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Abstract

We provide a study at the boundary for a class of equation including the Ginzburg-

Landau equation as well as the equation of travelling waves for the Gross-Pitaevskii model.

We prove Clearing-Out results and an orthogonal anchoring condition of the vortex on the

boundary for the Ginzburg-Landau equation with magnetic field.

1 Introduction

This paper is devoted to the study at the boundary for the equation for the complex-valued
function u in a bounded regular domain Ω ⊂ RN , N ≥ 2,

i|log ε|~c(x) · ∇u = ∆u+
1

ε2
u(1 − |u|2) − |log ε|2d(x)u, (1)

where ~c : Ω → RN is a bounded lipschitz vector field, d : Ω → R+ is a lipschitz non negative
bounded function and ε > 0 is a small parameter. For instance, the Ginzburg-Landau equation
with magnetic field

(∇− i ~A/2)2u =
1

ε2
u(1 − |u|2) (2)

is of the type considered. Another problem that can be written like equation (1) is the equation
for the travelling waves for the Gross-Pitaevskii equation. This equation writes

i
∂ψ

∂t
+ ∆ψ + ψ(1 − |ψ|2) = 0, (3)

where ψ : R × R
N → C. Travelling waves solutions to this equation are solutions of the form

(possibly rotating the axis)

ψ(t, x) = U(x1 − Ct, x2, . . . , xN).

Equation (3) reads now on U

iC
∂U

∂x1
= ∆U + U(1 − |U |2).
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In dimension N ≥ 3, if the propagation speed is small, it is convenient to perform the scaling

u(x) := U
(x

ε

)

, c :=
C

ε|log ε|

(in dimension N = 2, the scaling for the speed is C = ε), and the equation becomes then

ic|log ε| ∂u
∂x1

= ∆u+
1

ε2
u(1 − |u|2)

and we expect c to be of order one. This equation is of the type (1) with d ≡ 0 and ~c = c~e1. If
N = 2, the equation is

i
∂u

∂x1
= ∆u+

1

ε2
u(1 − |u|2),

which is also of the considered type with d ≡ 0 and ~c = ~e1
|log ε|

.

We will be interested in (1) in the asymptotic ε→ 0 with

div~c = 0, (4)

and we supplement this equation with

either the Dirichlet condition

u = gε on ∂Ω, (5)

either the Coulomb gauge and the homogeneous Neumann condition

∂u

∂n
= 0 and ~c · n = 0 on ∂Ω. (6)

Furthermore, we will assume that there exists a constant Λ0 > 0 independent of ε such that

|~c|2L∞(Ω) + |∇~c|2L∞(Ω) + |d|2L∞(Ω) + |∇d|2L∞(Ω) ≤ Λ2
0. (7)

Finally, we may assume 0 < ε ≤ ε0(Λ0) ≤ 1/2 small enough so that

Λ0ε
1/2|log ε|2 ≤ 1

2
. (8)

To this problem, is associated the energy

Eε(u) :=
1

2

∫

Ω

|∇u|2 +
(aε(x) − |u|2)2

2ε2
=

∫

Ω

eε(u),

where
aε(x) := 1 − d(x)ε2|log ε|2.
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1.1 Anchoring condition at the boundary

Our first result is about the anchoring condition of the vortex on the boundary for the Ginzburg-
Landau equation with Neumann condition. Assuming the upper bound

Eε(u) ≤ M |log ε|,

for the function u, we expect that the energy of u concentrates at its vortices, which are curves
Γ in dimension N = 3. We therefore introduce the measure

µε :=
eε(u)

|log ε| dx,

the mass of which is bounded by M by hypothesis. We may then assume, up to a subsequence,
that as ε→ 0,

µε ⇀ µ∗ weakly as measures.

Moreover, we define the N − 2-dimensional density of µ∗

Θ∗(x) := lim inf
r→0

µ∗(Br(x))

rN−2

and the geometrical support of µ∗

Σµ∗ := {x ∈ Ω, Θ∗(x) > 0}.

From Theorem 3 in [BOS], we know that Σµ∗ is closed in Ω and countably (N − 2)-rectifiable.
Let us assume that the magnetic field H = |log ε| curl~c obeys the London equation

−∆H +H = 2π~δΓ.

We may then describe further Σµ∗ near the boundary. In this regime of energy, Γ consists in a
finite number of curves of finite length. Therefore, from London equation, we expect H to be of
order one, that is

|log ε| · |curl~c| = |H| ' 1,

and thus, since ~c · n = 0 on ∂Ω,
|~c| → 0 if ε→ 0.

Our result is concerned with the anchoring of Σµ∗ at the boundary, under the only hypothesis

~cε → 0 in C0(Ω̄) as ε→ 0. (9)

We note that by hypothesis, ~cε is bounded in C0,1(Ω̄), thus we may assume for a subsequence
that ~cε → ~c in C0(Ω̄). We then only assume ~c = 0.

In the case of the Neumann boundary condition (6), we will use the reflection principle. There
exists δ > 0 such that the nearest point projection map

Π : (∂Ω)δ → ∂Ω

is well-defined in the δ-neighborhood (∂Ω)δ of ∂Ω and a smooth fibration. A point x ∈ (∂Ω)δ
may therefore be described by the couple (y, t), where y = Π(x) is its projection on ∂Ω and
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t = ±dist(x, ∂Ω) = ±‖x− Π(x)‖, the sign ± being + if x is inside Ω and − otherwise. We then
define the reflection map

φ : W := Ω̄c ∩ (∂Ω)δ → V := Ω ∩ (∂Ω)δ,

where φ(x) is the point described by the couple (y,−t) if x is described by (y, t). We define the
varifold Ṽ by Ṽ := V in Ω and Ṽ := φ]V in W , that is Ṽ consists in V union its reflection with
respect to the boundary ∂Ω. We then consider the manifold M := Ωδ endowed with the smooth
riemannian metric g defined by g = g0 in Ω̄ and g = φ∗(g0) in W , where g0 is the euclidian metric
on Ω.

Theorem 1. Assume (4) and (7). Let uε be a family of solutions of (1)-(6) satisfying the energy
bound

Eε(u) ≤M |log ε|
for a vector field ~cε satisfying

~cε → 0 in C0(Ω̄) as ε→ 0.

Then, the varifold V(Σµ∗ ,Θ∗) is stationary in Ω. Moreover, Ṽ is a stationary varifold in (M, g).

Remark 1. In the case where Ω is (locally) the half-plane RN
+ = R∗

+ × RN−1, then the theorem

states that Ṽ is a stationary varifold in (locally ) RN for the usual metric.

This Theorem says that, in some weak sense, the union of the varifold V and its symmetric
with respect to the boundary is “smooth”, that is V must meet the boundary ∂Ω orthogonally.
Since V is not in general a smooth curve, we may only use a weak formulation of this orthogonality.
However, if V is a smooth curve up to the boundary, then Theorem 1 states that, denoting ~τ the
tangent unit vector to V,

~τ = ±n on ∂Ω.

The fact that the vortex must meet the boundary orthogonally can be found in the literature.
For instance, in [CH], Chapman and Heron considered a domain which is the half-plane (in R3)
{z < 0} and a straight line vortex Γ, defined by y = 0, x = mz ≤ 0 for a 0 ≤ m < +∞,
meeting the boundary {z = 0} at 0. Using the London equation and the boundary conditions
for the magnetic field, they proved, computing the propagation speed of the vortex at 0, that
the coefficient m must be zero, for otherwise, the propagation speed would be infinite. However,
their computation does not exclude the case of two vortices, defined by y = 0, x = mz ≤ 0
and y = 0, x = −mz ≥ 0, since in that case, the propagation is, due to the symmetry, zero.
Our Theorem 1 states that there can not be another possibility involving two such coplanar
straight lines vortices, that is vortices defined by y = 0, x = mz ≤ 0 and y = 0, x = −m′z ≤ 0
with 0 ≤ m,m′ < +∞ and m 6= m′ can not hold. Our Theorem even states that if we have
two straight line vortices in the half plane {z < 0} meeting at 0, then they must be in a plane
orthogonal to {z = 0}. At the opposite of [CH], our approach is based on equation (1) only,
whereas the London equation is the limit equation for the current (see (22) below), which is the
second equation of the Ginzburg-Landau equation with magnetic field.

Remark 2. In the case ~cε → ~c 6= 0 as ε→ 0, by Theorem 3 in [BOS], we know that the varifold
V satisfies inside the domain Ω the curvature equation

H = ?
(

~c ∧ (?
dJ∗
dµ∗

)
)

, (10)
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where H is the generalized mean curvature of V and, up to a subsequence, J∗ is a weak limit
of the jacobian Juε and ? refers to Hodge duality. Theorem 1 generalizes then in the form (see
Section 5)

H̃ = ?
(

c̃ ∧ (?
dJ̃∗
dµ̃∗

)
)

, (11)

where c̃, J̃∗ and µ̃∗ are the extensions of ~c, J∗ and µ∗ by reflection, and H̃ the generalized mean
curvature of Ṽ in (M, g). Equation (11) also implies in somme weak sense that the vortex must
be orthogonal to the boundary. We show in the figure below some non-admissible and admissible
configurations for a vortex we assume “regular” (for instance d‖J∗‖

dµ∗
= 1), in the case where ~c can

be non zero. In Theorem 1, the stationarity of V (thus of Ṽ) inside the domain Ω is a direct
consequence of (10) with ~c = 0.

Ω

configuration
  admissible

non−admissible
 configuration

non−admissible
  configuration configuration

  admissible

 

Ω

Non-admissible and admissible configurations (a) one vortex (b) two vortices.

1.2 Monotonicity and Clearing-Out Theorems

The second result is a Clearing-Out theorem for this equation. This result is also called η-
compactness (in [R], [LR]) and η-ellipticity Lemma (in [BBO]). We recall the definition of the
scaled energy, for a map u : Ω → C,

Ẽε(u, x0, r) :=
1

rN−2
Eε(u,Ω ∩Br(x0)) =

1

rN−2

∫

Ω∩Br(x0)

eε(u)

=
1

rN−2

∫

Ω∩Br(x0)

|∇u|2
2

+
(aε(x) − |u|2)2

4ε2

and finally set
B̌r(x0) := Ω ∩Br(x0)

and
rε := (εµ|log ε|)1/(N−1),

where µ ∈ (0, 1) is a constant depending only on N .

We can now state our Clearing-Out result for the Dirichlet boundary condition (5). First, we
make the following standard hypothesis for the boundary datum

|gε|∞ ≤ C and |∇gε|∞ ≤ C

ε
. (12)
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We also introduce the following quantity, for 0 ≤ r1 ≤ r2 and 0 < ν ≤ 1,

T νε (x0, r1, r2) :=

∫ r2

r1

1

rN−2+ν

∫

∂Ω∩Br(x0)

e>ε (gε) dr,

where

e>ε (gε) :=
1

2

(

|∇>gε|2 +
(aε(x) − |gε|2)2

2ε2

)

.

Theorem 2. Assume (4) and (7). Let u be a solution of (1)-(5) on Ω, with gε satisfying (12).

Let x0 ∈ Ω̄, 0 < ν ≤ 1, r
1/2
ε ≤ r ≤ min(R, (1 + Λ0)

−1/ν), where R > 0 depends only on Ω, and
σ > 0 be given. Then, there exist constants η > 0 and ε0 > 0 depending on σ, ν, N , Ω, Λ0 and
the constant C in (12) but independent of u and gε such that, for ε ≤ ε0, if

T νε (x0, ε, r
1/2
ε ) ≤ η, (13)

T νε (x0, rε, r) ≤ η|log ε|, (14)

and

Ẽε(u, x0, r) ≤ η|log ε|, (15)

then
|u(x0)| ≥ 1 − σ.

Note that one may take different ν’s for (13) and (14), but we can always assume they are
equal.

Remark 3. We emphasize that the quantity involved in T νε is related to the decay as r → 0 of
the scaled energy for gε, namely

1

rN−3

∫

∂Ω∩Br(x0)

e>ε (gε).

We make an hypothesis at small scales (r ≤ r
1/2
ε ) for (13), which is the suitable assumption for

“gε is smooth enough and of modulus one”, and an hypothesis at large scales (r can be of order
one) for (14), which is an hypothesis on gε similar to the one made on u for (15).

Remark 4. If there exist δ ∈ (0, 2] and a constant M > 0 such that, for 0 < ρ ≤ r,

1

ρN−3

∫

∂Ω∩Bρ(x0)

|∇>gε|2 +
(aε(x) − |gε|2)2

2ε2
≤ Mρδ, (16)

then, for 0 < r1 ≤ r2 ≤ r ≤ 1 and 0 < ν < min(δ, 1),

T νε (x0, r1, r2) ≤M

∫ r2

r1

rδ−ν−1 dr ≤M
rδ−ν2

δ − ν
.

Therefore, the hypothesis (13) is verified for ε sufficiently small (depending on ν, δ and M), and
(14) is verified for r ≤ 1 and ε sufficiently small (depending on M). One may even consider for
(16) a constant M � |log ε|. In particular, if gε is uniformly M -lipschitzian of modulus 1 on
∂Ω ∩ Br(x0), then by (8)

1

ρN−3

∫

∂Ω∩Bρ(x0)

|∇>gε|2 +
(aε(x) − |gε|2)2

2ε2
≤ CM2ρ2 + Cρ2Λ2

0ε
2|log ε|4 ≤ C(M2 +

1

4
)ρ2,

where C depends only on Ω, thus (16) is satisfied with δ = 2.
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Remark 5. We would like to emphasize that we do not impose |gε| ≡ 1 (near the point x0). The
condition (13) (for r ' ε) however implies |gε|(x0) ' 1 if x0 is at distance less than ε from the
boundary. We enlarge the conditions on the boundary datum already used in [LR] (and [BBO]).
In this case, gε is a suitable smooth approximation of a map of modulus 1 smooth outside a finite
union of smooth submanifolds of ∂Ω of dimension N − 3. The Clearing-Out Theorem is then
stated far away from these submanifolds.

Our Clearing-Out result for the the Neumann boundary condition (6) is the following.

Theorem 3. Assume (4) and (7). Let u be a solution of (1)-(6) on Ω, x0 ∈ Ω̄ and σ > 0

be given, and let r
1/2
ε ≤ r ≤ min(R, 1/(1 + Λ0)), where R > 0 depends only on Ω. There exist

constants η > 0 and ε0 > 0, depending on N , Ω, σ and Λ0 but independent of u, such that, for
0 < ε < ε0, if

Ẽε(u, x0, r) ≤ η|log ε|,
then

|u(x0)| ≥ 1 − σ.

Remark 6. These theorems do not give compactness on the solution u as ε → 0. For the
Dirichlet problem, the compactness properties follow from hypothesis on the whole boundary
(see for instance [BBBO] for compactness in W 1,p, 1 ≤ p < N/(N − 1)).

These results rely strongly on monotonicity formulas of the scaled energy of solutions of (1).
For the Dirichlet problem, the result is the following.

Proposition 1. Assume (4) and (7). Let ν ∈ (0, 1] and gε satisfying (12). There exist R > 0,
depending only on Ω, C > 0, depending on Ω, ν and the constant C in (12) only, and β > 0
depending on N only such that, if u is a solution of (1)-(5), 0 < r ≤ min(R, (1 + Λ0)

−1/ν) and
x0 ∈ Ω̄, then for any 0 < θ < 1/2, we have

Ẽε(x0, θr) ≤ C
(

Ẽε(r) + T νε (x0, θr, r) + Λ0ε
β
)

. (17)

For the Neumann problem, the result is the following.

Proposition 2. Assume (4) and (7). There exist β > 0, R > 0 and C > 0 depending on Ω and
N only such that, if u is a solution of (1)-(6), x0 ∈ Ω̄ and 0 < r ≤ min(R, 1/(1 + Λ0)), then for
any 0 < θ < 1/2,

Ẽε(x0, θr) ≤ C
(

Ẽε(r) + Λ0ε
β
)

. (18)

1.3 Models involving equation (1)

We would like to discuss some models involving equation (1), as well as the boundary conditions.

