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Abstract

We provide a study at the boundary for a class of equation including the Ginzburg-
Landau equation as well as the equation of travelling waves for the Gross-Pitaevskii model.
We prove Clearing-Out results and an orthogonal anchoring condition of the vortex on the
boundary for the Ginzburg-Landau equation with magnetic field.

1 Introduction

This paper is devoted to the study at the boundary for the equation for the complex-valued
function u in a bounded regular domain Q C RN, N > 2,

illoge|ld(z) - Vu = Au + gl—zu(l — |ul?) — |loge|®d(z)u, (1)

where ¢ : Q — RY is a bounded lipschitz vector field, d : © — R is a lipschitz non negative
bounded function and € > 0 is a small parameter. For instance, the Ginzburg-Landau equation
with magnetic field

(V — idj2)%u = —gu(l - [uf?) )

is of the type considered. Another problem that can be written like equation (1) is the equation
for the travelling waves for the Gross-Pitaevskii equation. This equation writes

O

2\ _
zawwwu— [¥]7) =0, (3)

where ¢ : R x RN — C. Travelling waves solutions to this equation are solutions of the form
(possibly rotating the axis)

Y(t,x) =U(xy — Ctyzg, ..., xN).

Equation (3) reads now on U

U )



In dimension N > 3, if the propagation speed is small, it is convenient to perform the scaling

u(z) == U<£>, c: ¢

€ - elloge]

(in dimension N = 2, the scaling for the speed is C' = ¢), and the equation becomes then
. du 1 5
zc\logda—xl = Au+ 5_2u(1 — Jul?)

and we expect ¢ to be of order one. This equation is of the type (1) with d = 0 and ¢ = cé;. If

N = 2, the equation is
. Ou 1 9

which is also of the considered type with d = 0 and ¢ =

—

@.
We will be interested in (1) in the asymptotic ¢ — 0 with
dive =0, (4)
and we supplement this equation with
either the Dirichlet condition
u=g. on 09, (5)

either the Coulomb gauge and the homogeneous Neumann condition

2—2:0 and ¢c-n=0 on Jf. (6)

Furthermore, we will assume that there exists a constant Ag > 0 independent of € such that
%oy + VLo () + ldl T + V[T () < AS (7)

Finally, we may assume 0 < ¢ < g0(Ag) < 1/2 small enough so that

N =

A051/2|10g5\2 <

To this problem, is associated the energy

B = [ [VuP+ taele) “IPF _ [ et

where



1.1 Anchoring condition at the boundary

Our first result is about the anchoring condition of the vortex on the boundary for the Ginzburg-
Landau equation with Neumann condition. Assuming the upper bound

E.(u) < M|loge|,

for the function u, we expect that the energy of u concentrates at its vortices, which are curves
I' in dimension N = 3. We therefore introduce the measure

_ Ce (u)

~ |loge]

€ - x?

the mass of which is bounded by M by hypothesis. We may then assume, up to a subsequence,
that as ¢ — 0,
le — lsx  weakly as measures.

Moreover, we define the N — 2-dimensional density of p,

O.(z) := liminf 1+(Br (7))

r—0 rN=2

and the geometrical support of p,
X, ={reQ, 0,r) >0}

From Theorem 3 in [BOS], we know that 3, is closed in © and countably (N — 2)-rectifiable.
Let us assume that the magnetic field H = |loge| curl ¢ obeys the London equation

~AH + H = 270y

We may then describe further ¥, near the boundary. In this regime of energy, I' consists in a
finite number of curves of finite length. Therefore, from London equation, we expect H to be of

order one, that is
lloge| - |curlé] = |H| ~ 1,

and thus, since ¢+ n =0 on OS2,
|l =0 ife—0.

Our result is concerned with the anchoring of X, at the boundary, under the only hypothesis
&.—0 inCQ) ase— 0. (9)

We note that by hypothesis, ¢. is bounded in C%1(Q), thus we may assume for a subsequence
that ¢. — & in C°(Q2). We then only assume ¢ = 0.

