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Abstract

Breakpoint graphs are ubiquitous structures in the field of genome rearrange-

ments. Their cycle decomposition has proved useful in computing and bounding

many measures of (dis)similarity between genomes, and studying the distribu-

tion of those cycles is therefore critical to gaining insight on the distributions

of the genomic distances that rely on it. We extend here the work initiated

by Doignon and Labarre [1], who enumerated unsigned permutations whose

breakpoint graph contains k cycles, to signed permutations, and prove explicit

formulas for computing the expected value and the variance of the correspond-

ing distributions, both in the unsigned case and in the signed case. We also

show how our results can be used to derive simpler proofs of other previously

known results.

Keywords: Genome rearrangement, Hultman number, Permutation

1. Introduction

The field of comparative genomics is concerned with quantifying similarity

or divergence between organisms. Several measures have been proposed to that

end, including pattern matching based approaches or edit distances relying on

a given set of biologically relevant operations. A standard example of such a

Preprint submitted to Elsevier April 8, 2013



method, and a de facto standard in phylogenetics, is the approach based on

sequence alignment, which is motivated by the observation that genomes evolve

by point mutations and aims at explaining evolution by replacements, insertions

or deletions of single nucleotides (see e.g. Li and Homer [2] for a recent account

of sequence alignment techniques and their uses).

However, genomes also evolve by large-scale mutations that act on whole

segments of the genome, as opposed to point mutations. Examples of such mu-

tations include reversals, which reverse the order of elements along a segment,

transpositions, which move segments to another location, and translocations,

which exchange segments that belong to different chromosomes. Many models

have been proposed for studying those genome rearrangements, which vary ac-

cording to the kinds of mutations one wants to take into account, how these

should be weighted, or which objects are best suited for representing genomes

(see e.g. Fertin et al. [3] for an extensive survey). Nonetheless, a striking similar-

ity between all these models is how heavily they rely on variants of a graph first

introduced by Bafna and Pevzner [4], known as the breakpoint graph, and its de-

composition into edge- or vertex-disjoint cycles, which has proved most useful in

obtaining extremely tight bounds on many genome rearrangement distances, as

well as formulas for computing the exact distance in several cases. The link be-

tween several genomic distances and the number of cycles in breakpoint graphs

is discussed in more detail by Fertin et al. [3].

Many mathematical questions arise when studying genome rearrangement

distances, particularly concerning their distributions, as well as related statisti-

cal parameters. Since quite a few such distances can be computed or approxi-

mated using the cycle decomposition of the breakpoint graph, investigating the

distribution of such cycles appears as a natural, general and effective starting

point to answering those questions. We will restrict our attention in this paper to

the permutation model, which can be used when all genomes under comparison

consist of exactly the same genes (but in a different order) without duplications.

Breakpoint graphs can be associated to permutations, and the distribution of

cycles in this case was first characterised by Doignon and Labarre [1], which
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later led Bóna and Flynn [5] to prove a very simple expression for the expected

value of the block-interchange distance originally introduced by Christie [6].

However, it has often been argued that signed permutations provide a more

realistic model of evolution, since signs can be used to represent on which strand

a given DNA segment is located. Using this model, Székely and Yang [7] ob-

tained bounds for the expectation and the variance of the number of cycles in

the breakpoint graph of a random signed permutation. Using the finite Markov

chain embedding technique, Grusea [8] obtained the distribution of the number

of cycles in the breakpoint graph of a random signed permutation in the form

of a product of transition probability matrices of a certain finite Markov chain.

Her method allows to derive recurrence formulas and to compute this distribu-

tion numerically, but the computational complexity is quite high and limits the

practical applications.

In this work, we obtain a new expression for computing the number of un-

signed permutations whose breakpoint graph contains a given number of cycles,

as well as what is to the best of our knowledge the first analytic expression for

computing the number of signed permutations whose breakpoint graph contains

a given number of cycles. The formula obtained in the signed case is compli-

cated, but we obtain simpler formulas for a couple of restricted cases. We also

use our results to derive elementary proofs of previously known results, including

a binomial identity and the distribution of the number of cycles in the break-

point graph of an unsigned permutation. We prove formulas for computing the

expected value and the variance of the distribution of those cycles, both in the

unsigned case and in the signed case.

2. Notations and definitions

We recall here a few notions that will be used throughout the paper. We

assume the reader is familiar with graph theory (if not, see e.g. Diestel [9]), but

nevertheless review a few useful definitions, if only to agree on notation. We

will work with non-simple graphs, i.e. graphs that may contain loops (edges

connecting a vertex to itself) as well as parallel edges. We will also work with
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both undirected and directed graphs, using {u, v} to denote edges in the former

case and (u, v) to denote arcs in the latter.

Definition 2.1. A matching M in a graph G = (V,E) is a subset of pairwise
vertex-disjoint edges of E. It is a perfect matching of U ⊆ V if every vertex in
U is incident to an edge in M .

Definition 2.2. A graph is k-regular if each of its vertices has degree k.

In particular, if G is a 2-regular graph, then it decomposes in a unique way

into a collection of edge- and vertex-disjoint cycles, up to the ordering of cycles

and to rotations of elements within each cycle (i.e., (a, b, c, d) = (b, c, d, a)),

as well as directions in which cycles are traversed if G is undirected (i.e.,

(a, b, c, d) = (d, c, b, a)). This allows us to denote unambiguously c(G) the num-

ber of cycles in G. The length of a cycle is the number of vertices it contains,

and a k-cycle in G is a cycle of length k.

Definition 2.3. A graph is Hamiltonian if it contains a cycle visiting every
vertex exactly once.

We now recall a few basic notions about permutations (for more details, see

e.g. Björner and Brenti [10] and Wielandt [11]).

Definition 2.4. A permutation of {1, 2, . . . , n} is a bijective application of {1, 2,
. . ., n} onto itself.

The symmetric group Sn is the set of all permutations of {1, 2, . . . , n}, to-

gether with the usual function composition ◦, applied from right to left. We use

lower case Greek letters to denote permutations, typically π = 〈π1 π2 · · · πn〉,

with πi = π(i), and in particular write the identity permutation as ι = 〈1 2 · · · n〉.

Definition 2.5. The graph Γ(π) of a permutation π ∈ Sn has vertex set
{1, 2, . . ., n}, and contains an arc (i, j) whenever πi = j.

Definition 2.4 implies that Γ(π) is 2-regular and as such decomposes in a

unique way into disjoint cycles (up to the ordering of cycles and to rotations of

elements within each cycle), which we refer to as the disjoint cycle decomposition

of π. It is also common to refer to a permutation as a k-cycle, if the only cycle

of length greater than 1 that its graph contains has length k. Figure 1 shows an
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Figure 1: The graph of the permutation π = 〈2 4 1 3 5 8 7 9 6〉.

example of such a decomposition. To lighten the presentation, we will shorten

the notation c(Γ(π)) into c(π), for a given permutation π.

Definition 2.6. The conjugate of a permutation π by a permutation σ, both
in Sn, is the permutation σ ◦ π ◦ σ−1, and can be obtained by replacing every
element i in the disjoint cycle decomposition of π with σi.

Definition 2.7. A signed permutation is a permutation of {1, 2, . . . , n} where
each element has an additional “+” or “−” sign.

The hyperoctahedral group S±n is the set of all signed permutations of n

elements, together with the usual function composition ◦, applied from right to

left. It is not mandatory for a signed permutation to have negative elements, so

Sn ⊂ S±n since each permutation in Sn can be viewed as a signed permutation

without negative elements. To lighten the presentation, we will conform to the

tradition of omitting “+” signs for positive elements.

Finally, we recall the definition of the following graph introduced by Bafna

and Pevzner [4], which turned out to be an extremely useful tool for studying

and solving genome rearrangement problems and which will be central to our

discussions.