Note that (1) can be rewritten as

i|log ε|~c(x) · ∇u = ∆u+
1

ε2
u(aε(x) − |u|2), (19)

where
aε(x) := 1 − d(x)ε2|log ε|2.
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When div~c = 0, it is also equivalent to

(∇− i|log ε|~c
2
)2u+

1

ε2
u(bε(x) − |u|2) = 0, (20)

where

bε(x) := aε(x) + ε2|log ε|2 |~c(x)|
2

4
.

If ~c|log ε| = ~A and d = |~c|2/4 with div ~A = 0, then this equation is the first equation in the
Ginzburg-Landau system of superconductivity, namely

(∇− i ~A/2)2u =
1

ε2
u(1 − |u|2). (21)

The second equation for the induced magnetic field H := |log ε| curl~c (in dimension N = 3) is

(iu,∇Au) = curlH + curlHex = |log ε| curl2 ~c+ curlHex, (22)

where Hex is the imposed magnetic field and ∇A = ∇ − i|log ε|~c is the covariant derivative.
Equations (21)-(22) are the Euler-Lagrange equations of the Ginzurg-Landau functional

J(u,~c) =
1

2

∫

Ω

∣

∣∇u− i|log ε|~cu
∣

∣

2
+

(1 − |u|2)2

2ε2
+

∣

∣H −Hex

∣

∣

2
.

In this case, the natural boundary condition is

n · (iu,∇Au) = 0. (23)

The functional J is gauge-invariant, that is, if ψ ∈ H2(Ω), then

J(ueiψ,~c+ ∇ψ) = J(u,~c).

We can freeze the gauge-invariance by choosing, for instance, the Coulomb gauge
{

div~c = 0 in Ω,
~c · n = 0 on ∂Ω.

In this case, the boundary condition (23) becomes with the Coulomb gauge

∂u

∂n
= 0 on ∂Ω.

This justifies the study at the boundary with the homogeneous Neumann condition (6).

Writing (21) in the form (1) has the advantage to include in the same analysis the equation
already mentioned (in dimension N ≥ 3)

ic|log ε|∂1u = ∆u+
1

ε2
u(1 − |u|2)

related to the travelling waves for the Gross-Pitaevskii equation with small speeds. This equation
is used as a model for superfluidity, nonlinear optics and Bose-Einstein condensates. It is close
to the Ginzburg-Landau equation (21) and a similar asymptotic analysis as ε→ 0 can be carried
out for this equation.
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We would like to mention that in [C], we have been interested in travelling vortex helices to
the Gross-Pitaevskii equation. In this case, we approximate the problem on cylinders of axis x1,
and we impose the Dirichlet boundary condition u = eiθ on the lateral surface of the cylinder
that forces the solution u to have a degree one in the plane orthogonal to x1. Therefore, this
study required a Dirichlet boundary condition, whereas the Neumann condition is the natural
one for the gauge-invariant functional J .

We refer to [BOS] for the generalization of the analysis of equation (1) inside the domain
(see Theorems 2 and also 3 there). The proofs of Theorems 2 and 3 will follow the same lines
as in appendix A of [BOS]. We also mention the study of minimizers in dimension 3 for the
U(1)-Higgs model in [R]. For the study near the boundary for the Ginzburg-Landau functional
without magnetic field (d = |~c| ≡ 0) and Dirichlet datum smooth outside a finite union of smooth
(N − 2)-dimensional submanifolds of ∂Ω, we refer to [LR] (for minimizers in dimension N ≥ 3)
and [BBO] (for the general case).

The paper is organized as follows. In Section 2, we state and prove two lemmas concerning
basic L∞ bounds for u and ∇u. Section 3 is devoted to the monotonicity formulas and the proof
of Propositions 1 and 2. In Section 4, we prove the Clearing-Out Theorems 2 and 3, while the
result about the orthogonal anchoring of the vortex on the boundary of Theorem 1 is given in
Section 5.

2 Basic L
∞ bounds

We first state two lemmas related to L∞ bounds for u and ∇u. The first one concerns the
Dirichlet problem.

Lemma 1. Assume (4) and (7). Let u be a solution of (1)-(5), with gε satisfying (12). Then,

|u|2∞ ≤ max(|gε|2∞, |bε|∞) ≤ C and |∇u|∞ ≤ C

ε

for a constant C depending on Ω, Λ0 and the constant C in (12) only.

The second one is for the Neumann problem.

Lemma 2. Assume (4) and (7). Let u ∈ H1∩L4(Ω) be a solution of (1)-(6). Then, u ∈ C2,α(Ω̄)
for some α > 0 and

|u|2∞ ≤ |bε|∞ and |∇u|∞ ≤ K

ε
,

where K depends on Ω and Λ0.

In particular, for the Ginzburg-Landau functional with magnetic field (where d ≡ |~c|2/4, thus
bε ≡ 1), Lemma 2 states that |u|∞ ≤ 1.
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2.1 Proof of Lemma 1

It is close to the proof of Lemma 3 in [BOS]. From (1), we deduce

∆|u|2 = 2(u,∆u) + 2|∇u|2 = −2ε−2|u|2(aε − |u|2) + 2|log ε|(u, i~c · ∇u) + 2|∇u|2
≥ −2ε−2|u|2(aε − |u|2) − 2|~c| · |log ε| · |u| · |∇u| + 2|∇u|2

= −2ε−2|u|2(aε − |u|2) +
(√

2|∇u| − |~c|√
2
|u| · |log ε|

)2

− |~c|2
2

|u|2 · |log ε|2

≥ −2ε−2|u|2
(

|bε|∞ − |u|2
)

.

Therefore, the function w := max(|gε|2∞, |bε|∞) − |u|2 satisfies

−∆w + 2ε−2|u|2w ≥ 0 in Ω,

w ≥ 0 on ∂Ω,

and by the maximum principle, we deduce

w ≥ 0 in Ω.

Concerning the bound on the gradient, we consider the scaled map û(x) := u(εx), which satisfies

∆û+ û(âε − |û|2) = iε|log ε|ĉ · ∇û in
Ω

ε
,

û = gε(εx) on
∂Ω

ε
,

where ĉ(x) := c(εx) and d̂(x) := d(εx). By standard elliptic estimates (see [GT]), since
|∇(gε(εx))| ≤ C by hypothesis (12),

|∇û|L∞ ≤ C

for a constant C depending on Ω and Λ0, and the estimate for u is obtained by scaling back. �

2.2 Proof of Lemma 2

The proof of the C2,α regularity of u uses a standard bootstrap argument and the fact that the
coefficients c,d are lipschitzian. Concerning the L∞ bounds, as in the proof of Lemma 1, we find
that w := |bε|∞ − |u|2 satisfies

−∆w + 2ε−2|u|2w ≥ 0 in Ω,

∂w

∂n
= 0 on ∂Ω,

since ∂w
∂n

= −2(u, ∂u
∂n

) = 0 by (6). We then adapt an idea of [F], used in the proof of universal
bounds for travelling waves for the Gross-Pitaevskii equation. For f : Ω → R, we decompose
f = f+ − f− in its nonpositive and nonnegative part (f+, f− ≥ 0, f+f− = 0). Since w and ∆w
are Hölder continuous, we have by Kato’s inequality (see [B], [K])

∆(w−) = ∆((−w)+) ≥ sign+(−w)∆(−w) ≥ 2
|u|2
ε2

sign+(−w)(−w). (24)
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Therefore (if w ≥ 0, the right-hand side of (24) is zero, and if w < 0, then |u|2 > |bε|∞ ≥ 0),

∆(w−) ≥ 2|bε|∞
ε2

w− ≥ 0. (25)

From (25), it is clear that we can not have w− ≡ cte > 0, since |bε|∞ > 0. As a consequence, in
view of (25), we deduce by the strong maximum principle (Ω is connected) that either w− = cte,
and then this constant must be zero, either w− achieves its maximum only on the boundary, for
instance at x0 ∈ ∂Ω. Assuming w− 6≡ 0, we have w−(x0) > 0. In particular, since w ∈ C2,α(Ω̄),
in a neighborhood of x0 in Ω̄, w− = −w > 0 is C2,α. It is then well-known that in this case, since
w− > 0 in this neighborhood, we have by (25),

−∂w
∂n

=
∂w

∂n

−

> 0.

This contradicts the boundary condition ∂w
∂n

= 0. Therefore, w− ≡ 0 and w = w+ ≥ 0, that is
|u|2∞ ≤ |bε|∞, which finishes the proof for the L∞ bound. For the estimate on the gradient, we
consider the scaled map û(x) := u(εx), which satisfies

∆û+ û(âε − |û|2) = iε|log ε|ĉ · ∇û in
Ω

ε
,

∂û

∂n
= 0 on

∂Ω

ε
.

By standard elliptic estimates, we have

|∇û|L∞ ≤ C

and we conclude by scaling back. �

3 Monotonicity formulas at the boundary

As already mentioned, we follow the lines of the proof of Theorem 2 of [BOS] given in appendix A
there. When this will not lead to a confusion, we will denote Ẽε(u, x0, r) and B̌r(x0) by Ẽε(x0, r),
or even Ẽε(r), and B̌r. We first recall the Pohozaev identity.

Lemma 3.1. Let u be a solution of (1) on Ω, then for any z0 ∈ RN and ω ⊂ Ω,

N − 2

2

∫

ω

|∇u|2 +
N

4ε2

∫

ω

(aε(x) − |u|2)2 − N − 1

2
|log ε|

∫

ω

〈Ju,
∑

i

ci(x)ξi(x− z0)〉

=

∫

∂ω

[

(x− z0) · neε(u) − (
∂u

∂n
, (x− z0) · ∇u)

]

+
|log ε|2

2

∫

ω

(aε(x) − |u|2)(x− z0) · ∇d(x).

Here, ξi stands for the 2-form

ξi :=
2

N − 1

∑

j 6=i

xjdxi ∧ dxj.
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3.1 The Dirichlet problem

In this subsection, we assume that u is a solution to the Dirichlet problem (1)-(5). We will
denote, for r > 0,

Gε(x0, r) :=
1

2rN−2

∫

∂Ω∩Br(x0)

|∇>gε|2 +
(aε(x) − |gε|2)2

2ε2
=

1

rN−2

∫

∂Ω∩Br(x0)

e>ε (gε).

Note that Gε is not the scaled energy for gε. We fix 0 < ν ≤ 1. In the sequel, C denotes a
constant depending on N , Ω and ν only.

Lemma 3.2. Let u be a solution of (1)-(5) on Ω, then for r > 0 and x0 ∈ Ω̄

d

dr
(Ẽε(x0, r)) =

1

rN−2

∫

Ω∩∂Br(x0)

∣

∣

∣

∂u

∂n

∣

∣

∣

2

+
1

rN−1

∫

Br(x0)∩∂Ω

1

2
(x− x0) · n

∣

∣

∣

∂u

∂n

∣

∣

∣

2

+
1

rN−1

∫

B̌r(x0)

(aε(x) − |u|2)2

2ε2

− N − 1

2rN−1
|log ε|

∫

B̌r(x0)

〈Ju,
∑

i

ci(x)ξi(x− x0)〉 (26)

− |log ε|2
2rN−1

∫

B̌r(x0)

(aε(x) − |u|2)(x− x0) · ∇d(x)

− 1

rN−1

∫

Br(x0)∩∂Ω

(x− x0) · ne>ε (gε) − (
∂u

∂n
, (x− x0)> · ∇>gε),

where (x− x0)> is the orthogonal projection of x− x0 on the tangent hyperplane to ∂Ω at x.

Proof. Up to a translation, we may assume x0 = 0. One has

dẼε
dr

= − N − 2

rN−1
Eε(r) +

1

rN−2

∫

Ω∩∂Br

|∇u|2
2

+
(aε(x) − |u|2)2

4ε2

= − 1

rN−1

(N − 2

2

∫

B̌r

|∇u|2 +
N

4ε2

∫

B̌r

(aε(x) − |u|2)2
)

+
1

rN−1

∫

B̌r

(aε(x) − |u|2)2

2ε2
+

1

rN−2

∫

Ω∩∂Br

eε(u).

We use Lemma 3.1 (with ω = B̌r(x0) and z0 = x0) for the first term and then split ∂B̌r into

∂B̌r = (Br ∩ ∂Ω)
◦∪ (Ω ∩ ∂Br)

12



to obtain, since x · n = r on Ω ∩ ∂Br,

dẼε
dr

=
1

rN−1

∫

B̌r

(aε(x) − |u|2)2

2ε2
+

1

rN−2

∫

Ω∩∂Br

eε(u)

− N − 1

2rN−1
|log ε|

∫

B̌r

〈Ju,
∑

i

ci(x)ξi(x)〉

− |log ε|2
2rN−1

∫

B̌r

(aε(x) − |u|2)x · ∇d(x)

− 1

rN−1

∫

∂B̌r

x · neε(u) − (
∂u

∂n
, x · ∇u),

=
1

rN−1

∫

B̌r

(aε(x) − |u|2)2

2ε2
+

1

rN−2

∫

Ω∩∂Br

∣

∣

∣

∂u

∂n

∣

∣

∣

2

− N − 1

2rN−1
|log ε|

∫

B̌r

〈Ju,
∑

i

ci(x)ξi(x)〉

− |log ε|2
2rN−1

∫

B̌r

(aε(x) − |u|2)x · ∇d(x) (27)

− 1

rN−1

∫

Br∩∂Ω

x · neε(u) − (
∂u

∂n
, x · ∇u).

It suffices then to write, on Br ∩ ∂Ω,

eε(u) =
1

2

∣

∣

∣

∂u

∂n

∣

∣

∣

2

+
1

2
|∇>gε|2 +

(aε(x) − |gε(x)|2)2

4ε2
=

1

2

∣

∣

∣

∂u

∂n

∣

∣

∣

2

+ e>ε (gε)

and
x = (x · n)n+ x>,

thus

(
∂u

∂n
, x · ∇u) = x · n

∣

∣

∣

∂u

∂n

∣

∣

∣

2

+ (
∂u

∂n
, x> · ∇>gε),

to finally deduce

x · neε(u) − (
∂u

∂n
, x · ∇u) = x · ne>ε (gε) −

x · n
2

∣

∣

∣

∂u

∂n

∣

∣

∣

2

− (
∂u

∂n
, x> · ∇>gε).

Inserting this in the last integral yields (26). �

We note in equality (26) the last term involving the normal derivative of u. The next lemma
provides an estimate for this term.

Lemma 3.3. (Control of the normal derivative). Let u be a solution of (1)-(5). There exist
C and R depending only on Ω such that, for all x0 ∈ Ω̄ and 0 < r < R, there exists z0 ∈ B̌r(x0)
such that

r

∫

∂Ω∩Br(x0)

∣

∣

∣

∂u

∂n

∣

∣

∣

2

≤ C
(

∫

B̌r(x0)

eε(u) + r

∫

∂Ω∩Br(x0)

e>ε (gε) + |log ε| ·
∣

∣

∣

∫

ω

〈Ju,
∑

i

ci(x)ξi(x− z0)〉
∣

∣

∣

+
|log ε|2

2

∣

∣

∣

∫

ω

(aε − |u|2)(x− z0) · ∇d
∣

∣

∣

)

, (28)

where ω ⊂ B̌r(x0) depends on u, x0 and r.

13



The proof is, as in [LR], based on a Pohozaev identity at a point z0 around which B̌r(x0) is
strictly starshaped. However, we will not use a “good” extension of g inside the domain Ω as
in [LR] (see Lemma II.5 there), since it requires a strong regularity hypothesis (for instance, gε
bounded in C1,1 around x0) and will not enable us to treat the case of the monotonicity at large
scale (see Remark 3.1 below).