In the case of the Neumann boundary condition (6), we will use the reflection principle. There
exists 0 > 0 such that the nearest point projection map

IT: (02)s — 0N

is well-defined in the d-neighborhood (0€2)s of 92 and a smooth fibration. A point z € (9Q)s
may therefore be described by the couple (y,t), where y = II(z) is its projection on 02 and



t = tdist(x,00) = £||lx — II(x)]|, the sign £ being + if z is inside Q and — otherwise. We then
define the reflection map

¢ W :=Q°N(0Q); — V := QN (00)s,

where ¢() is the point described by the couple (y, —t) if x is described by (y,t). We define the
varifold V by V:=V in Q and V := ¢4V in W, that is V consists in V union its reflection with
respect to the boundary 9€). We then consider the manifold M := €25 endowed with the smooth

riemannian metric g defined by g = go in Q and g = ¢.(go) in W, where g is the euclidian metric
on 2.

Theorem 1. Assume (4) and (7). Let u. be a family of solutions of (1)-(6) satisfying the energy
bound
E.(u) < Mllog<|

for a vector field ¢. satisfying
&.—0 mC Q) ase—0.
Then, the varifold V(X,,,©,) is stationary in 2. Moreover, V is a stationary varifold in (M, g).

Remark 1. In the case where Q is (locally) the half-plane RY = R% x RN~ then the theorem
states that V is a stationary varifold in (locally ) RY for the usual metric.

This Theorem says that, in some weak sense, the union of the varifold V and its symmetric
with respect to the boundary is “smooth”, that is V must meet the boundary 92 orthogonally.
Since V is not in general a smooth curve, we may only use a weak formulation of this orthogonality.
However, if V is a smooth curve up to the boundary, then Theorem 1 states that, denoting 7 the
tangent unit vector to V,

T=4n on 0.

The fact that the vortex must meet the boundary orthogonally can be found in the literature.
For instance, in [CH|, Chapman and Heron considered a domain which is the half-plane (in R3)
{z < 0} and a straight line vortex I', defined by y = 0, © = mz < 0 for a 0 < m < +o0,
meeting the boundary {z = 0} at 0. Using the London equation and the boundary conditions
for the magnetic field, they proved, computing the propagation speed of the vortex at 0, that
the coefficient m must be zero, for otherwise, the propagation speed would be infinite. However,
their computation does not exclude the case of two vortices, defined by y = 0, x+ = mz < 0
and y = 0, x = —mz > 0, since in that case, the propagation is, due to the symmetry, zero.
Our Theorem 1 states that there can not be another possibility involving two such coplanar
straight lines vortices, that is vortices defined by y =0, z =mz <0and y =0,z = —m'z2 <0
with 0 < m,m’ < 400 and m # m’ can not hold. Our Theorem even states that if we have
two straight line vortices in the half plane {z < 0} meeting at 0, then they must be in a plane
orthogonal to {z = 0}. At the opposite of [CH], our approach is based on equation (1) only,
whereas the London equation is the limit equation for the current (see (22) below), which is the
second equation of the Ginzburg-Landau equation with magnetic field.

Remark 2. In the case ¢ — ¢# 0 as ¢ — 0, by Theorem 3 in [BOS], we know that the varifold
Y satisfies inside the domain () the curvature equation

H = *(8/\ (*ZJ* )), (10)

[l
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where H is the generalized mean curvature of ¥V and, up to a subsequence, .J, is a weak limit
of the jacobian Ju. and « refers to Hodge duality. Theorem 1 generalizes then in the form (see
Section 5)

- dJ,

H = *<~/\ h— ), 11

PN (1)

where ¢, J, and fi, are the extensions of ¢, J, and p, by reflection, and H the generalized mean

curvature of V in (M, g). Equation (11) also implies in somme weak sense that the vortex must

be orthogonal to the boundary. We show in the figure below some non-admissible and admissible
d|| J.|

configurations for a vortex we assume ‘“regular” (for instance = 1), in the case where ¢ can
*

be non zero. In Theorem 1, the stationarity of V (thus of V) inside the domain € is a direct
consequence of (10) with ¢ = 0.

admissible
configuration

admissible
configuration

\ non-admissible
non-admissible N configuration
configuration K

Non-admissible and admissible configurations (a) one vortex (b) two vortices.

1.2 Monotonicity and Clearing-Out Theorems

The second result is a Clearing-Out theorem for this equation. This result is also called 7-
compactness (in [R], [LR]) and n-ellipticity Lemma (in [BBO]). We recall the definition of the
scaled energy, for a map u : 2 — C,

- 1 1
B om) = B 20 Beo) = v [ e
NBr(xo

/raN—2
1 / [Vl | (ac(x) — |u]*)”
QNBr(xo)

TN 2 1e?

and finally set

BT(QZQ) =0nN Br(.To)

and
re := (et |log €|)1/(N_1),

where 1 € (0,1) is a constant depending only on N.