Definition 2.8. Given a signed permutation π in S±n , transform it into an
unsigned permutation π′ in S2n by mapping πi onto the sequence (2πi − 1, 2πi)
if πi > 0, or (2|πi|, 2|πi| − 1) if πi < 0, for 1 ≤ i ≤ n. The breakpoint graph
of π is the undirected bicoloured graph BG(π) with ordered vertex set (π′0 =
0, π′1, π

′
2, . . . , π

′
2n, π

′
2n+1 = 2n+1) and whose edge set is the union of the following

two perfect matchings of V (BG(π)):

• black edges δB(π) = {{π′2i, π′2i+1} | 0 ≤ i ≤ n};

• grey edges δG = {{2i, 2i+ 1} | 0 ≤ i ≤ n}.

We will often use the notation BG(π) = δB(π)∪δG to denote breakpoint graphs.
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Genome rearrangement problems usually involve computing edit distances,

i.e. the smallest number of moves needed to transform a genome into another

one using only operations specified by a given set S. In the case of permuta-

tions, those distances are usually left-invariant, which intuitively means that

genes can be relabelled so that either genome becomes ι without affecting the

value of the distance to compute. Under this assumption, the pairwise genome

rearrangement problem in S±n can be viewed as a constrained sorting problem,

and the intuition behind the breakpoint graph construction is that black edges

are meant to represent the current situation (i.e. the ordering provided by π),

while grey edges are meant to represent the target situation (i.e. the ordering

provided by ι). Figure 2 shows an example of a breakpoint graph. By definition,

such a graph is a collection of even-length cycles that alternate black and grey

edges. It can be easily seen that the example shown in Figure 2 decomposes

into two such cycles.
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Figure 2: The breakpoint graph of 〈−5 1 2 4 − 7 − 3 6〉.

The length of a cycle in a breakpoint graph differs from the traditional

graph-theoretical definition that we mentioned on page 4: it is half the number

of edges the cycle contains. Nevertheless, we will keep the terminology k-cycle

to designate a cycle of length k, keeping in mind that its length is measured
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differently in the context of breakpoint graphs.

3. Cycle statistics

As is well-known (see e.g. Graham et al. [12]), the unsigned Stirling number

of the first kind
[
n
k

]
counts the number of permutations in Sn which decompose

into k disjoint cycles: [
n

k

]
= |{π ∈ Sn | c(π) = k}|.

Recall also that those numbers arise as coefficients in the series expansion of the

rising factorial

xn = x(x+ 1) · · · (x+ n− 1) =

n∑
k=0

[
n

k

]
xk (1)

and of the falling factorial

xn = x(x− 1) · · · (x− n+ 1) =

n∑
k=0

(−1)n−k
[
n

k

]
xk. (2)

Signing the elements of a permutation does not change its disjoint cycle decom-

position, so the number of signed permutations that decompose into k disjoint

cycles is 2n
[
n
k

]
. We are interested in the following analogues of the Stirling

number of the first kind, based on the cycle decomposition of the breakpoint

graph.

Definition 3.1. The Hultman number SH(n, k) counts the number of permu-
tations in Sn whose breakpoint graph decomposes into k cycles:

SH(n, k) = |{π ∈ Sn | c(BG(π)) = k}|.

The signed Hultman number S±H(n, k) counts the number of permutations in S±n
whose breakpoint graph decomposes into k cycles:

S±H(n, k) = |{π ∈ S±n | c(BG(π)) = k}|.

It is clear from Definition 2.8 that the number of cycles in any breakpoint

graph is at least one and at most n + 1. Hultman numbers were so named

by Doignon and Labarre [1] after Axel Hultman, who first raised the question
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of computing those numbers [13]. The authors obtained an explicit but com-

plicated formula for computing SH(n, k), as well as formulas for enumerating

permutations with a given “Hultman class” (the analogue of conjugacy classes

of Sn based on the breakpoint graph). Bóna and Flynn [5] later observed that

they can be computed using the following much simpler expression:

SH(n, k) =


[
n+2
k

]
/
(
n+2
2

)
if n− k is odd,

0 otherwise,
(3)

based on a formula first obtained by Kwak and Lee [14].

In the next section, we present another way of obtaining an explicit formula

for the unsigned Hultman numbers, which we will use in Section 7 to derive

a new and simple proof of Equation (3). In Section 5, we will prove the first

explicit formula for computing the signed Hultman numbers.

4. A new formula for SH(n, k)

We will need the following results obtained by Hanlon et al. [15], whose

notation we follow. For any fixed n in N0, let

QC
n(h, `) = E(Re(tr((V V t)n))),

where V is a random h× ` matrix with independent standard complex normal

entries, E denotes expectation, Re denotes real part, tr denotes trace and t de-

notes matrix transposition. For the definition and the properties of the complex

normal distribution, see for example Goodman [16].

Hanlon et al. [15] give two formulas for computing QC
n(h, `), both of which

we will need. The first formula1 is:

QC
n(h, `) =

∑
ω∈Sn

hc(ω)`c(ω◦ω(n)), (4)

where ω(n) is a fixed n-cycle in Sn. The second formula2 is:

QC
n(h, `) =

1

n

n∑
i=1

(−1)i−1
(h+ n− i)n(`+ n− i)n

(n− i)!(i− 1)!
. (5)

1See Corollary 2.4 p. 158 of Hanlon et al. [15].
2See Theorem 2.5 p. 158 of Hanlon et al. [15].
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The link between the Hultman numbers and the previous results of Hanlon

et al. [15] is obtained using the following result of Doignon and Labarre [1].

Corollary 4.1. [1] SH(n, k) counts the number of factorisations of a fixed (n+
1)-cycle β into the product ρ◦ω, where ρ is an (n+1)-cycle and ω a permutation
in Sn+1 with c(ω) = k.

For a polynomial P (x), let [xk]P (x) denote the coefficient of the monomial

xk in P (x). We derive the following new expression for computing SH(n, k).

Theorem 4.1. For all n in N0, for all k in {1, 2, . . . , n+ 1}:

SH(n, k) =
1

n+ 1

n+1∑
i=1

[hk](h+ n− i+ 1)
n+1

. (6)

Proof. By Corollary 4.1, SH(n, k) counts the number of factorisations of a fixed
(n + 1)-cycle β into the product ρ ◦ ω, with c(ρ) = 1 and c(ω) = k. This is
clearly equivalent to enumerating factorisations of ρ−1 into the product ω ◦β−1
under the same conditions; therefore, setting ω(n+1) to β−1 in Equation (4), we

observe that SH(n, k) is the coefficient of the monomial hk` in the polynomial
QC
n+1(h, `), hence by Equation (5) equals:

SH(n, k) =
1

n+ 1

n+1∑
i=1

(−1)i−1
[hk](h+ n− i+ 1)

n+1 × [`](`+ n− i+ 1)
n+1

(n− i+ 1)!(i− 1)!
.

Since for every i in {1, 2, . . . , k + 1} we have

[`](`+ n− i+ 1)
n+1

= [`](`+ n− i+ 1)(`+ n− i) · · · (`+ 1)`(`− 1)(`− 2) · · · (`− (i− 1))

= (−1)i−1(n− i+ 1)!(i− 1)!,

the above summation simplifies to the wanted expression, which completes the
proof.

Besides providing a new relation involving Hultman numbers, our new for-

mula will prove useful in obtaining simple proofs of known results, as we will

see in Sections 7 and 8. Moreover, we think that the interest of our formula also

lies in the fact that the method used to prove it extends to the signed case.

5. An explicit formula for S±
H(n, k)

We now turn our attention to the problem of computing signed Hultman

numbers, which we solve using ideas similar to those presented in the previous
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section. The result is obtained by characterising the 2-regular graphs that cor-

respond to actual breakpoint graphs (Lemma 5.1 page 12), and then relating

that characterisation to an enumeration result by Hanlon et al. [15].

5.1. Preliminaries

Following Hanlon et al. [15], for some fixed n in N0, let

QR
n(h, `) = E(tr((V V t)n)),

where V is again a random h×` matrix, but this time with independent standard

real normal entries. Hanlon et al. [15] obtain two formulas for QR
n(h, `).

Let Fn denote the set of perfect matchings of {0, 1, 2, . . . , 2n − 1}. In par-

ticular, let ε ∈ Fn be the identity perfect matching {{i, n+ i} | 0 ≤ i ≤ n− 1}.