Proof. For simplicity, assume first that ∂Ω is locally the half-plane ∂RN
+ = RN−1 × {0}. We also

assume (up to a translation) x0 = (0, . . . , 0, a). We assume first that 0 ≤ a ≤ r/4, that is x0 is
close to the boundary ∂Ω. We define y := (0, . . . , 0, b) for b ≤ a and ρ := (r2 − a2 + b2)1/2. The
intersection of ∂RN

+ and the balls Bρ(y) and Br(x0) is the ball in ∂RN
+ = RN−1 × {0} centered

at 0 and of radius (r2 − a2)1/2. By averaging, there exists r′ ∈ (r, 9r/8) such that, for ρ = r′ and
b = −(r′2 − r2 + a2)1/2,

∫

R
N
+
∩∂Br′(y)

eε(u) ≤
C

r

∫

B̌r(x0)

eε(u). (29)

ab
N

X

r

ρ

z
0

Moreover, since r′ ≤ 9r/8 and 0 ≤ a < r/4, b2 ≤ 21r2/64, then r′ + b ≥ r −
√

21r/8 ≥ r/3.
We then set z0 := (0, . . . , 0, r

′+b
2

) ∈ B̌r(x0) and easily see that, since a ≤ r/4, ω := B̌r(x0)∩Br′(y)
is strictly starshaped around z0, that is there exists α > 0 such that

(x− z0) · n ≥ αr. (30)

Next, we apply the Pohozaev identity of Lemma 3.1 with z0, x0 and ω to obtain

N − 2

2

∫

ω

|∇u|2 +
N

4ε2

∫

ω

(aε(x) − |u|2)2 − N − 1

2
|log ε|

∫

ω

〈Ju,
∑

i

ci(x)ξi(x− z0)〉

=

∫

∂ω

[

(x− z0) · neε(u) − (
∂u

∂n
, (x− z0) · ∇u)

]

+
|log ε|2

2

∫

ω

(aε(x) − |u|2)(x− z0) · ∇d(x).

As in the proof of Lemma 3.2, we write x− z0 = ((x− z0) · n)n + (x− z0)> to deduce
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C

∫

ω

eε(u) + C|log ε| ·
∣

∣

∣

∫

ω

〈Ju,
∑

i

ci(x)ξi(x− z0)〉
∣

∣

∣
+ |log ε|2

∣

∣

∣

∫

ω

(aε(x) − |u|2)(x− z0) · ∇d(x)
∣

∣

∣

≥
∫

∂ω

(x− z0) · n
∣

∣

∣

∂u

∂n

∣

∣

∣

2

− (x− z0) · n|∇>u|2 + 2(
∂u

∂n
, (x− z0)> · ∇>u) − (x− z0) · n

(aε − |u|2)2

2ε2
.

In the last integral, in view of the starshapedness assumption (30), the third term has an absolute
value

≤ 1

2
(x− z0) · n

∣

∣

∣

∂u

∂n

∣

∣

∣

2

+ Cr|∇>u|2.

Thus, using the starshapedness assumption (30) and splitting ∂ω into ∂Ω∩Br(x0) and Ω∩∂Br′(y),

C

∫

ω

eε(u) + C|log ε| ·
∣

∣

∣

∫

ω

〈Ju,
∑

i

ci(x)ξi(x− z0)〉
∣

∣

∣
+ |log ε|2

∣

∣

∣

∫

ω

(aε(x) − |u|2)(x− z0) · ∇d(x)
∣

∣

∣

≥ 1

2

∫

∂ω

(x− z0) · n
∣

∣

∣

∂u

∂n

∣

∣

∣

2

− Cr(|∇>u|2 +
(aε − |u|2)2

2ε2
)

≥ αr

2

∫

∂ω

∣

∣

∣

∂u

∂n

∣

∣

∣

2

− Cr

∫

∂Ω∩Br(x0)

e>ε (gε) − Cr

∫

Ω∩∂Br′(y)

eε(u).

We conclude estimating the last term by (29). We assume now that a ≥ r/4, that is x0 is far
enough from the boundary. Then, we have n = −~eN and, if x ∈ ∂RN

+ , then xN = 0 and

(x− x0) · n = a− xN = a ≥ r

4
. (31)

In other words, B̌r(x0) is strictly starshaped around x0. We conclude then as in the previous
case. This concludes the proof in the case Ω is locally an half-plane. For the general case, we
use local charts and note that the starshapedness assumptions (30) or (31) will still be true at
least for r < R (depending on Ω). �

We then prove a first monotonicity formula useful for small scales, which is the boundary
version of Lemma 4 in [BOS]. Note that the presence of the term rν in front of Λ and r−ν in
front of Gε(r) is specific to the Dirichlet condition.

Lemma 3.4. (Monotonicity at small scales). There exist C and 0 < R < 1, depending only
on ν and Ω, such that for any solution u of (1)-(5) on Ω, denoting

Λ := C(1 + Λ0|log ε|) and Q := CΛ0ε|log ε|2,

and any x0 ∈ Ω̄ and 0 < r ≤ min(R,Λ−1/ν) ≤ 1, we have

d

dr

(

exp(Λrν)(Ẽε(r) +
Q2

Λ
)
)

≥ 1

rN−1

∫

Ω∩∂Br(x0)

(aε(x) − |u|2)2

2ε2
+

1

rN−1

∫

Br(x0)∩∂Ω

|x · n|
2

∣

∣

∣

∂u

∂n

∣

∣

∣

2

+
1

rN−2

∫

∂Br(x0)∩Ω

∣

∣

∣

∂u

∂n

∣

∣

∣

2

− C
Gε(r)

rν
.

Proof. First, we note that, if 0 < r ≤ R(Ω) is sufficiently small, then for all x ∈ B̌r(x0),

(x− x0) · n ≥ |(x− x0) · n| − Cr2, (32)
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where C depends on Ω only. This fact was already used in [LR] (Lemma II.5). We recall
the argument. One may assume that, for r < R sufficiently small, B̌r is the uppergraph of
ψ : B1(0) ⊂ RN−1 → R and that ψ(0) = |∇ψ(0)| = 0, so that the tangent hyperplane at Ω at
ψ(0) = 0 is R

N−1 × {0}. Therefore, the outward normal writes

n = (1 + |∇ψ|2)−1/2
(

~eN −
N−1
∑

i=1

∂iψ~ei

)

,

where (~ei)1≤i≤N is the canonical basis of RN . In order to prove (32), it suffices then to prove

(x− x0) · ~eN ≥ −Cr2,

since ∇ψ(0) = 0, so |∇ψ| ≤ Cr. This last inequality is a direct consequence of the fact that
T0(∂Ω) = RN−1 ×{0} and Ω is locally the uppergraph of ψ. We now turn to the proof of Lemma
3.4.
Once more, we assume x0 = 0. We have to estimate each term on the right hand side of (26).
For the fourth one, we use the rough estimate for the jacobian

‖Ju(x)‖ ≤ C|∇u(x)|2 and ‖ξi(x)‖ ≤ Cr for all x ∈ Br,

which yields
∣

∣

∣

N − 1

2rN−1
|log ε|

∫

B̌r(x0)

〈Ju,
∑

i

ci(x)ξi(x)〉
∣

∣

∣
≤ C

rN−2
|~c|∞|log ε|

∫

B̌r

|∇u(x)|2

≤ CΛ0|log ε|Ẽε(r). (33)

For the fifth one, by Cauchy-Schwarz,

∣

∣

∣

|log ε|2
2rN−1

∫

B̌r

(aε(x) − |u|2)x · ∇d(x)
∣

∣

∣
≤ C

rN−2
Λ0ε|log ε|2

∫

B̌r

|aε(x) − |u|2|
ε

≤ C

rN−2
Λ0ε|log ε|2rN/2

(

∫

B̌r

(aε(x) − |u|2)2

ε2

)1/2

≤ CrΛ0ε|log ε|2Ẽε(r)1/2

≤ Ẽε(r) + Cr2Λ2
0ε

2|log ε|4. (34)

Concerning the second term, we have by (32)

1

rN−1

∫

Br∩∂Ω

1

2
x · n

∣

∣

∣

∂u

∂n

∣

∣

∣

2

≥ 1

2rN−1

∫

Br∩∂Ω

|x · n| ·
∣

∣

∣

∂u

∂n

∣

∣

∣

2

− C

rN−3

∫

Br∩∂Ω

∣

∣

∣

∂u

∂n

∣

∣

∣

2

. (35)

We use (28) of Lemma 3.3 to estimate

r

∫

∂Ω∩Br

∣

∣

∣

∂u

∂n

∣

∣

∣

2

≤ C
(

∫

B̌r

eε(u) + |log ε| ·
∣

∣

∣

∫

ω

〈Ju,
∑

i

ci(x)ξi(x− z0)〉
∣

∣

∣

+ r

∫

∂Ω∩Br

e>ε (gε) +
|log ε|2

2

∣

∣

∣

∫

ω

(aε − |u|2)(x− z0) · ∇d
∣

∣

∣

)

. (36)

In (36), we estimate the second term as in (33) and the fourth one as in (34) (since ω ⊂ B̌r) to
obtain

1

rN−3

∫

∂Ω∩Br

∣

∣

∣

∂u

∂n

∣

∣

∣

2

≤ C
(

Ẽε(r) + rGε(r) + Λ0|log ε|Ẽε(r) + Cr2Λ2
0ε

2|log ε|4
)

. (37)
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Inserting (37) in (35) yields

1

2rN−1

∫

Br∩∂Ω

x · n
∣

∣

∣

∂u

∂n

∣

∣

∣

2

≥ 1

2rN−1

∫

Br∩∂Ω

|x · n| ·
∣

∣

∣

∂u

∂n

∣

∣

∣

2

− ΛẼε(r) − CrGε(r) − Cr2Λ2
0ε

2|log ε|4, (38)

where Λ = C(1 + Λ0|log ε|). For the last term in (26), we have first

1

rN−1

∫

Br∩∂Ω

x · ne>ε (gε) ≤ Gε(r)

and since |x| ≤ r,

∣

∣

∣

1

rN−1

∫

Br∩∂Ω

(
∂u

∂n
, x> · ∇>gε)

∣

∣

∣
≤ 1

rN−2

∫

Br∩∂Ω

∣

∣

∣

∂u

∂n

∣

∣

∣
· |∇>gε|

≤ r1−ν

νrN−1

∫

Br∩∂Ω

e>ε (gε) + ν
rν−1

rN−3

∫

Br∩∂Ω

1

2

∣

∣

∣

∂u

∂n

∣

∣

∣

2

which yields, using (37), the estimate of the last term in (26)

1

rN−1

∣

∣

∣

∫

∂Ω∩Br

x · ne>ε (gε) − (
∂u

∂n
, x> · ∇>gε)

∣

∣

∣
≤ νΛ

r1−ν
Ẽε(r) + C

Gε(r)

rν
+ Cr2−νΛ2

0ε
2|log ε|4. (39)

Inserting estimates (33), (34), (35), (38) and (39) into (26) gives

dẼε
dr

≥ 1

2rN−1

∫

Br∩∂Ω

|x · n| ·
∣

∣

∣

∂u

∂n

∣

∣

∣

2

+
1

rN−1

∫

B̌r

(aε(x) − |u|2)2

2ε2

+
1

rN−2

∫

Ω∩∂Br

∣

∣

∣

∂u

∂n

∣

∣

∣

2

− νΛ

r1−ν
Ẽε(r) − C

Gε(r)

rν
− Cr2−νΛ2

0ε
2|log ε|4,

from which we infer for r ≤ Λ−1/ν (note that r2−ν ≤ rν−1 since 0 < ν ≤ 1)

d

dr

(

exp(Λrν)Ẽε

)

= exp(Λrν)
dẼε
dr

+
νΛ

r1−ν
exp(Λrν)Ẽε(r)

≥ 1

2rN−1

∫

Br∩∂Ω

|x · n| ·
∣

∣

∣

∂u

∂n

∣

∣

∣

2

+
1

rN−1

∫

B̌r

(aε(x) − |u|2)2

2ε2

+
1

rN−2

∫

Ω∩∂Br

∣

∣

∣

∂u

∂n

∣

∣

∣

2

− C exp(Λrν)
Gε(r)

rν
− C exp(Λrν)rν−1Λ2

0ε
2|log ε|4

≥ 1

2rN−1

∫

Br∩∂Ω

|x · n| ·
∣

∣

∣

∂u

∂n

∣

∣

∣

2

+
1

rN−1

∫

B̌r

(aε(x) − |u|2)2

2ε2

+
1

rN−2

∫

Ω∩∂Br

∣

∣

∣

∂u

∂n

∣

∣

∣

2

− C
Gε(r)

rν
− d

dr

(Q2

Λ
exp(Λrν)

)

and the proof is complete. �

The previous monotonicity formula is useful for r ≤ C(1 + Λ0|log ε|)−1/ν = Λ−1/ν , that is r
small if Λ0 > 0. As in [BOS], the monotonicity formula for large scales will be a consequence of
the refined estimates on jacobians as in [JS].
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Lemma 3.5. (Jerrard & Soner). Assume u ∈ H1
loc(Ω,C), ϕ ∈ C0,1

c (Ω,Λ2RN). There exist K
and α ∈ (0, 1), depending only on N and |Ω|, such that, denoting K := Supp(ϕ),

∣

∣

∣

∫

Ω

〈Ju, ϕ〉
∣

∣

∣
≤ K

|log ε| |ϕ|∞Eε(u,K) +Kεα|dϕ|∞(1 + |K|2)(1 + Eε(u,K)). (40)

The advantage of this estimate is the factor |log ε| dividing the energy. Note that this lemma is
stated with the energy Eε and not the usual Ginzburg-Landau energy used in [JS] (corresponding
to d ≡ 0), but these two energies are close with our hypothesis, since one may infer from
0 ≤ d ≤ Λ0 that

∣

∣

∣

∫

Ω

(1 − |u|2)2

2ε2
−

∫

Ω

(aε − |u|2)2

2ε2

∣

∣

∣
≤ |Ω|Λ2

0ε|log ε|4 + ε

∫

Ω

(1 − |u|2)2

2ε2
.

Remark 3.1. We emphasize that this is the Pohozaev identity we used for Lemma 3.3 which
provides the control of the normal derivative using the estimate of Jerrard and Soner of Lemma
3.5. The extension procedure of [LR] would have led to a term

|log ε|
∫

B̌r

N
∑

k,l=1

(ick(x)∂ku, xl∂lg(x)),

where g is a “good” extension inside Ω of g, and this term would be difficult to handle since it
is not a jacobian if g 6= u, thus we do not expect a compensation property.

For our purpose, we will need for our study a boundary version of this result, in order to
have an estimate close to (40) for a ϕ having a support intersecting ∂Ω. This will be done by
a standard extension of g in a neighborhood of Ω as in [BO]. Nevertheless, in order to apply
Lemma 3.5, we need a map ϕ which has compact support (say in B̌2r(x0)), hence, as in [BOS], we
adapt the definition of the energy temporarily. We define a cut-off function f : R+ × R+ → R+

f(a, b) :=







1 if b ≤ a,
2 − b/a if a ≤ b ≤ 2a,
0 if 2a ≤ b.

For x0 ∈ Ω̄ and r > 0, we then set

Ēε(x0, r) :=
1

rN−2

∫

B̌2r(x0)

eε(u)f(r, |x− x0|) dx.

An integration by parts shows that, for any F ≥ 0 measurable,

∫

B̌2r

F (x)f(r, |x|) =

∫ 2

1

∫

B̌rt

F (x) dt. (41)

This formula is the link between the usual scaled energy Ẽε and Ēε.
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Lemma 3.6. Assume u satisfies (1)-(5), x0 ∈ Ω̄ and r > 0. Then,

d

dr
(Ēε(x0, r)) =

1

rN−2

∫

∂Ω∩B2r(x0)

eε(u)f(r, |x− x0|) +
1

rN−2

∫ 2

1

t

∫

Ω∩∂Btr(x0)

∣

∣

∣

∂u

∂n

∣

∣

∣

2

+
1

rN−1

∫ 2

1

∫

Btr(x0)∩∂Ω

1

2
(x− x0) · n

∣

∣

∣

∂u

∂n

∣

∣

∣

2

dt

+
1

rN−1

∫

B̌2r(x0)

(aε(x) − |u|2)2

2ε2
f(r, |x− x0|)

− N − 1

2rN−1
|log ε|

∫

B̌2r(x0)

〈Ju,
∑

i

ci(x)ξi(x− x0)f(r, |x− x0|)〉 (42)

− |log ε|2
2rN−1

∫

B̌2r(x0)

(aε(x) − |u|2)((x− x0) · ∇d(x))f(r, |x− x0|)

− 1

rN−1

∫

B2r(x0)∩∂Ω

(x− x0) · ne>ε (gε)f(r, |x− x0|)

+
1

rN−1

∫

B2r(x0)∩∂Ω

(
∂u

∂n
, (x− x0)> · ∇>gε)f(r, |x− x0|).