We can now state our Clearing-Out result for the Dirichlet boundary condition (5). First, we
make the following standard hypothesis for the boundary datum

C



We also introduce the following quantity, for 0 < r; < ry, and 0 < v <1,

o 1
TY (z9,71,72) ::/ 7/ el (ge) dr,
1 TN_2+V aQﬂBT(xo)
e 1 (0c(2) — loc?
T R 2 Ae\T) — |ge >
el (g:) = 5 (IVrgel? + =255 ).
Theorem 2. Assume (4) and (7). Let u be a solution of (1)-(5) on Q, with g. satisfying (12).

Letzg € Q, 0 < v <1, ri? <y < min(R, (1 + Ag)™"/*), where R > 0 depends only on 2, and

o > 0 be given. Then, there exist constants n > 0 and €9 > 0 depending on o, v, N, , Ay and
the constant C' in (12) but independent of u and g. such that, for e < eq, if

Tay(gpo’&r;p) < n, (13)
TY (wo,7e,7) < n|logel, (14)

and
E.(u,x9,7) < nlloge], (15)

then

lu(z)| > 1— 0.

Note that one may take different v’s for (13) and (14), but we can always assume they are
equal.

Remark 3. We emphasize that the quantity involved in 77 is related to the decay as r — 0 of

the scaled energy for g., namely
1

-
= e. (9e)-
=3 /amBr(xo) )

We make an hypothesis at small scales (r < rl/ %) for (13), which is the suitable assumption for
“ge is smooth enough and of modulus one”, and an hypothesis at large scales (r can be of order
one) for (14), which is an hypothesis on g. similar to the one made on u for (15).

Remark 4. If there exist § € (0, 2] and a constant M > 0 such that, for 0 < p <,

1 / o, (ac(x) —[g-*)? 5
Vrge|® + < My, (16)
PN Joons, (@) 2¢?

then, for 0 <7y <7y <r <1land 0 < v < min(J,1),

o—v
T’

72
TY (zg,11,72) < M/ Ol dr < M<5
1

_]/‘

Therefore, the hypothesis (13) is verified for ¢ sufficiently small (depending on v, 6 and M), and
(14) is verified for r < 1 and ¢ sufficiently small (depending on M). One may even consider for

(16) a constant M < |loge|. In particular, if g. is uniformly M-lipschitzian of modulus 1 on
0 N B,(xg), then by (8)

1 . —g. 2\2 1
N—3/ ‘VT95|2 + (CL (33) 2|9 ‘ ) < CM2p2 +C’,02A(2)€2|10g5\4 < C(M2 i _)p27
p 89N B, (o) 2e 4

where C' depends only on €, thus (16) is satisfied with ¢ = 2.
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Remark 5. We would like to emphasize that we do not impose |g.| = 1 (near the point xy). The
condition (13) (for r ~ ) however implies |g.|(z¢) ~ 1 if z¢ is at distance less than e from the
boundary. We enlarge the conditions on the boundary datum already used in [LR] (and [BBO]).
In this case, ¢, is a suitable smooth approximation of a map of modulus 1 smooth outside a finite
union of smooth submanifolds of 02 of dimension N — 3. The Clearing-Out Theorem is then
stated far away from these submanifolds.

Our Clearing-Out result for the the Neumann boundary condition (6) is the following.

Theorem 3. Assume (4) and (7). Let u be a solution of (1)-(6) on Q, 2o € Q and o > 0

be given, and let ri* < r < min(R,1/(1+ Ay)), where R > 0 depends only on ). There exist
constants 1 > 0 and 9 > 0, depending on N, Q, o and Ay but independent of u, such that, for
0<e<eg,if

EE(U7 X, 7’) S 7]|1Og€’7

then
lu(zo)| > 1— 0.

Remark 6. These theorems do not give compactness on the solution u as ¢ — 0. For the
Dirichlet problem, the compactness properties follow from hypothesis on the whole boundary
(see for instance [BBBO] for compactness in W'? 1 <p < N/(N —1)).

These results rely strongly on monotonicity formulas of the scaled energy of solutions of (1).
For the Dirichlet problem, the result is the following.