The first formula3 for QR
n(h, `) is:

QR
n(h, `) =

∑
δ∈Fn

hc(ε∪δ)`c(δ∪δ(n)), (7)

where δ(n) is a fixed perfect matching such that ε ∪ δ(n) is Hamiltonian.

The second formula is based on partitions rather than on perfect matchings.

Definition 5.1. [17] A (integer) partition λ = (λ1, λ2, . . . , λl) is a finite se-
quence of integers called parts such that λ1 ≥ λ2 ≥ · · · ≥ λl ≥ 0. Its length
is the number of non-zero parts it contains and if

∑l
i=1 λi = n, we call λ a

partition of n, which we write as λ ` n.

We consider any two partitions to be equivalent if we obtain the same se-

quence when removing all parts that equal 0. The notation λ = (1m12m2 . . .

rmr ) is also frequently used, and expresses the fact that exactly mi parts of λ

equal i. The reader must therefore bear in mind that when working with parti-

tions, the notation ab is more often to be understood in the previous meaning,

and not as “a to the power b”.

Notation: We introduce the notation Pn := {λ ` n | λ3 ≤ 1}.

The second formula4 for QR
n(h, `) is:

QR
n(h, `) =

∑
λ∈Pn

cλ(2)Fλ(h)Fλ(`), (8)

3See Corollary 3.6 of Hanlon et al. [15].
4See Theorem 5.4 of Hanlon et al. [15].
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where for any partition λ ∈ Pn of the form (a, b, 1n−a−b), with either a ≥ b ≥ 1

or a = n and b = 0:

• the function Fλ : R→ R is defined as:

Fλ(x) = 2a−b(x/2 + a− 1)
a−b

(x+ 2b− 2)
n−a+b

, (9)

• the coefficients cλ(2) are given as follows:

cλ(2) =
(−1)n+a−b+12a−b+1n(2a− 2b+ 1)(a− 1)!

(n+ a− b+ 1)
2
(n− a+ b)

2
(n− a− b)!(2a− 1)!(b− 1)!

, (10)

if a ≥ b ≥ 1, and

cλ(2) =
2nn!

(2n)!
, if λ = (n). (11)

The numbers cλ(2) appear as coefficients in the expansion of the nth power-

sum function in terms of zonal polynomials. For definitions and details, see for

example Macdonald [17].

5.2. Characterising breakpoint graphs

Recall that a breakpoint graph is a 2-regular graph that is the union of two

perfect matchings of {0, 1, . . . , 2n + 1}. We now make the connection between

signed Hultman numbers and the previously mentioned results explicit.

Definition 5.2. A configuration is the union of two perfect matchings δB and
δG of {0, 1, . . ., 2n+ 1}, where δG = {{2i, 2i+ 1} | 0 ≤ i ≤ n}.

Note that the above definition only slightly generalises Definition 2.8, by

allowing any choice of a perfect matching for δB , whereas there are implicit

constraints on the choice of δB in the definition of the breakpoint graph. By

definition, every breakpoint graph is a configuration, but not every configuration

is a breakpoint graph, as we will see below shortly. The following notion will

help us characterise configurations that are breakpoint graphs.

Definition 5.3. The complement of a configuration C = δB ∪ δG, denoted by
C = δB ∪ δG, is obtained by replacing δG with δG = {{2i − 1, 2i} | 1 ≤ i ≤
n} ∪ {{0, 2n+ 1}}.
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Before stating our characterisation of breakpoint graphs, we wish to stress

that Elias and Hartman [18] previously used a similar but different notion of

complementation (they replace δB with δB – whose definition we will omit here

– whereas we replace δG with δG) to characterise valid breakpoint graphs of

unsigned permutations. This is not enough for our purpose, which is why we

generalise their result below to encompass signed permutations as well.

Lemma 5.1. A configuration δB ∪ δG is the breakpoint graph of some signed
permutation π if and only if the complement configuration δB ∪ δG is Hamilto-
nian.

Proof. We can easily see that the complement BG(π) of a breakpoint graph is
Hamiltonian, since its edges are {{π′i, π′i+1} | 0 ≤ i ≤ 2n} ∪ {{0, 2n+ 1}}.

Conversely, if the complement δB ∪ δG of a configuration is Hamiltonian,
then we can recover the elements of an unsigned permutation π′ = 〈0 π′1 π′2 · · ·
π′2n 2n+ 1〉 by visiting the vertices along the Hamiltonian cycle as follows: take
0 = π′0 as starting point, and follow the edge in δB that is incident to 0, setting
the value of π′1 to the other endpoint of that edge. We then keep following
the cycle δB ∪ δG, assigning the label of the ith encountered vertex to π′i as
we go, ending with 2n + 1 = π′2n+1. Moreover, for every 0 ≤ i ≤ n − 1, the

edge {π′2i+1, π
′
2i+2} belongs to δG, and hence the set {π′2i+1, π

′
2i+2} is equal to

{2j − 1, 2j}, for some 1 ≤ j ≤ n. From the unsigned permutation π′, we can
therefore easily recover the corresponding signed permutation π in S±n , whose
breakpoint graph is δB ∪ δG.

Figure 3(a) shows the complement of the breakpoint graph of Figure 2

(page 6), which is Hamiltonian. On the other hand, the complement of the

configuration shown in Figure 3(b) is not Hamiltonian.

5.3. Enumerating breakpoint graphs with k cycles

We now show that Equation (7) remains valid when replacing the identity

perfect matching ε with the perfect matching δG and choosing δG as the fixed

perfect matching δ(n+1), which clearly satisfies the condition that δG ∪ δG is

Hamiltonian as required. The proof can be easily generalised to any choice of a

perfect matching τ(n+1) such that δG ∪ τ(n+1) is Hamiltonian, but the following

statement will be sufficient for our purposes.

Lemma 5.2. For any n in N0:

QR
n+1(h, `) =

∑
τ∈Fn+1

hc(δG∪τ)`c(τ∪δG). (12)

12
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Figure 3: (a) The complement of the breakpoint graph from Figure 2 is Hamiltonian; (b) a
configuration whose complement is not Hamiltonian.
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Proof. First, let us note that every perfect matching φ in Fn+1 can be seen
as a fixed-point-free involution, i.e. a permutation of {0, 1, 2, . . . , 2n + 1} that
decomposes into a collection of 2-cycles only, by viewing each edge of φ as a
2-cycle. Therefore, conjugating φ by any permutation of the same number of
elements is a well-defined operation that simply renames the endpoints of the
given edges. Let µ be the permutation defined by

µ : {0, 1, . . . , 2n+ 1} → {0, 1, . . . , 2n+ 1} : i 7→ µ(i) =

{
i/2 if i is even,
i+2n+1

2 otherwise.

As the example in Figure 4 shows, δG can be mapped onto ε = µ ◦ δG ◦ µ−1,
and we fix δ(n+1) = µ ◦ δG ◦ µ−1. Finally, observe that given any two perfect
matchings φ1 and φ2 in Fn+1, the graphs µ ◦φ1 ◦µ−1 ∪µ ◦φ2 ◦µ−1 and φ1 ∪φ2
are isomorphic, and hence c(µ ◦ φ1 ◦ µ−1 ∪ µ ◦ φ2 ◦ µ−1) = c(φ1 ∪ φ2). Taking
δ = µ ◦ τ ◦ µ−1, the following relations hold:

• c(ε ∪ δ) = c(µ ◦ δG ◦ µ−1 ∪ µ ◦ τ ◦ µ−1) = c(δG ∪ τ),

• c(δ ∪ δ(n+1)) = c(µ ◦ τ ◦ µ−1 ∪ µ ◦ δG ◦ µ−1) = c(τ ∪ δG),

• c(ε ∪ δ(n+1)) = c(µ ◦ δG ◦ µ−1 ∪ µ ◦ δG ◦ µ−1) = c(δG ∪ δG) = 1,

and the formula in the statement follows from the above relations, the bijectivity
of conjugation, and Equation (7).

