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THE FINITENESS PROBLEM FOR AUTOMATON SEMIGROUPS

IS UNDECIDABLE

PIERRE GILLIBERT

Abstract. The finiteness problem for automaton groups and semigroups has
been widely studied, several partial positive results are known. However we
prove that, in the most general case, the problem is undecidable.

We study the case of automaton semigroups. Given a NW-deterministic
Wang tile set, we construct a Mealy automaton, such that the plane admits
a valid Wang tiling if and only if the Mealy automaton generates a infinite
semigroup. The construction is similar to a construction by Kari for proving
that the nilpotency problem for cellular automata is unsolvable.

Moreover Kari proves that the tiling of the plane is undecidable for NW-
deterministic Wang tile set. It follows that the finiteness problem for automa-
ton semigroups is undecidable.

1. Introduction

Automaton groups, where first introduced by Gluškov in [6]. This family of
groups is a powerful tool to build examples or counter-examples to various problems
in group theory. Alešin in [2] constructs a new counter-example to the unbounded
Burnside problem. Grigorchuk gave in [7] an infinite 2-group G generated by three
involutions, giving another counter-example to the unbounded Burnside problem.
Grigorchuk solves the Milnor problem in [9, 8], proving that G is of intermediate
growth (its growth is neither polynomial nor exponential). Grigorchuk also proved
in [10] that G is amenable but not elementary amenable, giving the first counterex-
ample to the Day problem [5]. Sushchansky, Gupta, and Sidki gave in [22, 14]
examples of infinite p-groups generated by two elements, for each prime p > 2.
Wilson in [24] answers a question by Gromov, constructing an example of group
with exponential growth but without uniform exponential growth. Grigorchuk and
Żuk proved in [13] that the lamplighter group is an automaton group generated
by a 2-state automaton. Further study with Linnell and Schick in [11] led to a
counterexample to the strong Atiyah conjecture.

An automaton group is generated by the states of a finite Mealy automaton.
Therefore it is natural to ask which classical group-theoretical questions are decid-
able.

For example, the word problem is decidable. There is an algorithm which, given
an automaton group (or automaton semigroup) and two words in the generators,
decides whether or not the words represent the same element. On the other hand
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Šunić and Ventura construct in [21] examples of automaton groups in which the
conjugacy problem is not solvable.

We refer to [12, Section 7], for a list of several decision problems on automaton
semigroups. The finiteness problem has been widely studied, several partial positive
results are known. For example, Klimann proves in [17] that the finiteness problem
is solvable among invertible-reversible Mealy automata with two states (or two
letters). Mintz solved the finiteness problem for Cayley (automaton) semigroup in
[19], let S be a finite semigroup, the Cayley semigroup of S is finite if and only if
S is aperiodic. There is a summary of other positive results in [1].

In this paper we prove that the finiteness problem for automaton semigroups is
not solvable.

The proof relies on a construction by Kari in [15]. Kari constructs, given a NW-
deterministic tile set T , a cellular automaton CT , such that the plane has valid tiling
in T if and only if CT is not nilpotent. Kari also proves that the tiling problem for
NW-deterministic tile set is unsolvable, hence the nilpotency problem for cellular
automata is undecidable.

Since cellular automata are similar to Mealy automata, Kari’s construction in
[15] can be adapted to Mealy automata. Given a NW-deterministic tile set T we
construct a Mealy automatonAT such that the plane has valid tiling in T if and only
if the semigroup 〈AT 〉+ generated by AT is infinite, hence the finiteness problem
for automaton semigroups is also undecidable.

The problem is still open for automaton groups. Although the methods of Lecerf
in [18], the result of Kari and Ollinger in [16], proving that periodicity is undecidable
for cellular automata, suggest that the finiteness problem is also undecidable for
automaton groups. The methods of [19, 20] might also be useful.

2. Basic concepts

We denote N = {0, 1, 2, . . .} the set of all nonnegative integers.
Given a set X and n ∈ N, we denote by Xn the set of all words of length n

over X , that is the set of all sequences u = (x1, . . . , xn) with entries in X , we set
lhu = n. The only word of length 0, or equivalently the empty word, is denoted by
ε. We also denote by Xω the set of all infinite sequences (xk)k∈N with entries in X

and by X∗ the set of all finite words, that is:

X∗ =
⋃

n<ω

Xn .