Proposition 1. Assume (4) and (7). Let v € (0,1] and g. satisfying (12). There ezist R > 0,
depending only on 2, C' > 0, depending on ), v and the constant C' in (12) only, and § > 0
depending on N only such that, if u is a solution of (1)-(5), 0 < r < min(R, (1 + Ag)~'*) and
x € Q, then for any 0 < 0 < 1/2, we have

E.(x,0r) < C(EE(T’) + T (zg,0r, 1) + A055>. (17)

For the Neumann problem, the result is the following.

Proposition 2. Assume (4) and (7). There exist 3 >0, R >0 and C' > 0 depending on ) and
N only such that, if u is a solution of (1)-(6), xo € Q and 0 < r < min(R,1/(1+ Ay)), then for
any 0 <6 < 1/2,

B (0, 0r) < 0(&(7«) + Aogﬁ). (18)
1.3 Models involving equation (1)
We would like to discuss some models involving equation (1), as well as the boundary conditions.
Note that (1) can be rewritten as
1
illoge|é(x) - Vu = Au+ ?u(ae(m) — Jul?), (19)

where
a.(z) := 1 —d(z)e?|log e|*.

7



When dive = 0, it is also equivalent to

: ¢ 1
(V — iflog <] )P + Su(be(a) — Juf?) =0, (20)
where IR
b-(7) = a.(z) + *|log e |C(Z)|

If dloge| = A and d = |@2?/4 with divA = 0, then this equation is the first equation in the
Ginzburg-Landau system of superconductivity, namely

- 1
(V—iA/2)%u = u(l — [u]?). (21)
5
The second equation for the induced magnetic field H := |loge| curl € (in dimension N = 3) is
(iu, V qu) = curl H 4 curl H., = |loge| curl® € + curl H,,, (22)

where H., is the imposed magnetic field and V4 = V — illoge|c is the covariant derivative.
Equations (21)-(22) are the Euler-Lagrange equations of the Ginzurg-Landau functional

1 1 — 2\2
J(u, ) = 5 /Q |Vu — i\log5|8u‘2 + % +|H — Hew 2
In this case, the natural boundary condition is
n - (iu, Vau) = 0. (23)

The functional J is gauge-invariant, that is, if 1» € H*(Q), then
J(ue™, e+ V) = J(u,e).
We can freeze the gauge-invariance by choosing, for instance, the Coulomb gauge

dive =0 in €,
c-n =0 on of.

In this case, the boundary condition (23) becomes with the Coulomb gauge

0
% =0 on 0N.
This justifies the study at the boundary with the homogeneous Neumann condition (6).

Writing (21) in the form (1) has the advantage to include in the same analysis the equation
already mentioned (in dimension N > 3)

1
iclloge|diu = Au + 5_2“(1 — Jul?)

related to the travelling waves for the Gross-Pitaevskii equation with small speeds. This equation
is used as a model for superfluidity, nonlinear optics and Bose-Einstein condensates. It is close
to the Ginzburg-Landau equation (21) and a similar asymptotic analysis as € — 0 can be carried
out for this equation.



We would like to mention that in [C], we have been interested in travelling vortex helices to
the Gross-Pitaevskii equation. In this case, we approximate the problem on cylinders of axis 1,
and we impose the Dirichlet boundary condition © = e on the lateral surface of the cylinder
that forces the solution u to have a degree one in the plane orthogonal to x;. Therefore, this
study required a Dirichlet boundary condition, whereas the Neumann condition is the natural
one for the gauge-invariant functional J.

We refer to [BOS] for the generalization of the analysis of equation (1) inside the domain
(see Theorems 2 and also 3 there). The proofs of Theorems 2 and 3 will follow the same lines
as in appendix A of [BOS]. We also mention the study of minimizers in dimension 3 for the
U(1)-Higgs model in [R]. For the study near the boundary for the Ginzburg-Landau functional
without magnetic field (d = |¢] = 0) and Dirichlet datum smooth outside a finite union of smooth
(N — 2)-dimensional submanifolds of 052, we refer to [LR] (for minimizers in dimension N > 3)
and [BBO] (for the general case).

The paper is organized as follows. In Section 2, we state and prove two lemmas concerning
basic L* bounds for v and Vu. Section 3 is devoted to the monotonicity formulas and the proof
of Propositions 1 and 2. In Section 4, we prove the Clearing-Out Theorems 2 and 3, while the
result about the orthogonal anchoring of the vortex on the boundary of Theorem 1 is given in
Section 5.

2 Basic L bounds

We first state two lemmas related to L* bounds for v and Vwu. The first one concerns the
Dirichlet problem.