δG

0

1

2

3

4

5

6

7

8

9

0
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1

6
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7

3

8

4

9

ε

δG

0

1

2

3

4

5

6

7

8

9

0

5

1

6

2

7

3

8

4

9

δ(n+1)

Figure 4: Mapping δG (resp. δG) onto ε (resp. δ(n+1)) by conjugating them by µ =
〈0 5 1 6 2 7 3 8 4 9〉.

Lemma 5.1 implies that enumerating signed permutations of n elements

whose breakpoint graph decomposes into k alternating cycles is equivalent to

enumerating perfect matchings τ in Fn+1 verifying c(δG∪τ) = k and c(τ∪δG) =

1, where δG is defined in Definition 2.8 page 5 and δG is defined in Definition 5.3

page 11. Using Lemma 5.2, we thus obtain the following.
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Remark 5.1. For every k in {1, 2, . . . , n+ 1}, S±H(n, k) is the coefficient of the
monomial hk` in QR

n+1(h, `).

The second expression for QR
n+1(h, `) given in Equation (8) allows us to

obtain the following explicit formula for S±H(n, k).

Theorem 5.1. For all n in N0, for all k in {1, 2, . . . , n+ 1}:

S±H(n, k) =
∑

λ∈Pn+1

cλ(2)× [hk]Fλ(h)

× (−1)n−a−b2a−b−1(2b)!(a− 1)!(n− a− b+ 2)!

(2b− 1)b!
, (13)

where λ ∈ Pn+1, and where the function Fλ(·) as well as the coefficients cλ(2)
follow the definitions previously given in Section 5.15.

Proof. Remark 5.1 and Equation (8) yield

S±H(n, k) =
∑

λ∈Pn+1

cλ(2)× [hk]Fλ(h)× [`]Fλ(`). (14)

For a partition λ ∈ Pn+1 of the form (a, b, 1n−a−b+1), with a ≥ b ≥ 1 or
a = n+ 1, b = 0, it is easy to see that

[`]Fλ(`) =
(−1)n−a−b2a−b−1(2b)!(a− 1)!(n− a− b+ 2)!

(2b− 1)b!
. (15)

Indeed:

1. if λ = (a, b, 1n−a−b+1), with a ≥ b ≥ 1, we have

Fλ(`) = 2a−b(`/2 + a− 1)(`/2 + a− 2) · · · (`/2 + b)

× (`+ 2b− 2)(`+ 2b− 3) · · · (`+ 1)

× `(`− 1) · · · (`− (n− a− b+ 2)).

The coefficient of ` in the above expression equals

[`]Fλ(`) = 2a−b
(a− 1)!

(b− 1)!
× (2b− 2)!(−1)n−a−b+2(n− a− b+ 2)!

=
(−1)n−a−b2a−b−1(2b)!(a− 1)!(n− a− b+ 2)!

(2b− 1)b!
.

2. if λ = (n+ 1), i.e. a = n+ 1 and b = 0, we have

F(n+1)(`) = 2n+1(`/2 + n)
n+1

(`− 2)
0

= 2n+1(`/2 + n)(`/2 + n− 1) · · · (`/2 + 1)`/2,

so [`]F(n+1)(`) = 2nn!, which verifies Equation (15).

5With the slight modification that n needs to be replaced with n+ 1, since λ ∈ Pn+1.
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The proof then follows from Equations (14) and (15).

We conclude this section with Table 1, which shows a few experimental

values of the signed Hultman numbers. These values were previously obtained

by the first author using the method described in a previous paper of hers [8].

Note that for k = 1, the sequence defined by S±H(n, 1) for n = 1, 2, . . .

corresponds to sequence A001171 in the On-Line Encyclopedia of Integer Se-

quences [19]. As we will see in the next section, other known sequences also

appear in that table.

6. Special cases

The expression obtained in Theorem 5.1 allows us to compute S±H(n, k) for all

valid values of n and k, but we must acknowledge that even though the formula

is suited for practical use, it is unfortunately quite complicated and difficult to

manipulate. Simpler expressions do however exist for some particular cases, as

we will show below. We will rely a lot on Lemma 5.1 in this section, and decide

to use a slightly different layout for the breakpoint graph: labels are omitted

for clarity, and grey edges rather than black edges are now laid out on a circle,

so that computing the complement of a given configuration simply amounts to

shifting grey edges sideways by one position. In order to make verifications

easier for the reader, we also draw edges in the complement as dotted edges.

The following particular cases are easy to verify:

1. S±H(n, k) = 0 for all k < 1 and all k > n+ 1 (trivial);

2. S±H(n, n + 1) = 1, since the only permutation whose breakpoint graph

decomposes into n+ 1 cycles is ι;

3. S±H(n, n) =
(
n+1
2

)
, since enumerating such permutations comes down to

counting breakpoint graphs whose cycles all have length 1, except for one

that has length 2. This in turn is equivalent to enumerating the ways in

which one can connect any two of the n+ 1 grey edges by black edges so

as to obtain a valid configuration (with respect to Lemma 5.1); as can be

verified on Figure 5, only one of the two possible choices of black edges

16
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Table 1: A few values of S±H(n, k)
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(namely, configuration (b)) is valid, and the equality follows from the fact

that there are
(
n+1
2

)
possible ways to select two grey edges out of n+ 1.

(a) (b)

Figure 5: The two forms of 2-cycles that may arise in a configuration. Only four 1-cycles are
shown in each graph, but there can be any number of them.

We now show how one can obtain a simple and explicit formula for S±H(n, n−

1). Although the formula is quite simple, we hope that the proof will convince

the reader of the shortcomings of a case analysis in this setting.

Proposition 6.1. For all n ≥ 1, we have S±H(n, n− 1) = 5
(
n+1
4

)
+ 4
(
n+1
3

)
.

Proof. Note that S±H(n, n− 1) is the number of permutations whose breakpoint
graph contains either one 3-cycle or two 2-cycles, all other cycles having length
1 in both cases:

1. the number of permutations satisfying the first condition is the number of
ways to connect three grey edges in the breakpoint graph in such a way
that the complement configuration is Hamiltonian (see Lemma 5.1). As
Figure 6 shows, there are eight possible ways to create such a configuration,
only four of which are valid (namely, configurations (a), (b), (c) and (d)).
The reader can easily verify that the other configurations are invalid by
checking that there is no Hamiltonian cycle in the graph whose edges are
the union of the black edges δB and of the dotted edges δG.
We obtain the rightmost term in the wanted expression by noting that
only four of the eight possible 3-cycles are valid, and there are

(
n+1
3

)
ways

to select three grey edges out of n+ 1.
2. the number of permutations satisfying the second condition can be con-

structed by choosing four grey edges, then connecting them by pairs while
ensuring that the resulting configuration is valid. Figure 7 shows all pos-
sible configurations with two cycles of length two.
The reader can again easily verify the validity of all configurations by
checking whether there is a Hamiltonian cycle in the graph whose edges
are the union of the black edges δB and of the dotted edges δG. Only five
possible configurations with two 2-cycles are valid (namely, configurations
(b), (f), (i), (k) and (l)) out of the twelve shown in Figure 7, and there
are

(
n+1
4

)
ways to select two pairs of grey edges out of n+ 1, which yields

the leftmost term in the wanted expression and completes the proof.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6: All possible forms of 3-cycles that may arise in a configuration. Only three 1-cycles
are shown in each graph, but there can be any number of them.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 7: All possible pairs of 2-cycles that may arise in a configuration. Only four 1-cycles
are shown in each graph, but there can be any number of them.
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7. Simpler proofs of previous results

Theorem 4.1 allows us to obtain a new proof of Bóna and Flynn’s formula

(Equation (3) page 8).

Corollary 7.1. [5] For all n in N0:

SH(n, k) =

{ [
n+2
k

]
/
(
n+2
2

)
if n− k is odd,

0 otherwise.

