A fourth-order model for MEMS with clamped boundary conditions - Archive ouverte HAL
Article Dans Une Revue Proceedings of the London Mathematical Society Année : 2014

A fourth-order model for MEMS with clamped boundary conditions

Résumé

The dynamical and stationary behaviors of a fourth-order equation in the unit ball with clamped boundary conditions and a singular reaction term are investigated. The equation arises in the modeling of microelectromechanical systems (MEMS) and includes a positive voltage parameter $\lambda$. It is shown that there is a threshold value $\lambda_*>0$ of the voltage parameter such that no radially symmetric stationary solution exists for $\lambda>\lambda_*$, while at least two such solutions exist for $\lambda\in (0,\lambda_*)$. Local and global well-posedness results are obtained for the corresponding hyperbolic and parabolic evolution problems as well as the occurrence of finite time singularities when $\lambda>\lambda_*$.
Fichier principal
Vignette du fichier
SG4_PhLChW_050413.pdf (313.11 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00809296 , version 1 (08-04-2013)

Identifiants

Citer

Philippe Laurencot, Christoph Walker. A fourth-order model for MEMS with clamped boundary conditions. Proceedings of the London Mathematical Society, 2014, 109, pp.1435-1464. ⟨10.1112/plms/pdu037⟩. ⟨hal-00809296⟩
159 Consultations
193 Téléchargements

Altmetric

Partager

More