u)|+ ‖σ(t,x, u)− σ(t,y, u)‖ ≤ L sup
0≤s≤t

|xs − ys|.

For a proof, see, e.g., Rogers and Williams [15]. For more general conditions, see,
e.g., Protter [19] or Jacod and Memin [9].

(ii) We here suppose that b and σ are bounded to apply, in our Section 6, the
theorem 6.1.3 in [20] as it is stated. However, classical localization arguments allow
one to deal, e.g., with functions satisfying: there exists C > 0 such that, for all (t,x)
in R+ ×W,

sup
u∈U

(|b(t,x, u)|+ ‖σ(t,x, u)‖) ≤ C

(
1 + sup

0≤s≤t
|xs|
)
.

(iii) Instead of considering positive functions f one may consider functions with
suitable growth conditions at in�nity.

(iv) It is not clear how to de�ne the measurability of the function F . However
Equality (3) shows that the r.h.s. is a measurable function of ω except on a Bτ�
measurable null event (or, equivalently, is a r.v. de�ned on the P�completion of the
σ��eld Bτ ).

The proof of Theorem 3.3 is postponed to Section 6. We conclude this section
by showing how it is used to solve stochastic control problems. Let Φ : W → R+

be a positive reward function. De�ne the value function of the control problem by

V (t,x) := sup
ν∈A

E
[
Φ(Xt,x,ν)

]
. (4)

Proposition 3.5. Suppose that the conditions in Theorem 3.3 hold true. For all
(t,x) in R+ ×W, it holds

V (t,x) = sup
µ∈At

E
[
Φ(Xt,x,µ)

]
. (5)

Suppose in addition that the value function V is measurable. Then, for all (t,x) in
R+ ×W and all B-stopping times τ taking values in [t,∞), one has

V (t,x) ≤ sup
ν∈A

E
[
V (τ,Xt,x,ν

τ∧· )
]
. (6)
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Proof. Equality (5) follows from Theorem 3.3 in the particular case τ ≡ t. Then
Theorem 3.3 readily implies (6).

Remark 3.6. Inequality (6) is the `easy' part of the dynamic programming principle
(DPP). Equality (5), combined with the continuity of the value function, is a key
step to classical proofs of the di�cult part of the DPP.

4 Discussions on Theorem 3.3

The intutive meaning of Theorem 3.3 is as follows.
Given the probability space (Ω,B,P), suppose that (Pω̂, ω̂ ∈ Ω) is a regular

conditional probability distribution (r.c.p.d.) of P given Bτ (for a de�nition, see,

e.g., Stroock and Varadhan [20]). For P−a.e. ω̂, one clearly has Pω̂(νs = ν
τ(ω̂),ω̂
s , s ≥

τ(ω̂)) = 1, Pω̂(Xt,x,ν
s = Xt,x,ν

s (ω̂), 0 ≤ s ≤ τ(ω̂)) = 1, and (Bs)s≥τ(ω̂) is still a
Brownian motion under Pω̂. Equality (3) would be obvious, when Xt,x,ν solves the
following equation under P and Pω̂ for P−almost all ω̂:

Xt,x,ν
θ∨τ = Xt,x,ν

τ +
∫ θ∨τ

τ
b(s,Xt,x,ν

τ , νs)ds+
∫ θ∨τ

τ
σ(s,Xt,x,ν

τ , νs)dBs. (7)

However this may not be true because the stochastic integral involved in (7) (or in
(2)) depends on the reference probability measure.

One possible solution to this issue is to use a pathwise construction of stochastic
integrals under di�erent probability measures, that is, to construct a universal pro-
cess such that (2) or (7) holds true under the probability measure P as well as the
conditional probabilities Pω̂. For such a construction, see Nutz [18] and references
therein, noticing that the construction in [18] uses the median limit which assumes
the axiom of choice and the Continuum Hypothesis.

Another possible way is to extend to controlled SDEs the �ow property enjoyed
by strong solutions in the sense of Ikeda and Watanabe [8]. However, as mentioned
in the introduction, this property seems questionable to us for controlled SDEs (1).
The issue is that, for each control process, Equality (2) holds true except on a null
set which depends on this control.

We thus follow another strategy. We notice that (3) concerns the probability law
of the controlled process. This leads us to introduce a controlled martingale problem
formulation which allows us to justify (3) with weak conditions under which strong
solutions may even not exist.

5 Conditioning solutions to controlled martin-

gale problems

The notion of controlled martingale problems appeared a long time ago: see, e.g.,
Fleming [5]. They are usually posed on the state space of the controlled process.
Here we introduce a di�erent formulation.