Proof. The key idea of the proof is the fact that, for every i = 1, 2, . . . , n + 1,
we have

(h+ n− i+ 1)
n+1

=
1

n+ 2

(
(h− i+ 1)

n+2 − (h− i)n+2
)
, (16)

since

1

n+ 2

(
(h− i+ 1)

n+2 − (h− i)n+2
)

=
1

n+ 2
((h− i+ 1) · · · (h+ n− i+ 2)− (h− i) · · · (h+ n− i+ 1))

=
1

n+ 2
(h− i+ 1) · · · (h+ n− i+ 1) ((h+ n− i+ 2)− (h− i))

= (h+ n− i+ 1)
n+1

.

Summing over i in Equation (16), we obtain:

1

n+ 1

n+1∑
i=1

(h+ n− i+ 1)
n+1

=
1

(n+ 1)(n+ 2)

n+1∑
i=1

(
(h− i+ 1)

n+2 − (h− i)n+2
)

=
1

(n+ 1)(n+ 2)

(
hn+2 − (h− n− 1)

n+2
)

=
1

(n+ 1)(n+ 2)

(
hn+2 − hn+2

)
.

By Equations (1) and (2), the coefficient of hk in hn+2 is
[
n+2
k

]
and the

coefficient of hk in hn+2 is (−1)n−k
[
n+2
k

]
. Using Equation (6), we conclude that

SH(n, k) =

{
2

(n+1)(n+2)

[
n+2
k

]
if n− k is odd,

0 otherwise,

which completes the proof.

20



Theorem 4.1 also allows us to obtain a simple proof of a binomial identity

previously obtained by Sury et al. [20].

Corollary 7.2. [20] For all n in N0:

n∑
i=0

(−1)i(
n
i

) = (1 + (−1)n)
n+ 1

n+ 2
.

Proof. Setting k to 1 in Equation (6) (page 9) yields

SH(n, 1) =
1

n+ 1

n+1∑
i=1

(−1)i−1(n− i+ 1)!(i− 1)! =
n!

n+ 1

n∑
i=0

(−1)i(
n
i

) .

On the other hand, as previously observed6 by Doignon and Labarre [1], we
have:

SH(n, 1) =

{
2n!
n+2 if n is even,

0 otherwise,

which completes the proof.

8. Expected value and variance of the Hultman numbers

In order to gain more insight into the distribution of the Hultman numbers,

we will now investigate the question of computing the expected value and vari-

ance of the number of cycles in breakpoint graphs, both for unsigned and for

signed permutations.

It will also be interesting to see how these values compare to the expected

value and variance of the number of cycles in the usual disjoint cycle decompo-

sition of a uniform random unsigned permutation π in Sn. We recall here (see

e.g. Wilf [21]) the exact values of these quantities:

E(c(π)) = Hn,

Var(c(π)) = Hn −
n∑
k=1

1

k2
,

as well as their asymptotic behaviour when n→∞:

E(c(π)) = log(n) + γ + o(1), (17)

Var(c(π)) = log(n) + γ − π2

6
+ o(1), (18)

6The result can also be easily derived from Equation (3).
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where Hn denotes the nth harmonic number Hn =
∑n
i=1

1
i and γ denotes the

Euler-Mascheroni constant. As usual, o(1) denotes a quantity that converges to

0 as n→∞.

8.1. The unsigned case

Bóna and Flynn [5] already proved a formula for computing the expected

number of cycles in the breakpoint graph of a uniform random unsigned per-

mutation. In this section we provide a new proof of their result and also give

an explicit formula for the variance of this distribution. We start by computing

the generating function of the Hultman numbers.

Lemma 8.1. For all n ∈ N0, we have:

F (x) =

n+1∑
k=0

SH(n, k)xk =
xn+2 − xn+2

2
(
n+2
2

) .

Proof. The derivation is straightforward:

n+1∑
k=0

SH(n, k)xk =
1(
n+2
2

) n+1∑
k=0

[
n+2
k

]
− (−1)n+2−k[n+2

k

]
2

xk (by Equation (3))

=
1

2
(
n+2
2

) (n+2∑
k=0

[
n+ 2

k

]
xk −

n+2∑
k=0

(−1)n+2−k
[
n+ 2

k

]
xk

)

=
xn+2 − xn+2

2
(
n+2
2

) . (by Equations (1) and (2))

Knowing the generating function allows us to easily derive the expected

value and the variance of the number of cycles in the breakpoint graph of a

random unsigned permutation. For this purpose, we first need to compute some

derivatives of the generating function.

Lemma 8.2. For all n ∈ N0, we have:

F (1) = n!,

F ′(1) =
1

2
(
n+2
2

) {(n+ 2)!Hn+2 + (−1)n−1n!
}
,

F ′′(1) =
1

2
(
n+2
2

) {(n+ 2)!

(
H2
n+2 −

n+2∑
k=1

1

k2

)
+ 2(−1)nn!(Hn − 1)

}
.
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Proof. We obtain the three expressions separately.

1. For the first expression, note that, by definition, F (1) =
∑n+1
k=1 SH(n, k),

which is simply the total number of permutations of n elements and there-
fore equals n!.

2. We simplify the computation of F ′(x) by writing xn+2 = (x−1)g(x), with

g(x) = x

n+1∏
i=2

(x− i).

With this notation we have

F (x) =
xn+2 − (x− 1)g(x)

2
(
n+2
2

) .

We thus obtain

F ′(x) =
1

2
(
n+2
2

) (xn+2
n+1∑
i=0

1

x+ i
− g(x)− (x− 1)g′(x)

)
.

At x = 1 we have 1n+2 = (n + 2)! and g(1) = (−1)nn!, and hence the
stated formula for F ′(1) follows.

3. Finally, the second derivative of F is given by

F ′′(x) =
1

2
(
n+2
2

)
xn+2

∑
0≤i 6=j≤n+1

1

(x+ i)(x+ j)
− 2g′(x)− (x− 1)g′′(x)

 .

The above sum evaluated at x = 1 equals∑
0≤i 6=j≤n+1

1

(1 + i)(1 + j)
=

n+1∑
i,j=0

1

(1 + i)(1 + j)
−
n+1∑
i=0

1

(1 + i)2

=

(
n+1∑
i=0

1

1 + i

)2

−
n+1∑
i=0

1

(1 + i)2

= H2
n+2 −

n+2∑
k=1

1

k2
.

We also have

g′(x) = g(x)

(
1

x
+

n+1∑
i=2

1

x− i

)
,

and thus

g′(1) = g(1)

(
1−

n+1∑
i=2

1

i− 1

)
= (−1)nn!(1−Hn).

Using these expressions in the formula for F ′′(x) above, evaluated at x = 1,
gives the formula in the statement.
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The recovery of the expected number of cycles in the breakpoint graph of a

random unsigned permutation, previously obtained by Bóna and Flynn [5], is

now an easy task.

Theorem 8.1. [5] For all n ∈ N0, the expected number of cycles in the break-
point graph of a uniform random unsigned permutation π of n elements is

E(c(BG(π))) = Hn +
1

b(n+ 2)/2c
.

Proof. As is well-known (see e.g. Wilf [21]), the expected value can be obtained
from the generating function F (x) by the formula F ′(1)/F (1). Using the for-
mulas for F (1) and F ′(1) obtained in Lemma 8.2, we obtain that the expected
value E(c(BG(π))) equals

F ′(1)

F (1)
= Hn+2 +

(−1)n−1

(n+ 1)(n+ 2)
,

which is easily seen to be equivalent to the expression in the statement.

Furthermore, knowing the generating function also allows us to compute the

variance of the number of cycles in the breakpoint graph. We prove the following

result.

Theorem 8.2. For all n ∈ N0, the variance of the number of cycles in the
breakpoint graph of a uniform random unsigned permutation π of n elements is

Var(c(BG(π))) = Hn+2−
n+2∑
k=1

1

k2
+

(−1)n(2Hn+2 + 2Hn − 3)

(n+ 1)(n+ 2)
− 1

((n+ 1)(n+ 2))2
.

Proof. The variance can be obtained from the generating function F (x) by the
following formula (see e.g. Wilf [21]):

(logF )′(1) + (logF )′′(1) =
F ′(1)

F (1)
+
F ′′(1)

F (1)
−
(
F ′(1)

F (1)

)2

.