Furthermore we set:

X≤n = {u ∈ X∗ | lhu ≤ n} =
⋃

k≤n

Xk .

X<n = {u ∈ X∗ | lhu < n} =
⋃

k<n

Xk .

Given u ∈ X∗ and v ∈ X∗ ∪Xω, we denote by uv the concatenation of the words
u and v. Given x ∈ X we denote by xn the constant sequence of length n which
takes the value x for all indices, and by xω = (x)k∈N the infinite constant sequence.

A Mealy automaton A is a 4-tuple (A,Σ, δ, σ) where A and Σ are finite sets,
δ : A × Σ → A and σ : A × Σ → Σ are maps, called the transition and the output

maps.
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We extend the maps σ : A∗ ×Σ≤ω → Σ≤ω and δ : A≤ω ×Σ∗ → A≤ω in the usual
way. We also denote σa(u) = σ(a, u) and δu(a) = δ(a, u), for all a ∈ A∗ and all
u ∈ Σ∗. The equalities (2.1)-(2.4) are satisfied, indeed these equalities define the
extensions of the maps δ and σ.

σa(uv) = σa(u)σδu(a)(v) , for all a ∈ A∗, u ∈ Σ∗, and v ∈ Σ∗ ∪ Σω. (2.1)

δu(ab) = δu(a)δσa(u)(b) , for all u ∈ Σ∗, a ∈ A∗, and b ∈ A∗ ∪Aω . (2.2)

σab = σb ◦ σa , for all a, b ∈ A∗. (2.3)

δuv = δv ◦ δu , for all u, v ∈ Σ∗. (2.4)

Note that, given a ∈ A∗, the map σa preserves the length of each word u ∈ Σ≤ω,
moreover if u is a prefix of v, then σa(u) is a prefix of σa(v). That is σa is an
endomorphism of the tree Σ∗.

We denote by 〈A〉+ the subsemigroup of EndΣ∗ generated by {σa | a ∈ A},
equivalently 〈A〉+ = {σa | a ∈ A∗ \ {ε}}.

3. Mealy automata from NW-determinisc tile sets

The following definition is due to Wang [23].

Definition 3.1. A Wang tile is a tuple t = (tN , tS , tE , tW ), where tN , TS, TE , and
TW are elements of a set of colors, viewed as a square with colored edges. A tile

set is a finite set of Wang tiles. A Wang tiling of a subset P of Z2, with a tile
set T , is a map t : P → T . We say that t is valid if, given (x, y) ∈ Z

2, the following
equalities hold

t(x, y)N = t(x, y + 1)S , if (x, y) ∈ P and (x, y + 1) ∈ P .

t(x, y)E = t(x+ 1, y)W , if (x, y) ∈ P and (x+ 1, y) ∈ P .

A simple compactness argument gives the following classical result.

Theorem 3.2. Let T be a tile set. The set Z2 has a valid Wang tiling if and only

if each finite subset of Z2 has a valid Wang tiling.

Remark 3.3. In particular, if Z2 has no valid Wang tiling, then there is the least
integer n ∈ N such that {0, 1, . . . , n}2 has no valid Wang tiling.

The existence of valid Wang tiling is hard to determine, as the following result
of R. Berger in [3] illustrates.

Theorem 3.4 (Berger). It is undecidable whether or not a finite tile set has a valid

Wang tiling for Z
2.

The following notion was introduced by Kari in [15].

Definition 3.5. A tile set T is NW-deterministic if each tile is determined by the
north and west colors. That is tN = sN and tW = sW imply that t = s, for all
s, t ∈ T .

Theorem 3.4 is generalized by Kari in [15].

Theorem 3.6 (Kari). It is undecidable whether or not a finite NW-deterministic

tile set has a valid Wang tiling for Z
2.

The main goal was to generalize a result of Culik, Pachl, and Yu in [4] to dimen-
sion one. Kari proves the following theorem in [15].
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Theorem 3.7 (Kari). It is undecidable whether or not a one-dimensional cellular

automaton is nilpotent.