Proof. We still assume x0 = 0. First, one has

dĒε
dr

= − N − 2

rN−1

∫

B̌2r

eε(u)f(r, |x|) +
1

rN−2

∫

Ω∩∂B2r

eε(u)f(r, |x|)

+
1

rN−2

∫

B̌2r

eε(u)∂rf(r, |x|). (43)

In (43), we have then for the first term (by (41))

−N − 2

rN−1

∫

B̌2r

eε(u)f(r, |x|) = −N − 2

rN−1

∫ 2

1

∫

B̌rt

eε(u) dt

and for the third term

1

rN−2

∫

B̌2r

eε(u)∂rf(r, |x|) =
1

rN−2

∫ 2r

r

∫

∂Ω∩Bρ

eε(u)
ρ

r2
dρ =

1

rN−2

∫ 2

1

t

∫

∂Ω∩Btr

eε(u),

thus

dĒε
dr

=
1

rN−2

∫

∂Ω∩B̌2r

eε(u)f(r, |x|)

+

∫ 2

1

tN−1
(

− N − 2

(tr)N−1

∫

B̌rt

eε(u) +
1

(rt)N−2

∫

∂Ω∩Brt

eε(u)
)

dt.

The term between parenthesis is Ẽ ′
ε(rt), hence inserting formula (26) for rt and using formula

(41) we are led to the conclusion. �

Lemma 3.7. (Monotonicity at large scales). There exist constants R > 0, depending only on
Ω, and C, depending only on Ω and ν, such that, for any x0 ∈ Ω̄, rε ≤ r ≤ min(R, (1 + Λ0)

−1/ν)
and u solution to (1)-(5), we have for every rε ≤ s < r,

Ēε(s) ≤ C(Ēε(r) + T νε (s, 2r) + Λ0ε
β).
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Proof. We assume x0 = 0 and we estimate each term on the right-hand side of (42). For the
sixth term, we have as for (34)

∣

∣

∣

|log ε|2
2rN−1

∫

B̌r

(aε(x) − |u|2)(x · ∇d(x))f(r, |x|)
∣

∣

∣
≤ Ẽε(r) + Cr2Λ2

0ε
2|log ε|4. (44)

Concerning the fifth one, we proceed as in [BO] (Proposition 2.1 there). First, we extend u
outside the domain. There exists δ0 > 0 such that the nearest point projection Π is well-defined
and is a smooth fibration from the δ0-neighborhood (∂Ω)δ0 of ∂Ω onto ∂Ω, inducing smooth
diffeomorphisms Πt : ∂Ωt → ∂Ω (0 ≤ t ≤ δ0). We extend u in a map ũ in Ωδ0 by setting

ũ = u ◦ Π on Ωδ0 \ Ω.

We extend in the same way the ci’s (1 ≤ i ≤ N) and d on Ωδ0 . Finally, we extend the ξi’s as in
[BO], that is we write on ∂Ω

ξi = (ξi)> + (ξi)N ,

where (ξi)> and (ξi)N are respectively the tangential and the normal components of ξi on ∂Ω
(see the Appendix of [BBO] for notations), and then we set, if d(x, ∂Ω) = t,

ξ̃i(x) = (Π−1
t )∗(ξi)>(x) + (ξi)N (Π(x)),

where Π−1
t denotes the inverse of the diffeomorphism Πt. Next, we write

N − 1

2rN−1
|log ε| ·

∣

∣

∣

∫

B̌2r

〈Ju,
∑

i

ci(x)ξi(x)f(r, |x|)〉
∣

∣

∣
≤ C

rN−1
|log ε|

(
∣

∣

∣

∫

B2r

〈Jũ, ϕ〉
∣

∣

∣
+

∣

∣

∣

∫

B2r\Ω

〈Jũ, ϕ〉
∣

∣

∣

)

,

where
ϕ(x) :=

∑

i

c̃i(x)ξ̃i(x)f(r, |x|).

The first integral is estimated with Lemma 3.5. Since ϕ ∈ C0,1
c (B2r,Λ

2RN) and

‖ϕ‖∞ ≤ CΛ0r, ‖dϕ‖∞ ≤ CΛ0, (45)

we obtain
|log ε|
rN−1

∣

∣

∣

∫

B2r

〈Jũ, ϕ〉
∣

∣

∣
≤ CΛ0Ẽε(2r) +

C

rN−1
Λ0ε

α|log ε|(1 + Eε(2r)).

For the second integral, we have as in [BO], using the coarea formula and with d = dist(., ∂Ω)
(verifying |∇d| = 1),

∣

∣

∣

∫

B2r\Ω

〈Jũ, ϕ〉
∣

∣

∣
=

∣

∣

∣

∫

B2r\Ω

|∇d|〈Π∗Jgε, ϕ〉
∣

∣

∣

=
∣

∣

∣

∫ 2r

0

dt

∫

d−1(t)

∑

i

f(r, |x|)ci(x)〈Π∗
tJgε, (Π

−1
t )∗(ξi)>〉

∣

∣

∣

≤ C(Ω)r
∣

∣

∣

∫

B2r∩∂Ω

〈Jgε, ϕ>〉
∣

∣

∣
.

If N ≥ 3 (if N = 2, Jgε ≡ 0), to estimate the last integral, we also invoke Jerrard-Soner’s
result of Lemma 3.5 with this time the smooth manifold B2r ∩ ∂Ω of dimension N − 1 ≥ 2 and
ϕ> ∈ C0,1

c (B2r ∩ ∂Ω,Λ2RN) satisfying also (45), thus

|log ε|
rN−1

∣

∣

∣

∫

B2r\Ω

〈Jũ, ϕ〉
∣

∣

∣
≤ CΛ0rGε(2r) +

C

rN−2
Λ0ε

α|log ε|(1 + rN−2Gε(2r)).
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We therefore deduce the estimate for the fifth term in (42) (r ≤ 1)

1

rN−1
|log ε| ·

∣

∣

∣

∫

B̌2r

〈Ju,
∑

i

ci(x)ξi(x)f(r, |x|)〉
∣

∣

∣

≤ CΛ0Ẽε(2r) +
C

rN−1
Λ0ε

α|log ε|(1 + Eε(2r))

+ CΛ0rGε(2r) +
C

rN−2
Λ0ε

α|log ε|(1 + rN−2Gε(2r))

≤ CΛ0(1 +
εα|log ε|

r
)Ēε(4r) + CΛ0rGε(2r)(1 +

εα|log ε|
r

) + CΛ0
εα|log ε|
rN−1

. (46)

For the seventh term, we have clearly

1

rN−1

∫

B2r∩∂Ω

x · ne>ε (gε)f(r, |x|) ≤ 2N−1Gε(2r). (47)

We estimate also the normal derivative as for (37), using estimates similar to (44) and (46),

1

rN−3

∫

∂Ω∩B2r

∣

∣

∣

∂u

∂n

∣

∣

∣

2

≤ C
(

1 + Λ0(1 +
εα|log ε|

r
)
)

Ēε(4r) (48)

+ C
(

1 + Λ0r(1 +
εα|log ε|

r
)
)

Gε(2r) + CΛ2
0r

2ε2|log ε|4 + CΛ0
εα|log ε|
rN−1

.

We infer from (48) the estimate for the third term in (42) as for (38) (using (32))

1

2rN−1

∫ 2

1

∫

Btr(x0)∩∂Ω

x · n
∣

∣

∣

∂u

∂n

∣

∣

∣

2

dt ≥ 1

2rN−1

∫

Br∩∂Ω

|x · n| ·
∣

∣

∣

∂u

∂n

∣

∣

∣

2

− C
(

1 + Λ0(1 +
εα|log ε|

r
)
)

Ēε(4r) − C
(

1 + rΛ0(1 +
εα|log ε|

r
)
)

Gε(2r)

− Λ2
0ε

2|log ε|4 − Λ0
εα|log ε|
rN−1

. (49)

For the last term in (42), we obtain as for (39) and using (48)

∣

∣

∣

1

rN−1

∫

B2r∩∂Ω

(
∂u

∂n
, x> · ∇>gε)f(r, |x|)

∣

∣

∣

≤ C
(

1 + Λ0(1 +
εα|log ε|

r
)
)νĒε(4r)

(4r)1−ν
+ C

(

1 + Λ0r(1 +
εα|log ε|

r
)
)Gε(2r)

rν
(50)

+ CΛ2
0ε

2|log ε|4r2−ν + CΛ0
εα|log ε|
rN−1+ν

.

Combining estimates (44), (46), (47), (49) and (50) with (42) yields

dĒε
dr

≥ 1

rN−2

∫ 2

1

t

∫

Ω∩∂Btr

∣

∣

∣

∂u

∂n

∣

∣

∣

2

+
1

rN−1

∫ 2

1

∫

Btr∩∂Ω

|x · n|
2

∣

∣

∣

∂u

∂n

∣

∣

∣

2

dt

+
1

rN−1

∫

B̌2r

(aε(x) − |u|2)2

2ε2
f(r, |x|) − C

(

1 + Λ0(1 +
εα|log ε|

r
)
)νĒε(4r)

(4r)1−ν
(51)

− C
(

1 + Λ0r(1 +
εα|log ε|

r
)
)Gε(2r)

rν
− CΛ2

0ε
2|log ε|4r2−ν − CΛ0

εα|log ε|
rN−1+ν

.
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Now, we assume r large enough so that r1−ν−Nεα|log ε| ≥ r1−Nεα|log ε| (hence r−1εα|log ε|) tends
to zero with ε. We therefore assume

r ≥ (ε−βεα|log ε|)1/(N−1) =: rε, (52)

where 0 < β < α is fixed (for instance, β = α/2, and set µ := α − β > 0), so that (51) implies,
for rε ≤ r ≤ min(R, (1 + Λ0)

−1/ν)

dĒε
dr

≥ A(r) − C
(

(1 + Λ0)
Ēε(4r)

(4r)1−ν
+
Gε(2r)

rν
+ Λ0ε

β
)

, (53)

with

A(r) :=
1

rN−2

∫ 2

1

t

∫

Ω∩∂Btr

∣

∣

∣

∂u

∂n

∣

∣

∣

2

+
1

rN−1

∫ 2

1

∫

Btr∩∂Ω

|x · n|
2

∣

∣

∣

∂u

∂n

∣

∣

∣

2

dt

+
1

rN−1

∫

B̌2r

(aε(x) − |u|2)2

2ε2
f(r, |x|). (54)

In particular, since A(r) ≥ 0, for r ≥ rε,

dĒε
dr

≥ −C
(

(1 + Λ0)
Ēε(4r)

(4r)1−ν
+
Gε(2r)

rν
+ Λ0ε

β
)

. (55)

To conclude the proof, we will need the following discrete Gronwall inequality.

Lemma 3.8. (Discrete Gronwall inequality). Let 0 < s1 < 4s1 < s2 ≤ 1, f : [s1, s2] → R+

be continuous and assume h : [s1, s2] → R+ is continuously differentiable and satisfies
{

h(s) ≤ θN−2h(θs) if θ ∈ [1, s2/s1], s ∈ [s1, s2] and θs ∈ [s1, s2],

h′(s) ≥ −C h(4s)
(4s)1−ν − f(s) for all s ∈ [s1, s2/4],

(56)

for constants C > 0 and ν ∈ (0, 1]. Then, for all s1 ≤ s < t ≤ s2,

h(s) ≤ 4N−2 exp(Cλtν)h(t) +
(

∫ t/4

s

f(r) dr
)

exp(Cλtν), (57)

where

λ :=
1

4ν(4ν − 1)
.

Proof. We proceed by induction. Let s1 ≤ s < t < s2. Assume t/4 ≤ s ≤ t. Then, by (56),

h(s) ≤ 4N−2h(t).

Assume that for some k ∈ N
∗, it holds

h(s) ≤ 4N−2h(t)
k−1
∏

i=1

(1 +
3Ctν

4νi+1
) +

∫ t/4k−1

s

f(ρ) dρ +
k−1
∑

j=2

(

∫ t/4j−1

t/4j

f(ρ) dρ)
k−1
∏

i=j−1

(1 +
3Ctν

41+νi
)

for all t
4k ≤ s ≤ t

4k−1 . If t
4k+1 ≤ s ≤ t

4k , then, by (56) and using the fact that

∫ t/4k

s

1

(4r)1−ν
dr ≤ (

t

4k
− s)

1

(t/4k)1−ν
≤ 3t

4k+1

4(1−ν)k

t1−ν
=

3tν

4kν+1
,
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we obtain

h(s) ≤ h(t/4k) + C

∫ t/4k

s

h(4r)

(4r)1−ν
dr +

∫ t/4k

s

f(ρ) dρ

≤
∫ t/4k

s

f(ρ) dρ+ 4N−2h(t)
k−1
∏

i=1

(1 +
3Ctν

4νi+1
) +

∫ t/4k−1

t/4k

f(ρ) dρ

+
k−1
∑

j=2

(

(

∫ t/4j−1

t/4j

f(ρ) dρ)
k−1
∏

i=j−1

(1 +
3Ctν

41+νi
)
)

+
3Ctν

4νk+1
4N−2h(t)

k−1
∏

i=1

(1 +
3Ctν

4νi+1
)

+
3Ctν

4νk+1

(

∫ t/4k−1

t/4k

f(ρ) dρ +
k−1
∑

j=2

(

(

∫ t/4j−1

t/4j

f(ρ) dρ)
k−1
∏

i=j−1

(1 +
3Ctν

41+νi
)
)

≤ 4N−2h(t)
k

∏

i=1

(1 +
3Ctν

4νi+1
) +

∫ t/4k

s

f(ρ) dρ + (1 +
3Ctν

4kν+1
)

∫ t/4k−1

t/4k

f(ρ) dρ

+

k−1
∑

j=2

(

(

∫ t/4j−1

t/4j

f(ρ) dρ)(1 +
3Ctν

4kν+1
)

k−1
∏

i=j−1

(1 +
3Ctν

41+νi
)
)

≤ 4N−2h(t)

k
∏

i=1

(1 +
3Ctν

4νi+1
) +

∫ t/4k

s

f(ρ) dρ +

k
∑

j=2

(

(

∫ t/4j−1

t/4j

f(ρ) dρ)

k
∏

i=j−1

(1 +
3Ctν

41+νi
)
)

.

The conclusion follows then from the inequality, valid for all m ∈ N,

m
∏

i=1

(1 +
3Ctν

4νi+1
) ≤ exp

(3

4
Ctν

∞
∑

i=1

4−νi
)

≤ exp(Cλtν),

by definition of λ. Indeed, we have

h(s) ≤ 4N−2h(t) exp(Cλtν) +

∫ t/4k

s

f(ρ) dρ+ exp(Cλtν)

k
∑

j=1

∫ t/4j−1

t/4j

f(ρ) dρ

≤ 4N−2h(t) exp(Cλtν) + exp(Cλtν)

∫ t/4

s

f(ρ) dρ

and the proof is complete. �

To conclude the proof of Lemma 3.7, we apply Lemma 3.8 with s1 = rε, s2 = r, h = Ēε,
f(r) = C(r−νGε(2r) + Λ0ε

β), C = C(1 + Λ0). Note that λsν2 = (1 + Λ0)r
ν ≤ 1. The first

hypothesis in (56) is easily verified for the modified scaled energy Ēε and the second one is (55).
We then infer that, for every rε ≤ s < r ≤ min(R, (1 + Λ0)

−1/ν),

Ēε(s) ≤ C(Ēε(r) + T νε (s, 2r) + Λ0ε
β).