Using the formulas for F (1), F ′(1) and F ′′(1) obtained in Lemma 8.2, we
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obtain that Var(c(BG(π))) equals

F ′(1)

F (1)
+
F ′′(1)

F (1)
−
(
F ′(1)

F (1)

)2

= Hn+2 +
(−1)n−1

(n+ 1)(n+ 2)
+H2

n+2 −
n+2∑
k=1

1

k2
+

2(−1)n(Hn − 1)

(n+ 1)(n+ 2)

−
(
Hn+2 +

(−1)n−1

(n+ 1)(n+ 2)

)2

= Hn+2 −
n+2∑
k=1

1

k2
+

(−1)n(2Hn+2 + 2Hn − 3)

(n+ 1)(n+ 2)
− 1

((n+ 1)(n+ 2))2
.

It is interesting to see how the mean and variance behave for large n.

Remark 8.1. The expected value and variance of the number of cycles in the
breakpoint graph of a uniform random unsigned permutation π in Sn have the
following asymptotical behaviour when n→∞:

E(c(BG(π))) = log(n) + γ + o(1),

Var(c(BG(π))) = log(n) + γ − π2

6
+ o(1).

Proof. For the expected value, the result simply follows from the fact that
E(c(BG(π))) = Hn + o(1) and Hn = log(n) + γ + o(1).

For the variance, first note that Var(c(BG(π))) = Hn+2 −
∑n+2
k=1

1
k2 + o(1).

By further using the fact that log(n + 2) = log(n) + o(1) and the well-known

result
∑∞
k=1

1
k2 = π2

6 , the stated asymptotic formula follows.

Interestingly, we recover exactly the same asymptotical behaviour as for the

number of cycles in the usual disjoint cycle decomposition (recall Equations (17)

and (18)).

8.2. The signed case

We now turn to the problem of computing the expected value and the vari-

ance of the number of cycles in the breakpoint graph of a uniform random

signed permutation. As in the unsigned case, we start with the computation of

the generating function for the signed Hultman numbers.
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Lemma 8.3. We have

G(x) =

n+1∑
k=1

S±H(n, k)xk =
∑

λ∈Pn+1

cλ(2)Fλ(x)F ′λ(0),

where cλ(2) and Fλ are defined as in Equation (9) page 11.

Proof. Recall (Remark 5.1 page 15) that S±H(n, k) is the coefficient of the mono-
mial hk` in the polynomial QR

n+1(h, `). If we take now h = x and consider
QR
n+1(x, `) as a polynomial only in the variable `, we note that the coefficient

of the monomial ` is obtained by summing up all the terms S±H(n, k)xk, for
k = 1, . . . , n + 1. Therefore, G(x) equals the coefficient of ` in QR

n+1(x, `), and
hence

G(x) =
∂

∂`
QR
n+1(x, `)

∣∣∣∣
`=0

.

The formula in the statement easily follows from Equation (8) page 10.

In order to compute the expected value and the variance of the number of

cycles in the breakpoint graph of a random signed permutation, we will need

the following preliminary lemma.

Lemma 8.4. Let n ≥ 1 and λ ∈ Pn+1 a partition of n + 1 of the form
(a, b, 1n−a−b+1).

1. In the case where a ≥ b ≥ 1, we have:

F ′λ(0) =
(−1)n−a−b2a−b(a− 1)!(2b− 2)!(n− a− b+ 2)!

(b− 1)!
,

F ′λ(1) =
(−1)n−a−b+1(2a− 1)!(b− 1)!(n− a− b+ 1)!

2a−b(a− 1)!
,

F ′′λ (1) = F ′λ(1) {2H2a−1 − 2Hn−a−b+1 −Ha−1 +Hb−1} .

2. In the case where λ = (n+ 1), we have:

F ′(n+1)(0) = 2nn!,

F ′(n+1)(1) =
(2n+ 1)!

2nn!
(H2n+1 −Hn/2),

F ′′(n+1)(1) =
(2n+ 1)!

2nn!

{(
H2n+1 −

Hn

2

)2

−
n∑
k=0

1

(2k + 1)2

}
.

Proof. We handle both cases separately.

1. Let us first examine the case where λ = (a, b, 1n+1−a−b) and a ≥ b ≥ 1. In
order to simplify the proof, we write Fλ(x) = x(x− 1)hλ(x), where hλ(x)
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is obtained and defined as follows:

Fλ(x) = 2a−b(x/2 + a− 1)
a−b

(x+ 2b− 2)
n+1−a+b

(see Equation (9)7 page 11)

= 2a−b(x/2 + a− 1)
a−b

(x+ 2b− 2)(x+ 2b− 1) · · · (x+ 1)x(x− 1)

×(x− 2)(x− 3) · · · (x− 2 + b− n+ a)

= x(x− 1) 2a−b(x/2 + a− 1)
a−b

(x+ 2b− 2)
2b−2

(x− 2)
n−a−b+1︸ ︷︷ ︸

=hλ(x)

.

(a) Using the above notation, we have

F ′λ(0) = −hλ(0) = (−1)2a−b(a− 1)a−b(2b− 2)!(−2)n−a−b+1,

from which we easily obtain the wanted expression.
(b) We also have

F ′λ(1) = hλ(1) = 2a−b (a− 1/2)
a−b

(2b− 1)2b−2(−1)n−a−b+1

= 2a−b (a− 1/2)
a−b

(2b)!(−1)n−a−b+1,

and obtaining the formula for F ′λ(1) given in the statement is a simple
matter, using the fact that

(a− 1/2)
a−b

=
(2a− 1)(2a− 3) · · · (2b+ 1)

2a−b

=
1

2a−b
(2a− 1)!

(a− 1)!2a−1
b!2b

(2b)!

=
(2a− 1)!b!

2a−b2a−b−1(a− 1)!(2b)!
.

(c) In order to simplify the computation of the second derivative, we will
write Fλ(x) = (x− 1)gλ(x), where

gλ(x) = 2a−b (x/2 + a− 1)
a−b︸ ︷︷ ︸

=αλ(x)

(x+ 2b− 2)2b−1︸ ︷︷ ︸
=βλ(x)

(x− 2)n−a−b+1︸ ︷︷ ︸
=γλ(x)

.

With this notation, it is easy to see that F ′′λ (1) = 2g′λ(1), with

g′λ(1) = α′λ(1)βλ(1)γλ(1) + αλ(1)β′λ(1)γλ(1) + αλ(1)βλ(1)γ′λ(1).

7Recall, as explained in the statement of Theorem 5.1 page 15, that we must replace n
with n+ 1.
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Note that

α′λ(1) = αλ(1)

(
1

2a− 1
+

1

2a− 3
+ · · ·+ 1

2b+ 1

)
= αλ(1){H2a−1 −H2b − (Ha−1 −Hb)/2},

β′λ(1) = βλ(1)

2b−1∑
k=1

1

k
= βλ(1)H2b−1,

γ′λ(1) = −γλ(1)

n−a−b+1∑
k=1

1

k
= −γλ(1)Hn−a−b+1,

and

αλ(1) =
(2a− 1)!b!

(2b)!2a−b−1(a− 1)!
,

βλ(1) = (2b− 1)!,

γλ(1) = (−1)n−a−b+1(n− a− b+ 1)!.

Combining all of the above, we obtain:

g′λ(1) = αλ(1)βλ(1)γλ(1)

×{H2a−1 −H2b − (Ha−1 −Hb)/2 +H2b−1 −Hn−a−b+1}

=
(−1)n−a−b+1(2a− 1)!(b− 1)!(n− a− b+ 1)!

2a−b(a− 1)!

×{H2a−1 −Hn−a−b+1 − (Ha−1 −Hb−1)/2}

and we finally deduce the formula in the statement.

2. We now turn to the case where λ = (n+ 1), i.e. a = n+ 1 and b = 0.
(a) Following the definition8 of Fλ(x) given on page 11, we have

F(n+1)(x) = 2n+1 (x/2 + n)
n+1

= x

n∏
k=1

(x+ 2k).