The argument can be adapted to automaton semigroups, however we need to
be careful about a side effect. A cellular automaton acts on words indexed by Z,
while each element of an automaton semigroup acts on words indexed by N. We
first define a Mealy automaton from a tile set (Kari uses a similar construction to
obtain a cellular automaton).

Definition 3.8. Let T be a finite NW-deterministic tile set, and let ⊥ denote a
special symbol which is not in T. The Mealy automaton of T is the tuple AT =
(A,Σ, δ, σ), where A = Σ = T ⊔ {⊥}, and the maps δ and σ are defined by

δ : A× Σ → A

(x, y) 7→ y

The new state does not depend on the old one, the automaton only remembers the
previous letter.

σ : A× Σ → Σ

(⊥, s) 7→ ⊥

(t,⊥) 7→ ⊥

(⊥,⊥) 7→ ⊥

(s, t) 7→ r if rN = tS and rW = sE .

(s, t) 7→ ⊥ otherwise.

That is, given s, t, r ∈ T , if the Wang tiling on the left hand side of Figure 1 is
valid, then σ(s, t) = r, in all other cases σ(s, t) = ⊥.

Remark 3.9. The Mealy automaton of a finite NW-deterministic tile set T should
be understood in the following way. A word w in A, can be seen as a word written
on tiles along the diagonal D, the Mealy automaton transforms this word to the
word written on the tiles along the diagonal right below the diagonal D. If it is
impossible to put a tile at some place, then the “mistake” tile ⊥ is placed instead.

The Mealy automaton AT is a reset automaton. Silva and Steinberg have stud-
ied groups and semigroups generated by invertible reset automata. In particular
such group is infinite if and only if any generator is of infinite order (cf. [20, The-
orem 3.2]). A generalization of this paper to automaton groups would required to
prove that this problem is also undecidable.

Remark 3.10. Note that δx(a) = δ(a, x) = x for all a ∈ A and x ∈ Σ. It follows
that:

σa(u) = σa(u0)(σuk
(uk+1))k∈N, for all u = (uk)k∈N ∈ Σω, and all a ∈ A. (3.1)

Lemma 3.11. Let T be a finite NW-deterministic tile set. Let t : Z2 → T be a

valid Wang tiling. Consider the word wn = (t(k + n, k))k∈N for each n ∈ N. The

equality σm
⊥ (wn) = ⊥mwm+n holds for all n,m ∈ N. In particular all the maps σm

⊥

are different.

Proof. We use the notations of Definition 3.8. As the Wang tiling on the right hand
side of Figure 1 is valid, it follows that

σt(i,j)(t(i+ 1, j + 1)) = t(i+ 1, j), for all i, j ∈ N. (3.2)
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s r

t

t(i, j) t(i+ 1, j)

t(i+ 1, j + 1)

Figure 1. Wang tilings.

Given n ∈ N, the following equalities hold.

σ⊥(wn) = σ⊥(t(n, 0))(σt(n+k,k)(t(n+ k + 1, k + 1)))k∈N , by (3.1).

= ⊥(t(n+ k + 1, k))k∈N , by (3.2).

= ⊥wn+1

The result follows by induction. �

Lemma 3.12. Let T be a finite NW-deterministic tile set. If Z2 has no valid Wang

tiling then 〈AT 〉+ is finite.

Proof. We use the notations of Definition 3.8. By Theorem 3.2 there is n ∈ N such
that the set {0, 1, . . . , n}2 has no valid Wang tiling for T .

Claim. Let u ∈ A2n. The following equality holds.

σu(pq) = σu(p)⊥
ω , for all p ∈ Σn and all q ∈ Σω.

Proof of Claim. We can write u = u1 . . . u2n. Set τ0 = id, and set:

τk = σu1u2...uk
= σuk

◦ σuk−1
◦ · · · ◦ σu1 , for each 1 ≤ k ≤ 2n.