This finishes the proof of Lemma 3.7. �

3.2 The Neumann problem

In this subsection, we point out the modifications to make in order to handle the Neumann case,
that is for solutions u to (1)-(6). In the sequel, C is a constant depending only on Ω (and N).
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Lemma 3.9. Let u be a solution of (1)-(6) in Ω, then for r > 0 and x0 ∈ Ω̄

d

dr
(Ẽε(x0, r)) =

1

rN−2

∫

Ω∩∂Br(x0)

∣

∣

∣

∂u

∂n

∣

∣

∣

2

+
1

rN−1

∫

B̌r(x0)

(aε(x) − |u|2)2

2ε2

− N − 1

2rN−1
|log ε|

∫

B̌r(x0)

〈Ju,
∑

i

ci(x)ξi(x− x0)〉 (58)

− |log ε|2
2rN−1

∫

B̌r(x0)

(aε(x) − |u|2)(x− x0) · ∇d(x)

− 1

rN−1

∫

Br(x0)∩∂Ω

(x− x0) · neε(u).

Proof. Assuming x0 = 0, we still have formula (27). It suffices to use the Neumann condition (6)
to obtain (58), since the last term in the last integral in (27) is 0. �

This time, the last term in equality (58) involves the energy on the boundary of u. Note that
this term is not so bad since the term (x − x0) · n is expected to be of order r2 if x0 is close
enough to the boundary. The next lemma, analoguous to Lemma 3.3, provides an estimate for
this term.

Lemma 3.10. (Control of the boundary energy). Let u be a solution of (1)-(6). There
exist C and 0 < R ≤ 1 depending only on Ω such that, for all x0 ∈ Ω̄ and 0 < r < R, there exists
z0 ∈ B̌r(x0) such that

r

∫

∂Ω∩Br(x0)

eε(u) ≤ C
(

∫

B̌r(x0)

eε(u) + |log ε| ·
∣

∣

∣

∫

ω

〈Ju,
∑

i

ci(x)ξi(x− z0)〉
∣

∣

∣

+
|log ε|2

2

∣

∣

∣

∫

ω

(aε − |u|2)(x− z0) · ∇d
∣

∣

∣

)

, (59)

where ω ⊂ B̌r(x0) depends on u, x0 and r.

Proof. The proof begins as for Lemma 3.3, that is assuming first that ∂Ω is locally the half-plane
∂R

N
+ = R

N−1 × {0}, that a ≤ r/4 and exhibiting by averaging y and r′ ∈ (r, 9r/8) such that

∫

R
N
+
∩∂Br′(y)

eε(u) ≤
C

r

∫

B̌r(x0)

eε(u). (60)

We also have for an α > 0,

(x− z0) · n ≥ αr. (61)

We also apply the Pohozaev identity of Lemma 3.1 with z0, x0 and ω and use the Neumann
condition (6) to obtain

C

∫

B̌r(x0)

eε(u) + C|log ε| ·
∣

∣

∣

∫

ω

〈Ju,
∑

i

ci(x)ξi(x− z0)〉
∣

∣

∣

+ |log ε|2
∣

∣

∣

∫

ω

(aε(x) − |u|2)(x− z0) · ∇d(x)
∣

∣

∣
≥ 2

∫

∂Ω∩Br

(x− z0) · neε(u) − Cr

∫

Ω∩∂Br′(y)

eε(u).
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The last integral is estimated by (60) and for the before last integral, we use the starshapedness
assumption (61) to obtain

C

∫

B̌r(x0)

eε(u) + C|log ε| ·
∣

∣

∣

∫

ω

〈Ju,
∑

i

ci(x)ξi(x− z0)〉
∣

∣

∣

+ C|log ε|2
∣

∣

∣

∫

ω

(aε(x) − |u|2)(x− z0) · ∇d(x)
∣

∣

∣
≥ αr

∫

∂Ω∩Br(x0)

eε(u)

and the conclusion follows. If a ≥ r/4 or for a general domain Ω, the proof is the same as for
Lemma 3.3. �

The monotonicity formula for small scales is then given in the following lemma, where χ
stands for the characteristic function.

Lemma 3.11. (Monotonicity at small scales). There exist C and 0 < R ≤ 1, depending only
on N and Ω, such that for any solution u of (1)-(6) in Ω any x0 ∈ Ω̄ and 0 < r ≤ min(R,Λ−1),
with

d0 := dist(x0, ∂Ω), Λ := C(1 + Λ0|log ε|), Q := CΛ0ε|log ε|2,
we have, with the convention d0χ{r≥d0}(

1
d0

− 1
r
) = 0 if d0 = 0,

d

dr

(

exp
[

Λr+Cd0χ{r≥d0}(
1

d0
− 1

r
)
]

(Ẽε +
Q2

Λ
)
)

≥ 1

rN−1

∫

Ω∩∂Br(x0)

(aε(x) − |u|2)2

2ε2
+

1

rN−2

∫

∂Br(x0)∩Ω

∣

∣

∣

∂u

∂n

∣

∣

∣

2

≥ 0.

In particular, exp[Λr + Cd0χ{r≥d0}(
1
d0

− 1
r
)](Ẽε + Q2

Λ
) is a nondecreasing function on (0, R).

Proof. First, we note that, if 0 < r ≤ R(Ω) sufficiently small, for all x ∈ B̌r(x0),

(x− x0) · n ≤ C(d0 + r2), (62)

where C depends on Ω only. This is a basic difference with Lemma 3.4. Arguing as in Lemma
3.4, that is assuming that for r < R sufficiently small, B̌r(x0) is the uppergraph of a map
ψ : B1(0) ⊂ RN−1 → R and that ψ(0) = |∇ψ(0)| = 0, so that the tangent hyperplane at Ω at
ψ(0) = 0 is RN−1 × {0}, we are led to prove, as for the proof of (32), that for x ∈ B̌r(x0),

(x− x0) · n = (x− x0) ·
(

~eN −
N−1
∑

i=1

∂iψ~ei

)

≤ C(d0 + r2).

It is clear that

(x− x0) · ~eN ≤ C(d0 + r2) (63)

since either d0 is of greater than or of the order of r and then inequality (63) is true, either
d0 � r ≤ R and then inequality (63) is also true. Since |∇ψ| ≤ Cr and |x− x0| ≤ r, the second
term in (62) is ≤ Cr2. Therefore, (62) holds. We now turn to the proof of Lemma 3.11.
We proceed as in Lemma 3.4 and estimate each term on the right hand side of (58). The third
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one and the fourth one are treated as in (33) (using the rough estimate for the jacobian) and
(34), which yields respectively

∣

∣

∣

N − 1

2rN−1
|log ε|

∫

B̌r(x0)

〈Ju,
∑

i

ci(x)ξi(x)〉
∣

∣

∣
≤ CΛ0|log ε|Ẽε(r) (64)

and
∣

∣

∣

|log ε|2
2rN−1

∫

B̌r

(aε(x) − |u|2)x · ∇d(x)
∣

∣

∣
≤ Ẽε(r) + CΛ2

0ε
2|log ε|4. (65)

We use (59) of Lemma 3.10 to estimate the last term in (58)

r

∫

∂Ω∩Br

eε(u) ≤ C
(

∫

B̌r

eε(u) + |log ε| ·
∣

∣

∣

∫

ω

〈Ju,
∑

i

ci(x)ξi(x− z0)〉
∣

∣

∣

+
|log ε|2

2

∣

∣

∣

∫

ω

(aε − |u|2)(x− z0) · ∇d
∣

∣

∣

)

. (66)

Note that we do not need to estimate the last term in (58) if r < d0, since in this case, B̌r = ∅.
Therefore, (62) and (66) imply

1

rN−1

∫

∂Ω∩Br

x · neε(u) ≤ Cχ{r≥d0}
d0 + r2

rN

(

∫

B̌r

eε(u) + |log ε| ·
∣

∣

∣

∫

ω

〈Ju,
∑

i

ci(x)ξi(x− z0)〉
∣

∣

∣

+
|log ε|2

2

∣

∣

∣

∫

ω

(aε − |u|2)(x− z0) · ∇d
∣

∣

∣

)

.

We estimate the two last terms as in (64) and (65) to infer

1

rN−1

∫

∂Ω∩Br

x · neε(u) ≤ Cχ{r≥d0}(1 +
d0

r2
)
(

(1 + rΛ0|log ε|)Ẽε(r) + Λ2
0ε

2|log ε|4
)

. (67)

Inserting estimates (64), (65) and (67) into (58) gives, with Λ = C(1+Λ0|log ε|) and for r ≤ Λ−1,

dẼε
dr

≥ 1

rN−2

∫

Ω∩∂Br

∣

∣

∣

∂u

∂n

∣

∣

∣

2

+
1

rN−1

∫

B̌r

(aε(x) − |u|2)2

2ε2

− (Λ + Cχ{r≥d0}
d0

r2
)Ẽε(r) − C(1 + χ{r≥d0}

d0

r2
)Λ2

0ε
2|log ε|4.

To conclude, we introduce the primitive
∫ r

0

χ{ρ≥d0}
d0

ρ2
dρ = d0χ{r≥d0}(

1

d0

− 1

r
) ≥ 0.

Consequently,

d

dr

(

exp
[

Λr + Cd0χ{r≥d0}(
1

d0

− 1

r
)
]

Ẽε

)

= exp
[

Λr + Cd0χ{r≥d0}(
1

d0

− 1

r
)
](dẼε

dr
+ (Λ + Cd0χ{r≥d0}(

1

d0

− 1

r
))Ẽε(r)

)

≥ 1

rN−2

∫

Ω∩∂Br

∣

∣

∣

∂u

∂n

∣

∣

∣

2

+
1

rN−1

∫

B̌r

(aε(x) − |u|2)2

2ε2

− C(1 + χ{r≥d0}
d0

r2
) exp

[

Λr + Cd0χ{r≥d0}(
1

d0

− 1

r
)
]

Λ2
0ε

2|log ε|4.
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To conclude the proof, just note that the last term is (Λ ≥ C)

≥ − d

dr

(Q2

Λ
exp

[

Λr + Cd0χ{r≥d0}(
1

d0
− 1

r
)
])

,

where Q = CΛ0ε|log ε|2. �

In the next lemma, we compute the derivative of the modified scaled energy Ēε(x0, r) in the
same way as for Lemma 3.6.

Lemma 3.12. Assume u satisfies (1)-(6), x0 ∈ Ω̄ and r > 0. Then,

d

dr
(Ēε(x0, r)) =

1

rN−2

∫

∂Ω∩B2r(x0)

eε(u)f(r, |x− x0|) +
1

rN−2

∫ 2

1

t

∫

Ω∩∂Btr(x0)

∣

∣

∣

∂u

∂n

∣

∣

∣

2

+
1

rN−1

∫

B̌2r(x0)

(aε(x) − |u|2)2

2ε2
f(r, |x− x0|)

− N − 1

2rN−1
|log ε|

∫

B̌2r(x0)

〈Ju,
∑

i

ci(x)ξi(x− x0)f(r, |x− x0|)〉 (68)

− |log ε|2
2rN−1

∫

B̌2r(x0)

(aε(x) − |u|2)((x− x0) · ∇d(x))f(r, |x− x0|)

− 1

rN−1

∫

B2r(x0)∩∂Ω

(x− x0) · neε(u)f(r, |x− x0|).

Lemma 3.13. (Monotonicity at large scales). There exist constants C and 0 < R ≤ 1,
depending only on Ω such that, if x0 ∈ Ω̄, rε ≤ r ≤ min(R, (1 + Λ0)

−1) and u is a solution to
(1)-(6), then for every rε ≤ s < r,

Ēε(s) ≤ C exp
(

C((1 + Λ0)
t

4
+ 2d0χ{t≥2d0}(

1

2d0

− 1

t
))

)

(Ēε(r) + Λ0ε
β).

Proof. We assume x0 = 0 and we estimate each term on the right-hand side of (68). For the fifth
term, we have as for (65)

∣

∣

∣

|log ε|2
2rN−1

∫

B̌2r

(aε(x) − |u|2)(x · ∇d(x))f(r, |x|)
∣

∣

∣
≤ Ẽε(r) + CΛ2

0ε
2|log ε|4. (69)

Concerning the fourth one, we may use a reflection with respect to the boundary. We assume
2r ≤ δ0. We extend u in a map ũ defined on U := B̌2r ∪ φ−1(B̌2r) by setting for x = φ−1(y) ∈
φ−1(B̌2r) (y ∈ B̌2r),

ũ(x) := u(y) = u ◦ φ(x).

It is then clear that on φ−1(B̌2r),
Jũ = φ∗Ju

and that
Eε(ũ, U) ≤ CEε(u, B̌2r).

We also extend the 2-form
∑

i ci(x)ξi(x) by this way setting ϕ := φ∗(
∑

i ci(x)ξi(x)) in φ−1(B̌2r).
This 2-form is in C0,1

0 (U,Λ2
R
N) and satisfies

‖ϕ‖∞ ≤ CΛ0r and ‖dϕ‖∞ ≤ CΛ0. (70)
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Moreover,
∫

U

〈Jũ, ϕ(x)〉 = 2

∫

B̌2r

〈Ju,
∑

i

ci(x)ξi(x)f(r, |x|)〉.

We apply the result of Jerrard and Soner of Lemma 3.5 for the first integral to infer
∣

∣

∣

∫

B̌2r

〈Ju,
∑

i

ci(x)ξi(x)f(r, |x|)〉
∣

∣

∣
≤ CΛ0r

Eε(2r)

|log ε| + CΛ0ε
α(1 + Eε(2r)).

Consequently, we have the following estimate for the fourth term in (68)

|log ε|
rN−1

∣

∣

∣

∫

B̌2r

〈Ju,
∑

i

ci(x)ξi(x)f(r, |x|)〉
∣

∣

∣
≤ CΛ0(1 +

εα|log ε|
r

)Ẽε(2r) +
CΛ0ε

α|log ε|
rN−1

. (71)

We estimate also the boundary energy as for (67). We first apply Lemma 3.10 to obtain

1

rN−3

∫

∂Ω∩B2r

eε(u) ≤ C
(

Ẽε(2r) +
|log ε|
rN−2

∣

∣

∣

∫

ω

〈Ju,
∑

i

ci(x)ξi(x)f(r, |x|)〉
∣

∣

∣

+
|log ε|2
rN−2

∣

∣

∣

∫

ω

(aε(x) − |u|2)(x · ∇d(x))f(r, |x|)
∣

∣

∣

)

.

Using then (62), Ẽε(2r) ≤ Ēε(4r), r ≤ 1 and estimates similar to (69) and (71), we infer for
r ≤ min(R, (1 + Λ0)

−1) the estimate of the last term in (68) as in (67)

1

rN−1

∫

∂Ω∩B2r

x · neε(u)f(r, |x|)

≤ C
(

1 + χ{2r≥d0}
d0

4r2

)(

Ēε(4r) + Λ2
0ε

2|log ε|4 + Λ0
εα|log ε|
rN−2

)

. (72)

Combining estimates (69), (71) and (72) with (68) yields

dĒε
dr

≥ 1

rN−2

∫ 2

1

t

∫

Ω∩∂Btr

∣

∣

∣

∂u

∂n

∣

∣

∣

2

+
1

rN−1

∫

B̌2r

(aε(x) − |u|2)2

2ε2
f(r, |x|) (73)

− C
(

(1 + χ{2r≥d0}
d0

4r2
+ (1 + Λ0)(1 +

εα|log ε|
r

))Ēε(4r) + Λ2
0ε

2|log ε|4 + Λ0
εα|log ε|
rN−1

)

.