We thus obtain

F ′(n+1)(x) =

n∏
k=1

(x+ 2k) + F(n+1)(x)

n∑
k=1

1

x+ 2k
,

which easily gives the wanted expressions when evaluated at x = 0
and x = 1.

(b) For the second derivative, we obtain

F ′′(n+1)(x) = F(n+1)(x)
∑

0≤i6=j≤n

1

(x+ 2i)(x+ 2j)
,

8Again, we replace n with n+ 1 in the definition.
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hence

F ′′(n+1)(1) =
(2n+ 1)!

2nn!


(

n∑
k=0

1

2k + 1

)2

−
n∑
k=0

1

(2k + 1)2

 ,

and the formula in the statement follows.

Knowing the generating function G from Lemma 8.3, we can easily obtain

the expected value of the number of cycles in the breakpoint graph of a random

signed permutation of n elements.

Theorem 8.3. The expected value of the number of cycles in the breakpoint
graph of a uniform random signed permutation π± of n elements is

E(c(BG(π±))) = H2n+1 −
Hn

2
−

∑
(a,b)∈An

rn(a, b),

where An = {(a, b) ∈ N2 : a ≥ b ≥ 1, a+ b ≤ n+ 1} and

rn(a, b) =
(−1)n+a−b(n+ 1)(2a− 2b+ 1)(a− 1)!(2b− 2)!(n− a− b+ 2)!

2n−a+b−1n!(b− 1)!(n+ a− b+ 2)2(n− a+ b+ 1)2
.

Proof. As recalled in the proof of Theorem 8.1, we have E(c(BG(π±))) =

G′(1)/G(1). Note that, by definition, G(1) =
∑n+1
k=1 S

±
H(n, k), which equals

the number of signed permutations of n elements, i.e. 2nn!. By Lemma 8.3, the
expected number of cycles in the breakpoint graph of a random signed permu-
tation is

E(c(BG(π±))) =
1

2nn!

∑
λ∈Pn+1

cλ(2)F ′λ(1)F ′λ(0).

Using the formulas for F ′λ(1) and F ′λ(0) derived in Lemma 8.4 and the ex-
pression for the coefficients9 cλ(2) given in Equations (10) and (11) page 11, the
formula in the statement follows.

The generating function G allows us also to compute the variance of the

number of cycles in the breakpoint graph of a random signed permutation.

9Again, we replace n with n+ 1 in the definitions.

29



Theorem 8.4. The variance of the number of cycles in the breakpoint graph of
a uniform random signed permutation π± of n elements is

Var(c(BG(π±))) = H2n+1 −
Hn

2
−

n∑
k=0

1

(2k + 1)2
−

 ∑
(a,b)∈An

rn(a, b)

2

+
∑

(a,b)∈An

rn(a, b){2H2n+1 −Hn − 2H2a−1 + 2Hn−a−b+1 +Ha−1 −Hb−1 − 1},

where An and the coefficients rn(a, b) are defined as in Theorem 8.3.

Proof. As recalled in the proof of Theorem 8.2, the variance can be obtained
from the generating functionG by evaluating the function (logG)′(x)+(logG)′′(x)
at x = 1. Therefore, the variance of the number of cycles in the breakpoint graph
of a random signed permutation equals

G′(1)

G(1)
+
G′′(1)

G(1)
−
(
G′(1)

G(1)

)2

=
G′(1) +G′′(1)

G(1)
− (E(c(BG(π±))))2

=
1

2nn!

∑
λ∈Pn+1

cλ(2)(F ′λ(1) + F ′′λ (1))F ′λ(0)− (E(c(BG(π±))))2. (using Lemma 8.3)

Using the formulas for F ′λ(1), F ′′λ (1) and F ′λ(0) given in Lemma 8.4, we obtain
that the variance equals

H2n+1 −
Hn

2
−

n∑
k=0

1

(2k + 1)2
+

(
H2n+1 −

Hn

2

)2

− (E(c(BG(π±))))2

−
∑

(a,b)∈An

rn(a, b) {2H2a−1 − 2Hn−a−b+1 −Ha−1 +Hb−1 + 1} ,

which equals the wanted expression once E(c(BG(π±))) is replaced with the
value derived in Theorem 8.3.

As in the unsigned case, we will study the behaviour of the mean and variance

for large values of n. To that end, we will first prove the following lemma.

Lemma 8.5. As n→∞, we have∑
(a,b)∈An

|rn(a, b)| = 1

log(n)
× o(1).

Proof. If we denote k = a − b, we have 0 ≤ k ≤ n − 1. Furthermore, as
a + b = 2b + k, the condition a + b ≤ n + 1 translates into 2b ≤ n − k + 1 and
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the above sum becomes

n−1∑
k=0

2k−n+1(n+ 1)(2k + 1)

n!(n+ k + 2)2(n− k + 1)2

b(n−k+1)/2c∑
b=1

(k + b− 1)!(2b− 2)!(n− k − 2b+ 2)!

(b− 1)!

=

n−1∑
k=0

2k−n+1(n+ 1)(2k + 1)

(n+ k + 2)2(n− k + 1)(k + 1)
(
n
k+1

)b(n−k+1)/2c∑
b=1

(
k+b−1
k

)(
n−k
2b−2

)
≤

n−1∑
k=0

2k−n+1

(n+ k + 2)
(
n
k+1

)b(n−k+1)/2c∑
b=1

(
k + b− 1

k

)

=

n−1∑
k=0

2k−n+1
(
k+b(n−k+1)/2c

k+1

)
(n+ k + 2)

(
n
k+1

) . (using
∑n
j=k

(
j
k

)
=
(
n+1
k+1

)
)

We further observe that∑
(a,b)∈An

|rn(a, b)| ≤
n−1∑
k=0

2k−n+1

n+ k + 2
≤ 1

n+ 2

n−1∑
k=0

1

2n−1−k
= 2

(
1− 1

2n

)
1

n+ 2
,

and the result in the statement easily follows.

Based on this lemma, we can now obtain the following.

Remark 8.2. When n→∞, the expected value and variance of the number of
cycles in the breakpoint graph of a uniform random signed permutation π± of n
elements have the following asymptotical behaviour:

E(c(BG(π±))) =
log(n)

2
+
γ

2
+ log(2) + o(1),

Var(c(BG(π±))) =
log(n)

2
+
γ

2
+ log(2)− π2

8
+ o(1).

Note that, in the limit when n → ∞, the mean and variance in the signed

case are of the same order (log(n)) as in the unsigned case, but they differ by a

factor of 1/2.

9. Conclusions

In this paper, we proved the first explicit formula for enumerating signed

permutations whose breakpoint graph contains a given number of cycles, and

proved simpler expressions for particular cases. We also obtained a new expres-

sion for enumerating unsigned permutations whose breakpoint graph contains a

given number of cycles, and used both formulas to derive simpler proofs of some
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other previously known results. Getting more insight into breakpoint graphs

and their cycle decomposition is particularly relevant to edit distances used in

the field of genome rearrangements, and we hope that our results can help shed

light on their distributions, expected values and variances. There are several

interesting directions in which our work could be extended, which we outline

and motivate below.

Just like one can define conjugacy classes in the symmetric and hyperoc-

tahedral groups, we could investigate conjugacy classes with respect to the

breakpoint graph. This was already initiated by Doignon and Labarre [1], who

referred to them as “Hultman classes” and provided explicit formulas for enu-

merating those classes in the case of unsigned permutations. More work remains

to be done in the unsigned case: indeed, the work done by Bóna and Flynn [5]

provides us with a very nice formula for computing the distribution of cycles,

but no simpler expression than the complicated ones obtained by Doignon and

Labarre [1] is yet known for enumerating Hultman classes or their cardinalities.

Moreover, no work so far has been done in order to enumerate Hultman classes

in the signed setting, and obtaining an expression for enumerating the so-called

“simple permutations”, which are defined in this context as permutations whose

breakpoint graph contains no cycle of length greater than 2, seems especially

interesting (for more information about the importance of those permutations

in genome rearrangements, see Hannenhalli and Pevzner [30] and Labarre and

Cibulka [34]).