Lemma 1. Assume (4) and (7). Let u be a solution of (1)-(5), with g. satisfying (12). Then,
2 2 c
[ulse < max(lgeloo; beloc) < € and - [Vulo < —

for a constant C' depending on Q, Ay and the constant C' in (12) only.
The second one is for the Neumann problem.

Lemma 2. Assume (4) and (7). Letu € H*NL*(Q2) be a solution of (1)-(6). Then, u € C*>*(Q)
for some o > 0 and

K
€
where K depends on  and Ay.

In particular, for the Ginzburg-Landau functional with magnetic field (where d = |c]?/4, thus
b. = 1), Lemma 2 states that |u|, < 1.



2.1 Proof of Lemma 1

It is close to the proof of Lemma 3 in [BOS]. From (1), we deduce

A|u|2 = 2(u, Au) + 2|Vu|2 = —25_2|u|2(a6 — |u|2) + 2|loge|(u, i¢- Vu) + 2|Vu|2
> —2e2{uf2(a, — |ul?) — 2/ - [loge| - |ul - [Vu| + 2|Vul?
2 2
= 2= 2fuf(a. — [uf?) + (V2| - ‘%\u\ ogel)” T pup - rog P
> =222 uf?([beloo — Juf?).

Therefore, the function w := max(|g.|% , |b|e) — |u|* satisfies

—Aw + 2 |ulPw >0 in Q,
w>0 on df,

and by the maximum principle, we deduce
w>0 in €.

Concerning the bound on the gradient, we consider the scaled map @(z) := u(ex), which satisfies

Q
At a(a. — |a|*) = iclloge|é - Vi in —,
g
X oY)
= g.(ex) on —,
g

where é(z) := c(ex) and d(z) = d(ex). By standard elliptic estimates (see [GT]), since
|V(g-(ex))| < C by hypothesis (12),

|Vi|pe < C

for a constant C' depending on §2 and Ay, and the estimate for u is obtained by scaling back. [J

2.2 Proof of Lemma 2

The proof of the C>* regularity of u uses a standard bootstrap argument and the fact that the
coefficients c¢,d are lipschitzian. Concerning the L* bounds, as in the proof of Lemma 1, we find
that w := |b.|s — |u|? satisfies

—Aw + 2 ?|ulfw >0  in Q,

0

a_: —0  ondQ,
since 22 = —2(u, 2%) = 0 by (6). We then adapt an idea of [F], used in the proof of universal
bounds for travelling waves for the Gross-Pitaevskii equation. For f : 0 — R, we decompose
f = f*— [~ in its nonpositive and nonnegative part (f*, f~ >0, fTf~ =0). Since w and Aw
are Holder continuous, we have by Kato’s inequality (see [B], [K])

Jul?

A(w™) = A((—w) ™) > sign® (—w)A(—w) > 26—281gn+(—w)(—w). (24)

10



Therefore (if w > 0, the right-hand side of (24) is zero, and if w < 0, then |u|? > |b.|s > 0),

_ 2|ba|oo —
A(w™) > =W > 0. (25)
From (25), it is clear that we can not have w~ = cte > 0, since |b:|o, > 0. As a consequence, in
view of (25), we deduce by the strong maximum principle (€2 is connected) that either w~ = cte,

and then this constant must be zero, either w™ achieves its maximum only on the boundary, for
instance at zy € Q. Assuming w~ # 0, we have w™(zy) > 0. In particular, since w € C>*(2),
in a neighborhood of x in Q, w™ = —w > 0is C>®. It is then well-known that in this case, since
w~ > 0 in this neighborhood, we have by (25),

e _dw
on  On ‘
This contradicts the boundary condition ‘g—z = 0. Therefore, w~ = 0 and w = w*™ > 0, that is

lu|%:, < |be|so, Which finishes the proof for the L bound. For the estimate on the gradient, we
consider the scaled map u(z) := u(ex), which satisfies

Q
At + (a. — |4]?) = iclloge|é - Vi in —,
€
ou 0 o0
— = on —.
on €
By standard elliptic estimates, we have
Vi < C
and we conclude by scaling back. U

3 Monotonicity formulas at the boundary

As already mentioned, we follow the lines of the proof of Theorem 2 of [BOS] given in appendix A
there. When this will not lead to a confusion, we will denote E.(u, zg,7) and B,(x¢) by E.(xq,r),
or even E.(r), and B,.. We first recall the Pohozaev identity.