As in Lemma 3.7, we assume

r ≥ (ε−βεα|log ε|)1/(N−1) = rε, (74)

where 0 < β < α is fixed (and take µ = α − β > 0) so that r−1εα|log ε| ≤ r1−Nεα|log ε| ≤ εβ.
Hence, with

B(r) :=
1

rN−2

∫ 2

1

t

∫

Ω∩∂Btr

∣

∣

∣

∂u

∂n

∣

∣

∣

2

+
1

rN−1

∫

B̌2r

(aε(x) − |u|2)2

2ε2
f(r, |x|), (75)

(73) implies

dĒε
dr

≥ B(r) − C
(

1 + Λ0 + χ{2r≥d0}
d0

4r2

)(

Ēε(4r) + Λ0ε
β
)

. (76)

In particular, since B(r) ≥ 0, for rε ≤ r ≤ min(R, (1 + Λ0)
−1),

dĒε
dr

≥ −C
(

1 + Λ0 + χ{2r≥d0}
d0

4r2

)(

Ēε(4r) + Λ0ε
β
)

. (77)

To conclude the proof, we also make use of a discrete Gronwall inequality.
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Lemma 3.14. (Discrete Gronwall inequality). Let 0 < s1 < 4s1 < s2 and h : [s1, s2] → R+

be continuously differentiable and such that

{

h(s) ≤ θN−2h(θs) if θ ∈ [1, s2/s1], s ∈ [s1, s2] and θs ∈ [s1, s2],
h′(s) ≥ −C(1 + Λ0 + χ{2r≥d0}

d0
4r2

)(h(4s) +D) for all s ∈ [s1, s2/4],

where C, D and Λ0 are positive constants. Then, for all s1 ≤ s < t ≤ s2,

h(s) ≤ 4N−2 exp
(

C((1 + Λ0)t/4 + 2d0χ{t≥2d0}(
1

2d0

− 1

t
))

)

(h(t) +D). (78)

Proof. We reduce the proof to the case D = 0 considering g(s) := h(s) +D. We have

g(s) = h(s) +D ≤ θN−2h(θs) + θN−2D = θN−2g(θs) (79)

if θ ∈ [1, s2/s1], s ∈ [s1, s2] and θs ∈ [s1, s2] and

g′(s) = h′(s) ≥ −C
(

1 + Λ0 + χ{2s≥d0}
d0

4s2

)

(h(4s) +D) = −C
(

1 + Λ0 + χ{2s≥d0}
d0

4s2

)

g(4s) (80)

for all s ∈ [s1, s2/4]. Let s1 ≤ s < t < s2. Assume t/4 ≤ s ≤ t. Then, by (79),

g(s) ≤ 4N−2g(t).

By induction, assume that for some k ∈ N∗ it holds

g(s) ≤ 4N−2g(t)

k
∏

i=2

(1 + Cαi(t))

for all t
4k ≤ s ≤ t

4k−1 , where we have set

αi(t) :=

∫ t/4i−1

t/4i

(1 + Λ0 + χ{2r≥d0}
d0

4r2
) dr.

If t
4k+1 ≤ s ≤ t

4k , then, by (80),

g(s) ≤ g(t/4k) + C

∫ t/4k

s

(1 + Λ0 + χ{2r≥d0}
d0

4r2
)g(4r) dr

≤ 4N−2g(t)
k

∏

i=2

(1 + Cαi(t)) + 4N−2Cg(t)
k

∏

i=2

(1 + Cαi(t))

∫ t/4k

t/4k+1

(1 + Λ0 + χ{2r≥d0}
d0

4r2
) dr

= 4N−2g(t)
k+1
∏

i=2

(1 + Cαi(t)).

The conclusion then follows from the definition of αi(t) and the inequality, valid for all m ∈ N,

m
∏

i=2

(1 + Cαi(t)) ≤ exp
(

C
∞

∑

i=2

αi(t)
)

=exp
(

C

∫ t/4

0

(1 + Λ0 + χ{2r≥d0}
d0

4r2
) dr

)

=exp
(

C((1 + Λ0)
t

4
+ 2d0χ{t≥2d0}(

1

2d0

− 1

t
))

)

.
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Coming back to h, we deduce

h(s) ≤ g(s) ≤ 4N−2 exp
(

C((1 + Λ0)
t

4
+ 2d0χ{t≥2d0}(

1

2d0

− 1

t
))

)

(h(t) +D),

and the proof is complete. �

To conclude the proof of Lemma 3.13, we apply Lemma 3.14 with s1 = rε, s2 = r, h = Ēε,
C = C and D = Λ0ε

β. The first hypothesis needed is still verified for the modified scaled energy
Ēε and the second one is (77). We then infer that, for every rε ≤ s < r,

Ēε(s) ≤ C exp
(

C((1 + Λ0)
t

4
+ 2d0χ{t≥2d0}(

1

2d0
− 1

t
))

)

(Ēε(r) + Λ0ε
β).

This finishes the proof of Lemma 3.13. �

3.3 Proofs of Propositions 1 and 2

Before giving the proof, we notice that for any d0 ≥ 0 and t ≥ 0,

0 ≤ d0χ{t≥d0}(
1

d0
− 1

t
) ≤ 1,

since, for t ≥ d0 > 0, d0(1/d0 − 1/t) = (1 − d0/t) ∈ [0, 1]. Therefore, in the Neumann case, this
extra term is less than a constant. We assume x0 = 0 and first consider the case

θr ≤ ρ := (1 + Λ0|log ε|)−1 ≤ r/2. (81)

By Lemma 3.4 (resp. Lemma 3.11) in the Dirichlet case (resp. the Neumann case), we deduce

Ẽε(θr) ≤ C(Ẽε(ρ) + T νε (θr, ρ) + Λ2
0ε

2|log ε|4) (82)

(resp. Ẽε(θr) ≤ C(Ẽε(ρ) + Λ2
0ε

2|log ε|4)). (83)

Next, by Lemma 3.7 (resp. Lemma 3.13), recalling rε ≤ ρ for 0 < ε < ε0 sufficiently small,
applied with s = ρ and r/2,

Ẽε(ρ) ≤ Ēε(ρ) ≤ C(Ẽε(r) + T νε (ρ, r/2) + Λ0ε
β) (84)

(resp. Ẽε(ρ) ≤ Ēε(ρ) ≤ C(Ẽε(r) + Λ0ε
β)). (85)

Combining (82) and (84) (resp. (83) and (85)) yields (17) (resp. (18)) if (81) holds. If

θr ≤ r/2 ≤ ρ,

we only use Lemma 3.4 (resp. Lemma 3.11) as for (82) (resp. (83)), and if

ρ ≤ θr ≤ r/2,

we only use Lemma 3.7 (resp. Lemma 3.13) as for (84) (resp. (85)). The proof is complete. �
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4 Proof of Theorems 2 and 3

We follow step by step the lines of [BBO] (Theorem 2 bis) and [BOS] (Theorem 2). The proof is
divided in three parts. Let 0 < δ < 1/32 be a constant to be determined later, depending only
on N and Ω, and, in the Dirichet case, on ν and the constant C in (12).

4.1 Proof of Theorem 2

Part A: Choosing a “good” radius.

Lemma 4.1. Assume 0 < ε < δ1/(2β), that u is a solution of (1)-(5) and that

Ẽε(r̄) ≤ η|log ε| and T νε (x0, rε, r̄) ≤ η|log ε| (86)

holds for a r
1/2
ε ≤ r̄ ≤ min(R, (1 + Λ0)

−1/ν). Then, there exists a radius r0 ∈ (rε, r
1/2
ε ) such that

• 1

rN−2
0

∫

B̌r0

(aε − |u|2)2

2ε2
≤ C(η + Λ0ε

β|log ε|−1)|log δ|,

• Ẽε(r0) − 2N−2Ẽε(δr0) ≤ C(η + Λ0ε
β|log ε|−1)|log δ|.

Proof. From (53), we have for rε ≤ r ≤ min(R, (1 + Λ0)
−1)

dĒε
dr

≥ A(r) − C
(

(1 + Λ0)
Ēε(4r)

(4r)1−ν
+
Gε(2r)

rν
+ Λ0ε

β
)

, (87)

where A(r) is defined in (54). Let k be the greatest integer such that rε(
δ
4
)−k ≤ r̄/8 and define

the intervals

Ij :=
(

rε(
δ

4
)−j+1, rε(

δ

4
)−j

)

, 1 ≤ j ≤ k.

These intervals are clearly disjoint and ∪kj=1Ij ⊂ (rε, r̄/8). From r̄ ≥ r
1/2
ε and

|log rε| ≥ C−1|log ε|,

we infer

k ≥ C−1 |log ε|
|log δ| . (88)

We integrate (87) over each Ij, 1 ≤ j ≤ k, and use the monotonicity formula of Proposition 1

k
∑

j=1

∫

Ij

A(r)− C
(

(1 + Λ0)
Ēε(4r)

(4r)1−ν
+
Gε(2r)

rν
+ Λ0ε

β
)

dr

≤
k

∑

j=1

Ēε(rε(
δ

4
)−j+1) − Ēε(rε(

δ

4
)−j)

≤ C(Ẽε(r̄) + T νε (rε, r̄) + Λ0ε
β)

≤ C(η|log ε| + Λ0ε
β) (89)

31



by hypothesis. Moreover, still with the monotonicity formula of Proposition 1, we have

k
∑

j=1

∫

Ij

(

(1 + Λ0)
Ēε(4r)

(4r)1−ν
+
Gε(2r)

rν
+ Λ0ε

β
)

dr

≤ C(1 + Λ0)(Ẽε(r̄) + T νε (rε, r̄) + Λ0ε
β)

∫ r̄

rε

dr

r1−ν
+ CT νε (rε, r̄) + CΛ0ε

β

≤ C(η|log ε| + Λ0ε
β), (90)

by (86) and the hypothesis r̄ν ≤ (1 + Λ0)
−1. We deduce from (88), (89) and (90) the existence

of some j0 ∈ {1, . . . , k} such that
∫

Ij0

A(r) ≤ Ēε(rε(
δ

4
)−j0+1) − Ēε(rε(

δ

4
)−j0) ≤ C(η + Λ0ε

β|log ε|−1)|log δ|. (91)

In particular, by the mean value formula, there exists some

r0 ∈
(rε

2
(
δ

4
)−j0, rε(

δ

4
)−j0

)

⊂ Ij0

such that
1

rN−2
0

∫

B̌r0

(aε − |u|2)2

2ε2
≤ C(η + Λ0ε

β|log ε|−1)|log δ|,

which is the first assertion of the Lemma. Noticing that δ
2
r0 ∈ Ij0, we infer from (91)

Ẽε(r0) − 2N−2Ẽε(δr0) ≤ Ēε(r0) − Ēε(
δ

2
r0) ≤ C(η + Λ0ε

β|log ε|−1)|log δ|,

where we have used once more Lemma 3.7. This is the second assertion of the Lemma. �

Part B: δ-energy decay.

Lemma 4.2. There exist constants C and ε0, depending on N , ν and Ω, such that, if u is a
solution of (1)-(5) with gε satisfying (12) and

T νε (x0, ε, r
1/2
ε ) ≤ η,

with ε < ε0 and ε < r ≤ r
1/2
ε , then

Eε(δr) ≤ C
(

γ2 + δN +
γ−4

rN−2

∫

B̌r

(aε − |u|2)2

ε2

)

Eε(r) + Cγ−2

∫

B̌r

(aε − |u|2)2

ε2

+ CrN−2
(

1 +
γ−4

rN−2

∫

B̌r

(aε − |u|2)2

ε2

)

(η + Λ0ε
β) + C

√
ηrN−2.

For the ease of presentation, we will assume that Ω is locally the half plane RN
+ = RN−1×R+.

By the mean-value inequality, there exists r/32 ≤ r1 ≤ r/16 such that

r

∫

Ω∩∂Br1 (x0)

|∇u|2 ≤ 96

∫

B̌r(x0)

|∇u|2, (92)

r

∫

Ω∩∂Br1 (x0)

(aε − |u|2)2 ≤ 96

∫

B̌r(x0)

(aε − |u|2)2, (93)

rN−1
1 Gε(r1) ≤ 96ηrN−2. (94)
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To clarify the last one, if ρN−1Gε(ρ) ≥ 96ηrN−2, then ρ−νGε(ρ) ≥ 96ηρ−1−ν ≥ 96ηε−1. The proof
is divided in four steps.

Step 1: Hodge-de Rham decomposition of u×∇u.

Since u is a solution of (1) and div ~c = 0,

d∗(u× du) = u× (−∆u) = −(u,~c · ∇u)|log ε| = d∗
(

|log ε| |u|
2 − 1

2
c
)

, (95)

where c :=
∑N

i=1 ci(x)dxi. We consider the solution of the auxiliary problem







∆ξ = 0 in B̌r1(x0),
∂ξ
∂n

= u× ∂u
∂n

− |log ε| |u|2−1
2
~c · n on RN

+ ∩ ∂Br1(x0),
ξ = 0 on ∂R

N
+ ∩ Br1(x0),

which exists and is unique. By (92) and (93), we have

∫

B̌r1

|∇ξ|2 ≤ Cr
(

∫

∂R
N
+
∩Br1 (x0)

∣

∣

∣

∂u

∂n

∣

∣

∣

2

+ Λ2
0ε

2|log ε|2
∫

∂R
N
+
∩Br1 (x0)

(1 − |u|2)2

ε2

)

≤ C(Eε(r) + rNΛ0ε
β), (96)

from which we infer by standard estimates
∫

B̌δr

|∇ξ|2 ≤ CδN
∫

B̌r1

|∇ξ|2 ≤ CδN(Eε(r) + rNΛ0ε
β). (97)

We turn now to the Hodge-de Rham decomposition of u × du. By construction of ξ and from
(95), we have in D′(RN

+ )

d∗
[(

u× du− |log ε| |u|
2 − 1

2
c− dξ

)

χ
]

= 0. (98)

By classical Hodge theory (see for instance the Appendix of [BBO], Proposition A.8), there exists
some 2-form ϕ on RN

+ such that

d∗ϕ =
(

u× du− |log ε| |u|
2 − 1

2
c− dξ

)

χ in D′(RN
+ ), (99)

dϕ = 0 in D′(RN
+ ), (100)

||∇ϕ||2L2(RN
+

) ≤ C(Eε(r1) + ||∇ξ||2
L2(B̌r1 )

+ rNΛ0ε
β), (101)

ϕ> = 0 on ∂R
N
+ , (102)

|ϕ(x)| · |x|N−1 → 0 as |x| → +∞. (103)

Step 2: Improved estimates for ∇ϕ on B̌δr(x0).

Let f : R+ → R+ be any smooth function such that






f(t) = 1
t

if 1 − γ ≤ t ≤ 1 + γ,
f(t) = 1 if t ≤ 1 − 2γ or t ≥ 1 + 2γ,
|f ′(t)| ≤ 4 for any t ≥ 0.
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We consider the function on RN
+ defined by

τ(x) :=

{

f 2(|u(x)|) in B̌r1,
1 outside,

so that, by construction,

0 ≤ τ − 1 ≤ 4γ in R
N
+ . (104)

Note that
f 2(|u|)u× du = f(|u|)u× d(f(|u|)u),

thus, in B̌r1 ,

d(τu× du) = d[f(|u|)u× d(f(|u|)u)] = 2
∑

i<j

∂i(f(|u|)u)× ∂j(f(|u|)u) dxi ∧ dxj.

Turning now to ϕ, we apply the d operator to (99) to deduce that, in D′(RN
+ ),

−∆ϕ = dd∗ϕ = d(χτu× du) − d(χdξ) − d
(

χ|log ε| |u|
2 − 1

2
c
)

+ d(χ(1 − τ)u× du)

= ω1 + ω2 + ω3 + ω4 + ω5,

where, χ standing for the characteristic function of B̌r1(x0),

ω1 := χd(τu× du) = 2χ
∑

i<j

∂i(f(|u|)u)× ∂j(f(|u|)u) dxi ∧ dxj,

ω2 := σ∂Br1∩R
N
+
dr ∧ (f 2(|u|)u× du) − σBr1∩∂R

N
+
dxN ∧ (f 2(|gε|)gε × dgε) (r = |x− x0|),

ω3 := −d(χdξ) = −σ∂Br1∩R
N
+
dr ∧ dξ,

ω4 := −d
(

χ|log ε| |u|
2 − 1

2
c
)

,

ω5 := d(χ(1 − τ)u× du)

and σ stands for surface measure. We denote also the 1-forms on ∂RN
+

A1 = A2 = A3 = 0, A4 := −χ>|log ε| |gε|
2 − 1

2
c> and A5 := χ>(1 − f 2(|gε|))gε × dgε.