We start with de�ning new maps. Let b and σ satisfy the conditions in Hypoth-
esis 3.1. Denote again U the collection of all U�valued F�progressively measurable
processes and U t the subset of controls independent of Ft. For all (t, ν) in R+ ×U ,

5



de�ne the maps b̄t,ν : [t,∞)× W̄→ Rd and σ̄t,ν : [t,∞)× W̄→ S2d by

b̄t,ν(s, w̄) :=
(
b(s, w, νs(w′))

0

)
, s ≥ t,

σ̄t,ν(s, w̄) :=
(
σ(s, w, νs(w′))

Idd

)
, s ≥ t,

where w̄ = (w,w′) is in W̄. These maps result from the following observation.
Suppose that the equation (1) has a strong solution Xt,x,ν as de�ned in Section 3.
Then the process X̄t,x,ν := (Xt,x,ν , B) solves

X̄t,x,ν
θ =

(
xt
Bt

)
+
∫ θ

t
b̄t,ν(s, X̄t,x,ν)ds+

∫ θ

t
σ̄t,ν(s, X̄t,x,ν)dBs, θ ≥ t.

To these maps we associate the following di�erential operator acting on functions
ϕ in C2(R2d):

L̄t,νs ϕ(w̄) := b̄t,ν(s, w̄) ·Dϕ(w̄s) +
1
2
Tr
(
āt,ν(s, w̄)D2ϕ(w̄s)

)
,

where Tr stands for the trace operator and

āt,ν(s, w̄) := σ̄t,ν(s, w̄)σ̄t,ν(s, w̄)∗.

Now, for all t ≥ 0, ν be in U , and ϕ in C2(R2d), de�ne the process (M̄ t,ν,ϕ
θ , θ ≥ t)

on the enlarged space W̄ by

M̄ t,ν,ϕ
θ (w̄) := ϕ(w̄θ)−

∫ θ

t
L̄t,νs ϕ(w̄)ds, θ ≥ t. (8)

We now introduce our two notions of controlled martingale problems.

De�nition 5.1. Given (t,x) in R+ ×W and ν in U , a probability measure P̄t,x,ν
on (W̄, F̄) is a solution to the controlled martingale problem associated to (1) with
control ν and initial condition (t,x) if, for all function ϕ in C2

c (R2d), the process
(M̄ t,ν,ϕ

θ , θ ≥ t) is a F̄-martingale under P̄t,x,ν , P̄t,x,ν(ws = xs, ∀ 0 ≤ s ≤ t) = 1, and
P̄t,x,ν(w′ ∈ A) = W(A) for every A in Ft, where W stands for the Wiener measure.

De�nition 5.2. Given (t,x,y) in R+×W̄ and µ in U t, a probability measure P̄t,x,y,µ
on (W̄, F̄) is a solution to the shifted controlled martingale problem associated to (1)
with control µ and initial condition (t,x,y) if, for all function ϕ in C2

c (R2d), the
process (M̄ t,µ,ϕ

θ , θ ≥ t) is a F̄-martingale under P̄t,x,y,µ and P̄t,x,y,µ(ws = xs, w′s =
ys, ∀ 0 ≤ s ≤ t) = 1.

Before stating our main result we reformulate Hypothesis 3.2 on the set of ad-
missible controls in the context of the canonical space W̄.

Hypothesis 5.3. Let A ⊂ U be the collection of admissible controls and At be the
subset of those which are independent of Ft. We assume that, for all admissible
control ν, for all t in R+ and W-almost all w′ in W, the shifted control νt,w

′
is also

admissible.

We now are in a position to rigorously state and prove the conditioning property
which sustains the DPP.
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Theorem 5.4. Under Hypotheses 3.1 and 5.3, assume that there exists a unique
solution to both martingale problems in De�nitions 5.1 and 5.2 associated to (1) for
each admissible control and initial condition. Let (t,x, ν) ∈ R+ ×W × A, τ be a
F̄-stopping time taking value in [t,∞). Let (P̄t,x,νw̄ , w̄ = (w,w′) ∈ W̄) be a regular
conditional probability of P̄t,x,ν given F̄τ . Then

P̄t,x,νw̄ = P̄τ(w̄),w̄,ντ(w̄),w′
, P̄t,x,ν(dw̄)− a.s. (9)

Equality (9) shows that the r.h.s. is a measurable function of w̄ except on a
F̄τ�measurable null event (see Remark 3.4 (iv) ).