Notice that

σuk+1
◦ τk = τk+1 , for all 0 ≤ k ≤ 2n− 1. (3.3)

Let p ∈ Σn, let q ∈ Σω. Denote by f(i, j) the jth letter of τi(pq), for (i, j) ∈ N
2

such that i ≤ 2n. That is:

τi(pq) = f(i, j)j∈N , for all 0 ≤ i ≤ 2n. (3.4)

Given 0 ≤ i < 2n, the following equalities hold:

f(i+ 1, j)j∈N = τi+1(pq) , by (3.4)

= σui+1(τi(pq)) , by (3.3)

= σui+1(f(i, j)j∈N) , by (3.4)

= σui+1(f(i, 0))(σf(i,j)(f(i, j + 1)))j∈N , by (3.1) in Remark 3.10
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f(0,k) f(1,k+1) . . . f(n−1,n+k−1) f(n,n+k)

f(1,k) f(2,k+1) . . . f(n,n+k−1) f(n+1,n+k)

...
...

. . .
...

...

f(n−1,k) f(n,k+1) . . . f(2n−2,n+k−1) f(2n−1,n+k)

f(n,k) f(n+1,k+1) . . . f(2n−1,n+k−1) f(2n,n+k)

Figure 2. A Wang tiling defined by an element of 〈AT 〉+.

Therefore the following statement holds

σf(i,j)(f(i, j + 1)) = f(i+ 1, j + 1) , for all (i, j) ∈ N
2 with 0 ≤ i < 2n. (3.5)

Assume that f(2n, n+ k) 6= ⊥ for some k ∈ N. Applying inductively (3.5), with
Definition 3.8 we obtain that f(i+ j, i+ k) 6= ⊥ for all 0 ≤ i, j ≤ n, and the n× n

Wang tiling on Figure 2 is valid.
Therefore {0, 1, . . . , n}2 has a valid Wang tiling; a contradiction. � Claim.

Let u ∈ A∗ be a word of length at least 2n, let v ∈ A2n and w ∈ A be such that
u = vw. Let p ∈ Σn, let q ∈ Σω. We have

σu(pq) = σvw(pq) = σw(σv(pq)) = σw(σv(p)⊥
ω) = σvw(p)⊥

ω = σu(p)⊥
ω .

Therefore {σu | u ∈ A∗ and lhu ≥ 2n} is of cardinality at most card(Σn)(Σ
n).

However 〈AT 〉+ = {σu | u ∈ A<2n}∪ {σu | u ∈ A∗ and lhu ≥ 2n}, therefore the
following inequality holds

card〈AT 〉+ ≤ 1 + cardA+ cardA2 + · · ·+ cardA2n−1 + card(Σn)(Σ
n) .

Hence 〈AT 〉+ is finite. �
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From Lemma 3.11 and Lemma 3.12 we see that the existence of a valid Wang
tiling of Z2 is equivalent to the infiniteness of an explicit automaton semigroup.
Therefore, from Theorem 3.6 we deduce the following result.

Theorem 3.13. It is undecidable whether or not a given automaton semigroup is

finite.

From the proof of Lemma 3.12, we see the following corollary.

Corollary 3.14. It is undecidable whether or not, given an automaton semigroup

A and f, g ∈ A, there exists n such that fn = g.

Proof. Given a finite NW-deterministic tile set T , we consider the Mealy automaton
AT = (A,Σ, δ, σ) defined in Definition 3.8. We add an additional state c to A and
extend σ and δ by:

σ(c, x) = ⊥ for all x ∈ Σ.

δ(c, x) = c for all x ∈ Σ.

We obtain a new Mealy automaton. The corresponding automaton semigroup con-
tains a new element σc. Notice that σc(w) = ⊥ω for each infinite word w ∈ Σω.

From the Lemma 3.11 and Lemma 3.12 we see that the following statement are
equivalent:

(1) The exists a positive integer n such that σn
⊥ = σc.

(2) There is no valid tiling of Z2 with T .

The contrapositive of (1) =⇒ (2) is a direct consequence of Lemma 3.11. Notice
that σn

⊥(w) always start with n times the symbol ⊥, for each word w ∈ Σω. It
follows from the proof of Lemma 3.12 that (2) =⇒ (1).

However the tiling problem is undecidable for NW-deterministic tile set (cf. The-
orem 3.6), therefore (1) is undecidable. �
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