From the Appendix of [BBO], we know that the solutions of the problems on RN
+







∆ϕi = ωi in R
N
+ ,

(ϕi)> = 0 on ∂RN
+ = RN−1 × {0},

(d∗ϕi)> = Ai on ∂RN
+ = RN−1 × {0},

for i = 1, 2, 3, 4 and 5 exist in H1
loc(R

N
+ ), but are not unique for i = 4 and 5. We will consider in

this case the solutions given by convolutions (the ωi’s and Ai’s have compact support). Note that
this prevents us from imposing condition at infinity since, a priori, the integrals over ∂R

N
+ of the

components of A4 and A5 are not zero. Concerning ϕ2, we note that the second measure in ω2
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involves a measure supported on ∂RN
+ , but the weak formulation of the equation has a meaning

for test functions in C∞
>,c(Λ

2R̄N
+ ) (see Lemma A.4 in [BBO]), namely, for all ζ ∈ C∞

>,c(Λ
2R̄N

+ ),

〈dϕ2, dζ〉+〈d∗ϕ2, d
∗ζ〉 = 〈ω2, ζ〉 =

∫

R
N
+
∩∂Br1

dr∧f 2(|u|)u×du∧(?ζ)>−
∫

∂R
N
+

(f 2(|gε|)gε×dgε)∧(?ζ)>.

Let φ := ϕ− ∑5
i=1 ϕi. Then, by (99) and the condition ξ = 0 on Br1(x0) ∩ RN

+ ,

(d∗φ)> = (d∗ϕ)> − A4 − A5 = χ>f
2(|gε|)gε × dgε =: A.

Consequently, φ is the solution given by convolution of







∆φ = 0 in RN
+ ,

φ> = 0 on ∂RN
+ = RN−1 × {0},

(d∗φ)> = A on ∂RN
+ = RN−1 × {0},

(105)

and

ϕ = φ+
5

∑

i=1

ϕi.

We turn now to estimate φ and the ϕi’s.

Estimate for φ. We have

∫

B̌r1 (x0)

|∇φ|2 ≤ Cr

∫

B
1
r(x0)∩∂R

N
+

|∇>gε|2 ≤ CrN−1
1 Gε(r1) ≤ CηrN−2. (106)

This is a direct consequence of standard estimates (see the Appendix of [BBO]) and a scaling
argument for the equation (105) combined with the bound

‖A‖2
L2(∂R

N
+

) ≤ C

∫

Br1 (x0)∩∂R
N
+

|∇>gε|2.

Estimate for ϕ5. We claim that

∫

R
N
+

|∇ϕ5|2 ≤ Cγ2

∫

B̌r

|∇u|2 ≤ Cγ2Eε(r). (107)

Indeed, since ϕ5 is a solution of

−∆ϕ5 = ω5 = d(χ(1 − τ)u× du),

we obtain, multiplying by ϕ5 and integrating (see Lemma A.4 in [BBO])

‖∇ϕ5‖2
L2(RN

+
) =

∫

R
N
+

〈d(χ(1 − τ)u× du), ϕ5〉 −
∫

∂R
N
+

A5 ∧ (?ϕ5)>.

Moreover, integration by parts once more yields

∫

R
N
+

〈d(χ(1−τ)u×du), ϕ5〉 =

∫

R
N
+

〈χ(1−τ)u×du, d∗ϕ5〉+
∫

∂R
N
+

(χ>(1−f 2(|gε|))gε×dgε)∧(?ϕ5)>.
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Thus, by definition of A5 (this was done for that purpose !),

‖∇ϕ5‖L2(RN
+ ) =

∫

R
N
+

〈χ(1 − τ)u× du, d∗ϕ5〉 ≤ C‖1 − τ‖L∞(B̌r1 )‖u‖L∞(B̌r1 )‖∇u‖L2(B̌r1 )

and the result comes from Lemma 1 and (104).

Estimate for ϕ4. We have
∫

R
N
+

|∇ϕ4|2 ≤ C
(

∫

B̌r1

(aε − |u|2)2

2ε2
+ rNΛ0ε

β
)

. (108)

Since ϕ4 satisfies the equation

−∆ϕ4 = ω4 = −d
(

χ|log ε| |u|
2 − 1

2
c
)

,

we argue as for ϕ5, that is multiplying by ϕ4 and using the definition of A4, to obtain
∫

RN
+

|∇ϕ4|2 ≤ CΛ2
0ε

2|log ε|2
∫

B̌r1

(1 − |u|2)2

2ε2
≤ C

(

∫

B̌r1

(aε − |u|2)2

2ε2
+ rNΛ0ε

β
)

,

which is the claim.

Estimate for ϕ3. We claim that
∫

B̌δr

|∇ϕ3|2 ≤ CδN(Eε(r) + rNΛ0ε
β). (109)

Indeed, we have first by (97) and arguing as for ϕ5 since ξ> = 0 on ∂RN
+ ∩ Br1(x0),

∫

R
N
+

|∇ϕ3|2 ≤ C

∫

∂Br1∩R
N
+

|∇ξ|2 ≤ C(Eε(r) + rNΛ0ε
β).

Next, we note that ω3 has support in ∂Br1 ∩ RN
+ , thus ϕ3 is harmonic inside B̌r1 and thus by

standard estimates (and scaling),

‖∇ϕ3‖L∞(B̌r/32) ≤ Cr1−N/2‖∇ϕ3‖L2(B̌r1 ),

from which (δ ≤ 1/32) we infer (109).

Estimate for ϕ2. We have
∫

B̌δr

|∇ϕ2|2 ≤ CδNEε(r) + CrN−1
1 Gε(r1) ≤ CδNEε(r) + CηrN−2. (110)

We write

ω2 = σ∂Br1∩R
N
+
dr ∧ (f 2(|u|)u× du) − σBr1∩∂R

N
+
dxN ∧ (f 2(|gε|)gε × dgε) = ω2,1 + ω2,2

and thus write with obvious notations ϕ2 = ϕ2,1 + ϕ2,2. The estimate for ϕ2,1

∫

B̌δr

|∇ϕ2,1|2 ≤ CδNEε(r)

36



follows as for ϕ3. Concerning ϕ2,2, we have

∫

R
N
+

|∇ϕ2,2|2 ≤ CrN−1
1 Gε(r1),

and the conclusion follows from these two inequalities and (94).

Estimate for ϕ1. The crucial estimate is

|ω1| ≤
C

γ2

(aε − |u|2)2

ε2
in B̌r. (111)

Indeed,

ω1 = 2χ
∑

i<j

∂i(f(|u|)u)× ∂j(f(|u|)u) dxi ∧ dxj.

If 1 − γ ≤ |u| ≤ 1 + γ, since f(|u|) = 1/|u|, two partial derivatives ∂i(f(|u|)u) and ∂j(f(|u|)u)
are both tangent to S1 at u

|u|
thus are colinear, and therefore ω1 = 0.

If |u| < 1 − γ or |u| > 1 + γ, by Lemma 1,

|ω1| ≤
C

ε2
≤ C

ε2γ2
(1 − |u|2)2

and the conclusion follows from

(1 − |u|2)2 ≤ 2(aε − |u|2)2,

valid at least if 0 < ε < ε0 sufficiently small (depending on γ and Λ0).
Next, we claim that

||ϕ1||L∞(RN
+

) ≤
C

γ2rN−2

(

Eε(r) + rN−2T νε (ε, r1/2
ε ) + Λ0r

N−2εβ
)

. (112)

Indeed, we know that (cf. Proposition A.3 in [BBO])

|ϕ1(x)| ≤ 2cN

∫

R
N
+

|ω1(y)|
|x− y|N−2

dy,

thus, using (111),

|ϕ1(x)| ≤
C

γ2

∫

B̌r1

(aε − |u|2)2

ε2|x− y|N−2
dy. (113)

Since ϕ1 is harmonic outside B̌r1 and tends to 0 at infinity, we deduce by the maximum principle

‖ϕ1‖L∞(RN
+

) = ‖ϕ1‖L∞(B̌r1 ).

In order to prove (112), it suffices then to prove

‖ϕ1‖L∞(B̌r1 ) ≤
C

γ2rN−2

(

Eε(r) + rN−2T νε (ε, r1/2
ε ) + Λ0r

N−2εβ
)

.
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Let x ∈ B̌r1 . Since B̌r1(x0) ⊂ B̌r/4(x), we deduce from (113)

|ϕ1(x)| ≤
C

γ2

∫

B̌r/4(x)

(aε − |u|2)2

ε2|x− y|N−2
dy =

C

γ2

∫ r/4

0

1

ρN−2

∫

Ω∩∂Bρ(x)

(aε − |u|2)2

ε2
dρ

=
C

γ2
(N − 2)

∫ r/4

0

1

ρN−1

∫

Ω∩Bρ(x)

(aε − |u|2)2

ε2
dρ+

C

γ2

[ 1

ρN−2

∫

Ω∩Bρ(x)

(aε − |u|2)2

ε2

]r/4

0
.

Using the monotonicity formula of Lemma 3.4 (for 0 ≤ ρ ≤ r/4 ≤ (1 + Λ0|log ε|)−1), we obtain

|ϕ1(x)| ≤
C

γ2

(

Ẽε(x,
r

4
) + T νε (ε, r) + Λ0ε

β
)

≤ C

γ2rN−2

(

Eε(r) + rN−2η + Λ0r
N−2εβ

)

since B̌r/4(x) ⊂ B̌r(x0), and the proof of (112) is complete.
To conclude, we go back to the equation

−∆ϕ1 = ω1

to deduce
∫

R
N
+

|∇ϕ1|2 ≤ ‖ϕ1‖L∞(RN
+

)

∫

B̌r1

|ω1| ≤ ‖ϕ1‖L∞(RN
+

)

∫

B̌r

|ω1|,

since r1 ≤ r, so that, by (111) and (112),

∫

R
N
+

|∇ϕ1|2 ≤
C

γ4

( 1

rN−2

∫

B̌r

(aε − |u|2)2

ε2

)(

Eε(r) + rN−2η + rN−2Λ0ε
β
)

. (114)

Step 2 completed. Combining the estimates for φ and ϕi, 1 ≤ i ≤ 5, we are led to, for
0 < δ < 1/32,

∫

B̌δr(x0)

|∇ϕ|2 ≤ C
(

γ2 + δN +
γ−4

rN−2

∫

B̌r

(aε − |u|2)2

ε2

)

Eε(r) + C

∫

B̌r

(aε − |u|2)2

ε2

+ CrN−2
(

1 +
γ−4

rN−2

∫

B̌r

(aε − |u|2)2

ε2

)

(η + Λ0ε
β). (115)

Step 3: Improved estimates for ∇(|u|2) on B̌δr(x0).

The equation for |u|2 reads

∆|u|2 + 2
(aε − |u|2)|u|2

ε2
= 2|∇u|2 + 2|log ε|(i~c · ∇u, u).

Multiplying by aε − |u|2 and integrating over B̌r1(x0), we obtain

∫

B̌r1

∣

∣∇|u|2
∣

∣

2
+ 2

(aε − |u|2)2|u|2
ε2

= 2

∫

B̌r1

(aε − |u|2)|∇u|2 +

∫

∂B̌r1

(aε − |u|2)∂|u|
2

∂n
(116)

+

∫

B̌r1

∇|u|2 · ∇aε +

∫

B̌r1

2|log ε|(i~c · ∇u, u)(aε − |u|2).
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For the second term in the right-hand side of (116), we have first by (92) and (93)

∣

∣

∣

∫

R
N
+
∩∂Br1

(aε − |u|2)∂|u|
2

∂n

∣

∣

∣
≤ Cε

(

∫

R
N
+
∩∂Br1

(aε − |u|2)2

ε2

)1/2(
∫

R
N
+
∩∂Br1

|∇u|2
)1/2

≤ C
ε

r

(

∫

R
N
+
∩Br1

(aε − |u|2)2

ε2

)1/2(
∫

R
N
+
∩Br1

|∇u|2
)1/2

≤ Cγ2

∫

B̌r1

|∇u|2 + Cγ−2

∫

B̌r1

(aε − |u|2)2

ε2

since r ≥ ε, and next, using Lemma 1, Cauchy-Schwarz and (94), we have, since ε ≤ r ≤ r
1/2
ε ,

∣

∣

∣

∫

∂R
N
+
∩Br1

(aε − |u|2)∂|u|
2

∂n

∣

∣

∣
≤ C

∫

∂R
N
+
∩Br1

∣

∣aε − |u|2
∣

∣

ε

≤ C
(

rN−1
1

∫

∂R
N
+
∩Br1

(aε − |u|2)2

ε2

)1/2

≤ C
(

rN−1
1 rN−2

1 Gε(r1)
)1/2

≤ C
√
ηrN−2.

As a consequence,

∣

∣

∣

∫

∂B̌r1

(aε − |u|2)∂|u|
2

∂n

∣

∣

∣
≤ Cγ2

∫

B̌r

|∇u|2 + Cγ−2

∫

B̌r

(aε − |u|2)2

ε2
+ C

√
ηrN−2. (117)

We also have

∣

∣

∣

∫

B̌r1

(aε − |u|2)|∇u|2
∣

∣

∣
≤

∫

B̌r1∩{|aε−|u|2|≤γ2}

∣

∣aε − |u|2
∣

∣ · |∇u|2

+

∫

B̌r1∩{|aε−|u|2|>γ2}

∣

∣aε − |u|2
∣

∣ · |∇u|2

≤ γ2

∫

B̌r

|∇u|2 +
C

γ2

∫

B̌r

(aε − |u|2)2

ε2
, (118)

where we have used Lemma 1 for the second term. Moreover, by Lemma 1 and (8),

∣

∣

∣

∫

B̌r1

2|log ε|(i~c · ∇u, u)(aε − |u|2)
∣

∣

∣
≤ CΛ0ε|log ε|

(

∫

B̌r

|∇u|2
)1/2(

∫

B̌r

(aε − |u|2)2

ε2

)1/2

≤ Cγ2

∫

B̌r

|∇u|2 +
C

γ2

∫

B̌r

(aε − |u|2)2

ε2
. (119)

Finally, using (8),

∣

∣

∣

∫

B̌r1

∇|u|2 · ∇aε
∣

∣

∣
≤ 1

2

∫

B̌r

∣

∣∇(|u|2)
∣

∣

2
+
ε4|log ε|4

2

∫

B̌r

|∇d|2

≤ 1

2

∫

B̌r

∣

∣∇(|u|2)
∣

∣

2
+ CrNΛ0ε

β. (120)
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Combining (117), (118), (119), (120) with (116) yields
∫

B̌r1

∣

∣∇|u|2
∣

∣

2 ≤ Cγ2

∫

B̌r

|∇u|2 +
C

γ2

∫

B̌r

(aε − |u|2)2

ε2
+ CrNΛ0ε

β + C
√
ηrN−2. (121)

Step 4: Proof of Lemma 4.2 completed.

Recall that
4|u|2 · |∇u|2 = 4|u×∇u|2 +

∣

∣∇|u|2
∣

∣

2
,

thus, from the Hodge-de Rham decomposition of Step 1,

4aε(x)|∇u|2 = 4|u×∇u|2 +
∣

∣∇|u|2
∣

∣

2
+ 4(aε(x) − |u|2)|∇u|2

≤ 12
[

|∇ϕ|2 + |∇ξ|2 + (1 − |u|2)2|~c|2|log ε|2
]

+
∣

∣∇|u|2
∣

∣

2
+ 4(aε(x) − |u|2)|∇u|2.

Since, by (8),
∫

B̌δr

(1 − |u|2)2|~c|2|log ε|2 ≤ Λ2
0ε

2|log ε|2
∫

B̌δr

(1 − |u|2)2

ε2

≤ C

∫

B̌δr

(aε − |u|2)2

ε2
+ CrNΛ0ε

β

≤ C

γ2

∫

B̌r

(aε − |u|2)2

ε2
+ CrNΛ0ε

β,

we deduce from (115) in Step 2 and (121) in Step 3, using 4aε(x) ≥ 1 (for ε ≤ ε0(Λ0) small
enough) and (118) (for the last term) that

Eε(δr) ≤ C
(

γ2 + δN +
γ−4

rN−2

∫

B̌r

(aε − |u|2)2

ε2

)

Eε(r) + Cγ−2

∫

B̌r

(aε − |u|2)2

ε2

+ CrN−2
(

1 +
γ−4

rN−2

∫

B̌r

(aε − |u|2)2

ε2

)

(η + Λ0ε
β) + C

√
ηrN−2,

which ends the proof. �

Part C: Proof of Theorem 2 completed.