6 Proofs

Proof of Theorem 5.4 The result is a direct consequence of the stability of the
martingale property under conditioning (see, e.g., Theorem 1.2.10 in Stroock and
Varadhan [20]). Let (P̄t,x,νw̄ , w̄ = (w,w′) ∈ W̄) be a r.c.p.d. of P̄t,x,ν given F̄τ . From
Theorem 6.1.3 in [20], there exists a null set N in F̄τ such that, for all function ϕ
in C2

c (R2d), the process (M̄ t,ν,ϕ
θ , θ ≥ τ(w̄)) de�ned by (8) is a F̄-martingale under

P̄t,x,νw̄ for all w̄ in W̄ \N .
Let w̄ in W̄ \N be �xed. Observe that

P̄t,x,νw̄

(
b̄t,ν(s, w̄) = b̄τ(w̄),ντ(w̄),w′

(s, w̄), ∀s ≥ τ(w̄)
)

= 1,

P̄t,x,νw̄

(
σ̄t,ν(s, w̄) = σ̄τ(w̄),ντ(w̄),w′

(s, w̄), ∀s ≥ τ(w̄)
)

= 1.

Hence, for all function ϕ in C2
c (R2d), the process (M̄ τ(w̄),ντ(w̄),w′

,ϕ, θ ≥ τ(w̄)) is a
F̄-martingale under P̄t,x,νw̄ .

By uniqueness of the solution to the shifted controlled martingale problem as-
sociated to (1) with control ντ(w̄),w′

and initial condition (τ(w̄), w̄), we deduce that

P̄t,x,νw̄ = P̄τ(w̄),w̄,ντ(w̄),w′

for all w̄ ∈ W̄ \N .

Proof of Theorem 3.3 Under the hypotheses of Theorem 3.3, the hypotheses
of Theorem 5.4 are satis�ed. Indeed, for all (t,x) in R+×W and ν in A, the law of
(Xt,x,ν , B) on the probability space (Ω,B,P) provides a solution to the controlled
martingale problem associated to (1) with control ν and initial condition (t,x). The
uniqueness follows directly from a corollary to Theorem 4.1.1 in Ikeda-Watanabe [8]
(or from Corollary 5.4.9 in Karatzas and Shreve [11]). Hence, for all (t,x, ν) in
R+ ×W ×A,

LP(Xt,x,ν , B) = P̄t,x,ν . (10)

Similarly, for all µ be in At, the law (Xt,x,µ,y ⊗t B) is the unique solution to the
shifted controlled martingale problem associated to (1) with control µ and initial
condition (t,x,y). Hence

LP(Xt,x,ν ,y ⊗t B) = P̄t,x,y,ν . (11)

Let (t,x, ν) in R+ × W × A be �xed. Let f : W → R+ be a positive F-
measurable function. Let Y be an arbitrary positive Bτ�random variable. From
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Doob's functional representation theorem, there exist a F−stopping time τ̃ and an
F�measurable positive function gY de�ned on W such that

τ(ω) = τ̃(B(ω)) and Y (ω) = gY (Bτ∧·(ω)) = gY (B(ω)).

The random time τ̄(w,w′) := τ̃(w′) on W̄ clearly is an F̄−stopping time. Succes-
sively using (10), (11) and (9), we obtain

E
[
f
(
Xt,x,ν(ω)

)
Y (ω)

]
= EP̄t,x,ν [f (w) gY (w′)

]
= EP̄t,x,ν

[
EP̄t,x,νw̄ [f (w)] gY (w′)

]
= EP̄t,x,ν

[
EP̄τ̄(w̄),w̄,ντ̄(w̄),w′

[f (w)] gY (w′)
]

= E
[
F
(
τ(ω), Xt,x,ν(ω), ντ(ω),ω

)
Y (ω)

]
= E

[
F
(
τ(ω), Xt,x,ν

τ∧· (ω), ντ(ω),ω
)
Y (ω)

]
,

where (P̄t,x,νw̄ , w̄ ∈ W̄) is a r.c.p.d. of P̄t,x,ν given F̄τ̄ . This completes the proof.

7 Conclusion and perspectives

We have rigorously justi�ed a classical key argument in the proof of the DPP under
weak hypotheses. To go further and prove the DPP, one usually needs that the
value function satis�es some semi-continuity or continuity property (see, e.g., [1, 2,
3, 6, 7, 13, 21, 22] among many other references). Recent advances allow one to
obtain the DPP without such regularity properties: see, e.g., Neufeld and Nutz [16],
El Karoui and Tan [4].

In principle, Theorems 3.3 and 5.4 can be extended to controlled stochastic
di�erential equations driven by Poisson random measures. However, even for
uncontrolled systems, the uniqueness of solutions to classical martingale problems
under weak hypotheses on the coe�cients is a di�cult issue: see, e.g., Lepeltier and
Marchal [14].

Finally, it is natural to de�ne an optimal control problem in terms of our con-
trolled martingale problems by setting the value function as

V̄ (t,x) := sup
ν∈A

EP̄t,x,ν [f(w)].