Lemma 3.1. Let u be a solution of (1) on Q, then for any zo € RY and w C Q,

?/wlwpu—];/w(ag(x)— |u|?)? — N2—1‘1Og5‘L(JU,ZCi(x)ﬁi(x—zO»

= /&u [z = z0) - me.(u) - <§—j,j, (2= 20) - V)| + @ /w(ae(aﬁ )z — 20) - Vd(z).

Here, &; stands for the 2-form

2
j#i

11



3.1 The Dirichlet problem

In this subsection, we assume that u is a solution to the Dirichlet problem (1)-(5). We will
denote, for r > 0,

1 / o (ac(x) — |ga‘2)2 1 T
Vrge|” + = e (ge)-
2r=2 Jo0nB, (z0) ) 2¢? N2 JoonB @)

Note that G. is not the scaled energy for g.. We fix 0 < v < 1. In the sequel, C' denotes a
constant depending on N, €2 and v only.

Ge(zo,7) :=

Lemma 3.2. Let u be a solution of (1)-(5) on Q, then for r >0 and ¢ €

- 1 ou 1 1 ou |2
Z(E. — _ hadied
dr ( (-7307 )) V-2 /QﬂaB ‘ - rN=1 /Br(aco) 00 2 (x xO) " an’

N / (alo) = o
(

TN 1 B, -'EO) 252
N —
— S |log5| (Ju, Y~ ei(x)&i(x — o)) (26)

%

llog e|? )
~ 9pN-1 / (a=(z) — |ul")(z — zo) - Vd(x)

ou
—_— —_— . T —_— —_— _— .
N1 /Br(xo)ﬂag(l’ o) - ne, (ge) (an,(x To)T - VT9e),

where (x — xo)T 1s the orthogonal projection of x — xo on the tangent hyperplane to 02 at x.

Proof. Up to a translation, we may assume zy = 0. One has

dE. N -2 1 2 () — |u|?)?
N2 / [Vl (aele) ~ Juf?)
dr rN 1 rN-2 maBr 2 4e2?

- = (5 / Va4 5 [ (aule) - )
1 (ac(x) — [ul*)? 1 /
+ / ,« 252 M= . e<(u).

We use Lemma 3.1 (with w = BT(ZE()) and zy = x¢) for the first term and then split 9B, into

0B, = (B, N0Q) U (2N IB,)

12



to obtain, since x -n =1 on 2N JB,,

dE. 1 (ac(z) — |ul?)? 1
dr N / 2¢? e /maBT eel)
- gl '/ (Ju, Y ei(@)& (@)
9rN—1 oge . Uu, : ci(2)&(x

log ¢|?
B ‘QTN—‘I / (ac(x) — [u[*)z - Vd(x)
B
1 Ju
_ TN—l /aBT xZ - n€€(u) — (a—n’x . VU),

L L[l 1
- pN-1 B, 2e2 V=2 Jonan, 10N

_ ‘;\;;_h]ogd /BT<JU,ZCZ($)€Z(33)>

log ¢|?
LT [ (e~ e V) @)
Br
1 du
v [ aened = G v

It suffices then to write, on B, N 0f),

2\2
as(x) — |ge(x 1 Bu
) ) +—|VT95‘2 ( ( ) 4&‘?2 ( )‘ ) ) +6 ge)
and
r=(x-n)n+aT,
thus 5
(% z-Vu)=xz-n ‘ + (=, 21 - V71g.),
to finally deduce
ou x-n|0u|?
x-neg(u)—(a—n,x~Vu)—x ne. (g.) — 5 |, ~ G V1g.).
Inserting this in the last integral yields (26). O

We note in equality (26) the last term involving the normal derivative of u. The next lemma
provides an estimate for this term.

Lemma 3.3. (Control of the normal derivative). Let u be a solution of (1)-(5). There exist
C and R depending only on Q such that, for all xo € Q and 0 < r < R, there exists zy € B, (x0)
such that

/ ou |2
T -
O0NB; (o) on

) < C’(/ e-(u) + 7‘/ eET(ga) + |logel -
Br(:c()) ONNBr(z0)

8L [ e~ o — ) - 9], 9

(Ju, Z ci(x)&i(x — 20))

7

where w C By.(xy) depends on u, xo and 7.