We consider a solution u of (1)-(5) on Ω satisfying

Ẽε(u, r̄) ≤ η|log ε| and T νε (rε, r̄) ≤ η|log ε|, (122)

for a r
1/2
ε ≤ r̄ ≤ min(R, (1+Λ0)

−1/ν). In Part A, we have exhibited some r0 ∈ (rε, r
1/2
ε ) such that

1

rN−2
0

∫

B̌r0

(aε − |u|2)2

2ε2
≤ C(η + Λ0ε

β|log ε|−1)|log δ|, (123)

Ẽε(r0) − 2N−2Ẽε(δr0) ≤ C(η + Λ0ε
β|log ε|−1)|log δ|. (124)

We apply Lemma 4.2 to obtain, since 0 < ε ≤ rε ≤ r0 ≤ r
1/2
ε ≤ (1 + Λ0|log ε|)−1,

Eε(δr0) ≤ C
(

γ2 + δN +
γ−4

rN−2
0

∫

B̌r0

(aε − |u|2)2

ε2

)

Eε(r0) + Cγ−2

∫

B̌r0

(aε − |w|2)2

ε2
(125)

+ CrN−2
0

(

1 +
γ−4

rN−2
0

∫

B̌r0

(aε − |u|2)2

ε2

)

(η + Λ0ε
β) + C

√
ηrN−2

0 .
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Therefore, by (123), (124) and dividing (125) by rN−2
0 ,

Ẽε(r0) ≤ 2N−2Ẽε(δr0) + C(η + Λ0ε
β|log ε|−1)|log δ|

≤ Cδ2−N 1

rN−2
0

Eε(δr0) + C(η + Λ0ε
β|log ε|−1)|log δ|

≤ Cδ2−N
(

γ2 + δN + γ−4(η + Λ0ε
β|log ε|−1)|log δ|

)

Ẽε(r0)

+ Cγ−2(η + Λ0ε
β|log ε|−1)|log δ| (126)

+ C(1 + γ−4(η + Λ0ε
β|log ε|−1)|log δ|)(η + Λ0ε

β) + C
√
η

We now fix the values of γ and δ. First, we choose δ small enough (depending on N , ν, Ω and
the constant C in (12) only) so that

Cδ2 ≤ 1/4.

Next, we fix γ small enough so that

Cδ2−Nγ2 ≤ 1/4

and thus
Cδ2−N(γ2 + δN) ≤ 1/2.

Consequently, for these values of γ and δ, there exist ε0 and η0 small such that, for any η ≤ η0

and ε ≤ ε0, then
Cδ2−Nγ−4(η + Λ0ε

β|log ε|−1)|log δ| ≤ 1/4.

Hence, recalling r0 ∈ (rε, r
1/2
ε ) with rε = (εµ|log ε|)1/(N−1), (126) rewrites, for 0 < η < η0,

Ẽε(r0) ≤
3

4
Ẽε(r0) + C

√
η,

provided 0 < ε ≤ ε0(Λ0, η) is small enough so that

Λ0ε
β ≤ √

η.

We then infer that for η ≤ η0 and ε ≤ ε0(ν,Λ0, N),

Ẽε(r0) ≤ C
√
η.

Finally, we apply the monotonicity formula of Lemma 3.4 (note that ε ≤ rε ≤ (1 + Λ0|log ε|)−1/ν

for ε small) and obtain, for η ≤ η0 and ε ≤ ε0(ν,Λ0, N, η) since Λ0ε
β|log ε|−1 ≤ √

η,

1

εN

∫

Ω∩Bε

(1 − |u|2)2 ≤ C(
1

εN

∫

Ω∩Bε

(aε − |u|2)2 + Λ2
0ε
β)

≤ C(Ẽε(ε) +
√
η)

≤ C(Ẽε(r0) +
√
η + Λ0ε

2|log ε|3 + η)

≤ C
√
η.

We conclude with the following lemma, taken from [BBO] (Lemma III.3 there).

Lemma 4.3. Assume u satisfies |∇u| ≤ C/ε in a smooth domain ω and x0 ∈ ω̄. Then,

1 − |u(x0)| ≤ C(ω, x0)
( 1

εN

∫

ω∩Bε(x0)

(1 − |u|2)2
)1/(N+2)

.
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4.2 Proof of Theorem 3

We only point out the modifications to make for the Neumann case.

Part A: Choosing a “good” radius.

Lemma 4.4. Assume 0 < ε < δ1/(2β), that u is a solution of (1)-(6), x0 ∈ Ω̄ and that

Ẽε(x0, r̄) ≤ η|log ε|

for a r
1/2
ε ≤ r̄ ≤ min(R, (1 + Λ0)

−1). Then, there exists a radius r0 ∈ (rε, r
1/2
ε ) such that

• 1

rN−2
0

∫

B̌r0

(aε − |u|2)2

2ε2
≤ C(η + Λ0ε

β|log ε|−1)|log δ|,

• Ẽε(r0) − 2N−2Ẽε(δr0) ≤ C(η + Λ0ε
β|log ε|−1)|log δ|.

Proof. The proof is exactely the same as in Lemma 4.1. It suffices to replace (53) by (76). We
then proceed as in Lemma 4.1. We bound Ēε(4r) by the monotonicity formula of Proposition 2
and use the fact (as in Lemma 3.14) that the primitive of χ{2r≥d0}

d0
4r2

with value 0 in r = 0 is
uniformly bounded between 0 and 1. �

Part B: δ-energy decay.

Lemma 4.5. There exist constants C and ε0 > 0, depending on N and Ω, such that, if u is a
solution of (1)-(6), then

Eε(δr) ≤ C
(

γ2 + δN +
γ−4

rN−2

∫

B̌r

(aε − |u|2)2

ε2

)

Eε(r) + Cγ−2
(

∫

B̌r

(aε − |u|2)2

ε2
+ εβ

)

.

Proof. For simplicity, we will assume that Ω is locally the half-plane RN
+ = RN−1 × R+ and that

x0 = (x0)N~eN =: ra~eN . First, we consider the rescaled maps on B̌1(a~eN), with ε̃ := ε
r
,

û(x) := u(rx), ĉ(x) := r
|log ε|
|log ε̃|c(rx) and d̂(x) := r2 |log ε|2

|log ε̃|2d(rx).

We then define the reflected map ũ : ω := B1(a~eN )∪B1(−a~eN ) → C with respect to the boundary

ũ(x) :=

{

û(x) if x ∈ B̌1(a~eN),
û(x1, . . . , xN−1,−xN ) if x ∈ B1(−a~eN ) \ B̌1(a~eN).

We extend d̂ similarly in d̃ and for ĉ, we set on B1(−a~eN ) \ B̌1(a~eN )

c̃(x) := (ĉ1(x1, . . . , xN−1,−xN ), . . . , ĉN−1(x1, . . . , xN−1,−xN ),−ĉN(x1, . . . , xN−1,−xN )).

Since ~c · n = cN = 0 on ∂RN
+ , c̃ is a lipschitz map on ω. Therefore, since ∂u

∂n
= 0, ũ satisfies

i|log ε̃|c̃ · ∇ũ = ∆ũ+
1

ε̃2
ũ(ãε̃ − |ũ|2) in ω.

In particular, we may apply Lemma A.9 in Appendix A of [BOS] and obtain the desired result.
More precisely, we may apply step by step the lines of Lemma A.9 in the Appendix A in [BOS]
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to obtain, since, with our scalings, Λ0(c̃, d̃) ≤ C and the basic estimates of Lemma 2 hold,

Eε̃(ũ, ω(δ)) ≤ C
(

γ2 + δN + γ−4

∫

ω(1)

(ãε̃ − |ũ|2)2

ε̃2

)

Eε̃(ũ, ω(1))

+ Cγ−4
(

∫

ω(1)

(ãε̃ − |ũ|2)2

ε̃2
+ εβ

)

, (127)

where ω(r) := Br(a~eN ) ∪ Br(−a~eN ) (note that ω(1) = ω). The only difference with Lemma A.9
in [BOS] is that for our problem, we work with ω(r) instead of Br, but this does not affect the
arguments. Moreover, by scaling, we have

∫

ω

(ãε̃ − |ũ|2)2

ε̃2
=

1

2rN−2

∫

B̌1(a~eN )

(âε̃ − |û|2)2

ε̃2
=

1

2rN−2

∫

B̌r(x0)

(aε − |u|2)2

ε2
,

Eε̃(ũ, ω) =
1

2rN−2
Eε(u, r) and Eε̃(ũ, ω(δ)) =

1

2rN−2
Eε(u, δr).

Inserting this in (127) yields the conclusion. �

Part C: Proof of Theorem 3 completed.

We consider a solution u of (1)-(6) on Ω satisfying

Ẽε(u, r̄) ≤ η|log ε|, (128)

for a r
1/2
ε ≤ r̄ ≤ min(R, (1 + Λ0)

−1). In Part A, we have then exhibited some r0 ∈ (rε, r
1/2
ε ) such

that
1

rN−2
0

∫

B̌r0

(aε − |u|2)2

2ε2
≤ C(η + Λ0ε

β|log ε|−1)|log δ|,

Ẽε(r0) − 2N−2Ẽε(δr0) ≤ C(η + Λ0ε
β|log ε|−1)|log δ|.

We apply Lemma 4.5 and obtain

Eε(δr0) ≤ C
(

γ2 + δN +
γ−4

rN−2
0

∫

B̌r0

(aε − |u|2)2

ε2

)

Eε(r0) + Cγ−2
(

∫

B̌r0

(aε − |u|2)2

ε2
+ εβ

)

.

We have therefore the same estimates as in Part C of Appendix A in [BOS] or Part C of the
previous subsection 4.1 (see (125), less some terms): the conclusion follows the same lines. �

5 Anchoring condition at the boundary

We prove in this Section that Ṽ is stationary. The proof of the stationarity inside the domain
follows from the curvature equation of [BOS] (Theorem 3 there),

H = ?
(

~c ∧ ?dJ∗
dµ∗

)

= 0

if ~cε → ~c0 = 0 uniformly in Ω̄.

43



Notations : We denote (ei)1≤i≤N the canonical basis in RN , and let ~ei := ei in Ω̄, and ~ei := φ∗(ei)
in W , so that (~ei)1≤i≤N is a smooth orthonormal frame in (M, g), and set Di := ∂

∂~ei
, and for a

function v : M → R, Dv = (Div)1≤i≤N ∈ RN = TvM. Let ũε(x) := uε(x) in Ω, ũε(x) := uε(φ(x))
in W ,

ν :=

{

dx in Ω̄,
|Jacx(φ)|dx in W

the measure on the riemannian manifold (M, g), and

µ̃ε :=
1

2|log ε|
(

N
∑

i=1

|Diũε|2 +
(1 − |ũε|2)2

2ε2

)

dν(x)

be the energy density measure. We extend ~cε, dε and aε = 1 − dεε
2|log ε|2, defined in Ω to Ωδ

by the formulas c̃ε := φ∗(~cε), d̃ε(x) := dε(φ(x)) and ãε := aε ◦ φ in W . In view of (1) and the
Neumann boundary condition (6), ũε solves

i|log ε|〈c̃ε, dMũε〉 = ∆Mũε +
1

ε2
ũε(1 − |ũε|2) − |log ε|2d̃εũε in (M, g). (129)

Furthermore, it is clear that Eε(ũε,Ωδ) ≤ CEε(ũε,Ω) ≤ CM |log ε|, hence we infer from [JS] and
[ABO] that Jũε is precompact in [C0,α

c (Ωδ)]
∗ for α ∈ (0, 1] and more precisely, there holds for

ϕ ∈ C0,1(Ωδ,Λ
2) the estimate (40) of Lemma 3.5, namely

∣

∣

∣

∫

Ωδ

〈Jũε, ϕ〉 dν
∣

∣

∣
≤ CM |ϕ|∞ + CMεα|log ε||dϕ|∞. (130)

We define

α̃i,jε := µ̃εδi,j −
(Diũε, Djũε)

|log ε| dν(x),

so that the matrix (α̃i,jε ) is g-symmetric, has trace larger than (N − 2)µ̃ε and eigenvalues less
than or equal to µ̃ε. Moreover,

|α̃i,jε | ≤ Nµ̃ε. (131)

Let also

Θ̃∗(x) := lim inf
r→0

µ̃∗(Br(x))

rN−2

be the (N − 2)-dimensional density of µ̃∗, and Σµ̃∗ := {Θ̃∗ > 0} its geometrical support. It is
then clear that Ṽ := V(Σµ̃∗ , Θ̃∗) is the union of the varifold V(Σµ∗ ,Θ∗) and its reflection across
the boundary.

The argument then follows Appendix B of [BOS]. We fix ~X ∈ C∞
c (Ωδ) and now, we compute

in the riemannian manifold (M, g), and denote · the scalar product in M. First, we have

∫

Ωδ

N
∑

i=1

(α̃i,jε )1≤j≤N ·D(X · ~ei) dν(x) = −
∫

Ωδ

〈dµ̃ε, X〉 −
∫

Ωδ

N
∑

i=1

(Diũε, Dũε)

|log ε| ·D(X · ~ei). (132)

Integrating by parts, we obtain

∫

Ωδ

N
∑

i=1

[(Diũε, Dũε)] ·D(X · ~ei) dν(x) =

N
∑

i=1

∫

Ωδ

((DiDũε;Dũε) + (Diũε,∆Mũε)(X · ~ei) dν(x)

= −
∫

Ωδ

( ~X ·Dũε,∆Mũε) −
1

2

∫

Ωδ

~X ·D(|Dũε|2).
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Since ũε is a solution of (129), we then infer from (132)

∫

Ωδ

N
∑

i=1

(α̃i,jε )1≤j≤N ·D( ~X · ~ei)

=
1

|log ε|

∫

Ωδ

(

~X ·Dũε,∆Mũε +
ũε
ε2

(ãε − |ũε|2)
)

+
|log ε|2

2
(ãε − |ũε|2) ~X ·Dd̃ε

= −
∫

Ωδ

〈 ~X, ?(c̃ε ∧ ?Jũε)〉 dν(x) +
|log ε|

2

∫

Ωδ

(ãε − |ũε|2) ~X ·Dd̃ε dν(x) (133)

Up to a subsequence εj → 0, we may assume that

α̃i,jε ⇀ α̃i,j∗

weakly as measures. Furthermore, we infer from (131) that |α̃i,j∗ | ≤ Nµ̃∗, so we may write

α̃i,j∗ = Ãi,jµ̃∗,

for µ̃∗ almost every x ∈ Ωδ, where Ãi,j(x) is g-symmetric, with eigenvalues less than or equal to
one and trace equal to N − 2 (this follows from Proposition A.1 in Appendix A of [BOS]). We
also have

∣

∣

∣

|log ε|
2

∫

Ωδ

(ãε − |ũε|2) ~X ·Dd̃ε dν(x)
∣

∣

∣
≤ C( ~X)MΛ0ε|log ε|.

Since, in the regime of interest for us, we have

c̃ε → 0 uniformly as ε→ 0

(but c̃ε|log ε| 6→ 0), we obtain, passing to the limit in (133),

∫

Ωδ

N
∑

i=1

(Ãi,j(x))1≤j≤N ·D( ~X · ~ei)dµ̃∗ Σµ̃∗ = 0. (134)

To be very precise, the convergence towards zero for the first term in (133) is deduced from (130)

since c̃ε → 0, thus ϕ := ~X ∧ c̃ε → 0 uniformly, with a gradient uniformly bounded. Since ~X is
arbitrary in C∞

c (Ωδ), this states that the reflected varifold Ṽ = δÃ(x)µ̃∗ Σµ̃∗(x) is stationary (see
[S]) in (M, g), which concludes the proof of Theorem 1. In the case ~cε → ~c0 6= 0, equation (134)
becomes

∫

Ωδ

N
∑

i=1

(Ãi,j(x))1≤j≤N ·D( ~X · ~ei)dµ̃∗ Σµ̃∗ = −
∫

Ωδ

〈?(c̃0 ∧ ?
dJ̃∗
dµ̃∗

), ~X〉 dν

and this completes the proof of (11). �
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