In view of Theorem 5.4, the conclusions in Proposition 3.5 hold true for V̄ . Thus
an interesting issue is to seek fairly general conditions on b and σ under which
V̄ satis�es the DPP and is a viscosity solution to a Hamilton�Jacobi�Bellmann
equation.

References

[1] V.S. Borkar. Optimal Control Of Di�usion Processes. Volume 203 in Pit-
man Research Notes in Mathematics Series. Longman Scienti�c & Technical,
Harlow, 1989.

8



[2] B. Bouchard and N. Touzi. Weak dynamic programming principle for viscosity
solutions. SIAM J. Control Optim. 49(3), 948�962, 2011.

[3] N. El Karoui, D.H. Nguyen, and M. Jeanblanc-Picqué. Compacti�cation meth-
ods in the control of degenerate di�usions: existence of an optimal control.
Stochastics 20, 169-220, 1987.

[4] N. El Karoui, X. Tan. Capacities, measurable selection and dynamic program-
ming. preprint, 2013.

[5] W.H. Fleming. Optimal control of Markov processes. Proceedings of the Inter-
national Congress of Mathematicians, Vol. 1-2 (Warsaw, 1983), 71�84, PWN,
Warsaw, 1984.

[6] W.H. Fleming and M.H, Soner. Controlled Markov Processes And Viscosity

Solutions. Vol. 25 in Stochastic Modelling and Applied Probability Series.
Second edition, Springer, New York, 2006.

[7] W.H. Fleming and P.E. Souganidis. On the existence of value functions of two-
player, zero-sum stochastic di�erential games. Indiana Univ. Math. J. 38(2),
293-314, 1989.

[8] N. Ikeda and S. Watanabe. Stochastic Di�erential Equations And Di�usion

Processes. Volume 24 of North-Holland Mathematical Library Series. North-
Holland Publishing Co., 1989.

[9] J. Jacod and J. Memin. Weak and strong solutions to stochastic di�eren-
tial equations. Existence and Stability. Lecture Notes in Math. 851, 169-201,
Springer, 1980.

[10] O. Kallenberg. Foundations Of Modern Probability. Probability and its Ap-
plications Series. Second edition, Springer-Verlag, New York, 2002.

[11] I. Karatzas and S.E. Shreve. Brownian Motion And Stochastic Calculus. Grad-
uate Texts in Mathematics 113. Second edition, Springer-Verlag, New York,
1991.

[12] Y. Kabanov and C. Klüppelberg. A geometric approach to portfolio optimiza-
tion in models with transaction costs. Finance Stoch. 8(2), 207-227, 2004.

[13] N.V. Krylov. Controlled Di�usion Processes. Volume 14 of Stochastic Mod-
elling and Applied Probability. Reprint of the 1980 edition. Springer-Verlag,
Berlin, 2009.

[14] J-P. Lepeltier and B. Marchal. Problème des martingales et équations dif-
férentielles stochastiques associées à un opérateur intégro�diférentiel. Annales
Institut Henri Poincaré section B, 12(1), 43-103, 1976.

[15] L.C.G. Rogers and D. Williams. Di�usions, Markov processes, and Martingales.

Vol. 2. Cambridge Mathematical Library Series. Reprint of the second (1994)
edition. Cambridge University Press, 2000.

[16] A. Neufeld and M. Nutz. Superreplication under Volatility Uncertainty for

Measurable Claims. preprint, 2012.

[17] M. Nutz: A Quasi-Sure Approach to the Control of Non-Markovian Stochastic

Di�erential Equations. Electronic Journal of Probability, 17(23), 1-23, 2012

[18] M. Nutz. Pathwise Construction of Stochastic Integrals. Electronic Communi-
cations in Probability, 17(24), 1-7, 2012.

9



[19] P.E. Protter. Stochastic integration and di�erential equations. Second edi-
tion. version 2.1, volume 21 of Stochastic Modelling and Applied Probability.
Springer-Verlag, Berlin, 2005.

[20] D.W. Stroock and S.R.S. Varadhan. Multidimensional Di�usion Processes.
Volume 233 of Fundamental Principles of Mathematical Sciences. Springer-
Verlag, Berlin, 1979.

[21] S. Tang and J. Yong. Finite horizon stochastic optimal switching and impulse
controls with a viscosity solution approach. Stochastics Stochastics Rep. 45
(3-4), 145-176, 1993.

[22] J. Yong and X.Y. Zhou. Stochastic Controls. Hamiltonian Systems And HJB

Equations. Vol. 43 in Applications of Mathematics Series. Springer-Verlag,
New York, 1999.

10