The expression we obtained for the signed Hultman numbers is quite useful

in practice, since it allows us to obtain the distribution of those numbers for large

values of n. Unfortunately, it does not seem easy to use in order to gain insights

and have an intuitive interpretation of the shape of the distribution, which would

be useful in order to know how this distribution can be approximated or how it

grows as n increases. Finding simpler generating functions, recurrence relations

or nicer formulas would be useful in that regard and in order to obtain more

information on the properties of this distribution.

The connection between the cycle structure of breakpoint graphs and fac-
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torisations of even permutations (Corollary 4.1, page 9) proved useful not only

in characterising the distribution of those cycles and of the related cycle types,

but also provided the foundations of a simple and generic method for obtaining

lower bounds on any “revertible” edit distance between unsigned permutations

(see Labarre [28] for more details). Is there any way to use the results and

connections obtained in Section 5 in order to obtain similar results for signed

permutations?

Finally, recall that permutations are just one way of modelling genomes. One

natural direction would be to investigate the distribution of cycles in the break-

point graph of other structures, like set systems or “fragmented” permutations

(see again Fertin et al. [3] for an overview of existing models).
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[5] M. Bóna, R. Flynn, The Average Number of Block Interchanges Needed to

Sort A Permutation and a Recent Result of Stanley, Information Processing

Letters 109 (16) (2009) 927–931.

[6] D. A. Christie, Sorting Permutations by Block-interchanges, Information

Processing Letters 60 (4) (1996) 165–169, ISSN 0020-0190.

[7] L. Székely, Y. Yang, On the Expectation and Variance of the Reversal

Distance, Acta Universitatis Sapientiae, Mathematica 1 (1) (2009) 5–20.

[8] S. Grusea, On the Distribution of the Number of Cycles in the Breakpoint

Graph of a Random Signed Permutation, IEEE/ACM Transactions on

Computational Biology and Bioinformatics 8 (5) (2010) 1411–1416, ISSN

1545-5963.

[9] R. Diestel, Graph Theory, vol. 173 of Graduate Texts in Mathematics,

Springer-Verlag, Berlin, 3rd edn., ISBN 978-3-540-26182-7; 3-540-26182-6,

2005.

[10] A. Björner, F. Brenti, Combinatorics of Coxeter Groups, vol. 231 of Grad-

uate Texts in Mathematics, chap. 8: Combinatorial Descriptions, Springer-

Verlag, 2005.

[11] H. Wielandt, Finite Permutation Groups, Translated from German by R.

Bercov, Academic Press, New York, 1964.

[12] R. L. Graham, D. E. Knuth, O. Patashnik, Concrete Mathematics: A

Foundation for Computer Science, Addison-Wesley Longman Publishing

Co., Inc., Boston, MA, USA, 2nd edn., ISBN 0201558025, 1994.

[13] A. Hultman, Toric Permutations, Master’s thesis, Department of Mathe-

matics, KTH, Stockholm, Sweden, 1999.

[14] J. H. Kwak, J. Lee, Genus polynomials of dipoles, Kyungpook Mathemat-

ical Journal 33 (1) (1993) 115–125.

34



[15] P. J. Hanlon, R. P. Stanley, J. R. Stembridge, Some Combinatorial Aspects

of the Spectra of Normally Distributed Random Matrices, Contemporary

Mathematics 138 (1992) 151–174.

[16] N. R. Goodman, Statistical Analysis Based on a Certain Multivariate Com-

plex Gaussian Distribution (an Introduction), The Annals of Mathematical

Statistics 34 (1) (1963) 152–177.

[17] I. G. Macdonald, Symmetric Functions and Hall Polynomials, Oxford

Mathematical Monographs, Oxford University Press, 2nd edn., 1998.

[18] I. Elias, T. Hartman, A 1.375-Approximation Algorithm for Sorting by

Transpositions, IEEE/ACM Transactions on Computational Biology and

Bioinformatics 3 (4) (2006) 369–379, ISSN 1545-5963.

[19] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, Published

electronically at http://oeis.org/, 2012.

[20] B. Sury, T. Wang, F.-Z. Zhao, Identities Involving Reciprocals of Binomial

Coefficients, Journal of Integer Sequences 7, article 04.2.8, 12 pages.

[21] H. S. Wilf, generatingfunctionology, A. K. Peters, Ltd., Natick, MA, USA,

3rd edn., ISBN 1568812795, 2006.

[22] G. R. Galvão, Z. Dias, Rearrangement distance database,

http://mirza.ic.unicamp.br:8080/bioinfo/index.jsf, 2011.

[23] L. Bulteau, G. Fertin, I. Rusu, Sorting by Transpositions Is Difficult,

in: L. Aceto, M. Henzinger, J. Sgall (Eds.), Proceedings of the Thirty-

Eighth International Colloquium on Automata, Languages and Program-

ming (ICALP), Part 1, vol. 6755 of Lecture Notes in Computer Science,

Springer, ISBN 978-3-642-22005-0, 654–665, 2011.

[24] A. Caprara, Sorting Permutations by Reversals and Eulerian Cycle Decom-

positions, SIAM Journal on Discrete Mathematics 12 (1) (1999) 91–110

(electronic), ISSN 1095-7146.

35



[25] L. Bulteau, G. Fertin, I. Rusu, Pancake Flipping is Hard, in: Proceedings

of the Thirty-Seventh International Symposium on Mathematical Founda-

tions of Computer Science (MFCS), vol. 7464 of Lecture Notes in Computer

Science, Springer-Verlag, Bratislava, Slovakia, to appear, 2012.

[26] V. Bafna, P. A. Pevzner, Sorting by Transpositions, SIAM Journal on Dis-

crete Mathematics 11 (2) (1998) 224–240 (electronic), ISSN 1095-7146.

[27] Z. Dias, J. Meidanis, Sorting by Prefix Transpositions, in: A. H. F. Laender,

A. L. Oliveira (Eds.), Proceedings of the Ninth International Symposium on

String Processing and Information Retrieval (SPIRE), vol. 2476 of Lecture

Notes in Computer Science, Springer, ISBN 3-540-44158-1, 65–76, 2002.

[28] A. Labarre, Edit Distances and Factorisations of Even Permutations, in:

D. Halperin, K. Mehlhorn (Eds.), Proceedings of the Sixteenth Annual

European Symposium on Algorithms (ESA), vol. 5193 of Lecture Notes

in Computer Science, Springer-Verlag, ISBN 978-3-540-87743-1, 635–646,

2008.

[29] S. Yancopoulos, O. Attie, R. Friedberg, Efficient Sorting of Genomic Per-

mutations by Translocation, Inversion and Block Interchange, Bioinformat-

ics 21 (16) (2005) 3340–3346.

[30] S. Hannenhalli, P. A. Pevzner, Transforming Cabbage into Turnip: Poly-

nomial Algorithm for Sorting Signed Permutations by Reversals, Journal

of the ACM 46 (1) (1999) 1–27.

[31] A. Caprara, On the Tightness of the Alternating-cycle Lower Bound for

Sorting by Reversals, Journal of Combinatorial Optimization 3 (2-3) (1999)

149–182.

[32] K. M. Swenson, Y. Lin, V. Rajan, B. M. Moret, Hurdles Hardly Have to Be

Heeded, in: C. Nelson, S. Vialette (Eds.), Proceedings of the Sixth Interna-

tional Workshop on Comparative Genomics (RECOMB-CG), vol. 5267 of

36



Lecture Notes in Bioinformatics, Springer-Verlag, Berlin, Heidelberg, ISBN

978-3-540-87988-6, 241–251, 2008.

[33] D. S. Cohen, M. Blum, On the Problem of Sorting Burnt Pancakes, Discrete

Applied Mathematics 61 (1995) 105–120.

[34] A. Labarre, J. Cibulka, Polynomial-time Sortable Stacks of Burnt Pancakes,

Theoretical Computer Science 412 (8-10) (2011) 695–702, ISSN 0304-3975.

37