13



The proof is, as in [LR], based on a Pohozaev identity at a point zy around which B, () is
strictly starshaped. However, we will not use a “good” extension of ¢ inside the domain € as
in [LR] (see Lemma II.5 there), since it requires a strong regularity hypothesis (for instance, g.
bounded in C*! around zy) and will not enable us to treat the case of the monotonicity at large
scale (see Remark 3.1 below).

Proof. For simplicity, assume first that 9 is locally the half-plane ORY = RN~ x {0}. We also
assume (up to a translation) zo = (0,...,0,a). We assume first that 0 < a < r/4, that is z is
close to the boundary 9Q. We define y := (0,...,0,b) for b < a and p := (r? — a® 4 b*)Y/2. The
intersection of JRY and the balls B,(y) and B, (o) is the ball in ORY = R¥~! x {0} centered
at 0 and of radius (r? — a?)'/2. By averaging, there exists ' € (r,9r/8) such that, for p = r" and
b=—(" =12+ a?)/2,

/ efu) < € / e.(u). (20)
R_‘A_rﬂ@B,,/(y) r BT(IO)

Moreover, since ' < 9r/8 and 0<ac< r/4, b* < 2172/64, then 1/ +b > r — \/y217"/8 >r/3.
We then set zy := (0, ...,0, ’”';b) € B,(zo) and easily see that, since a < r/4, w := B, (x)N B (y)
is strictly starshaped around zp, that is there exists a > 0 such that

(r—20)-n>ar (30)

Next, we apply the Pohozaev identity of Lemma 3.1 with 2y, ¢ and w to obtain

% /w [Vul* + 4% /w(aa(:r) ~Juf?)? — N2— 1‘10gg| L(Ju,zi:ci(x)&(x — 2))

ou llog e|?

- /aw [ = 20) - mec(u) - (5, (x— =) Vu)| + 5 /w(ae(@ — [ul*)(z — 2) - Vd(x).

As in the proof of Lemma 3.2, we write z — zg = ((x — 29) - n)n + (x — 2) 1 to deduce

14



C/eg(u)—i-C\logd-

[ Y @ - 2| + hogeP| [ (a.a) = uP)a — 20)- V(o)
(0. — Jul?)
22

In the last integral, in view of the starshapedness assumption (30), the third term has an absolute
value

> / T —2) ‘ (x — 20) - n|Vrul* + Q(g—z, (x —20)T - V7u) — (x — 20) * 1

< 5ol
2 on
Thus, using the starshapedness assumption (30) and splitting dw into 9QNB,.(zo) and QNIB,- (y),

—(x — 2p) - ‘ + Cr|Vrul’.

C/weg(u) + Clloge| - /wUu, Zcz(x)@(x - zo))) + |logel? /w(ag(x) — [u*)(z — 2) - Vd(z)

1 ou |2 (a. — |ul?)?
> —/ (x —29)-n a—n‘ —Cr(\VTu|2+T)

—| — Cr/ el (gc) — Cr/ e (u).
on 00N B, (o) QNIB,./ (y)

We conclude estimating the last term by (29). We assume now that a > r/4, that is xq is far
enough from the boundary. Then, we have n = —éx and, if z € GRJJ\: , then xy = 0 and

(x—z9) n=a—2ay=a>

(31)

»blﬁ

In other words, B, (x0) is strictly starshaped around z,. We conclude then as in the previous
case. This concludes the proof in the case €2 is locally an half-plane. For the general case, we
use local charts and note that the starshapedness assumptions (30) or (31) will still be true at
least for r < R (depending on 2). O

We then prove a first monotonicity formula useful for small scales, which is the boundary
version of Lemma 4 in [BOS|. Note that the presence of the term r” in front of A and r™ in
front of G.(r) is specific to the Dirichlet condition.

Lemma 3.4. (Monotonicity at small scales). There ezist C and 0 < R < 1, depending only
on v and 2, such that for any solution u of (1)-(5) on Q, denoting

A= C(1+ Aolloge|)  and Q= CAgellogel|?,
and any ro € Q and 0 < r < min(R, A=/*) < 1, we have

d L@ 1 (ac(e) —[ul?)? 1 -l Ou 2
@ v =) >
dr <eXp(AT J(Ee(r) + A )) — pN-1 /Qﬂ(’?Br(:co) 2€? " riv /BT(xomaﬂ 2 ‘a"’

1 Ge(r)
+TN_2 /8B (z0)NQ2 an‘ O rY

Proof. First, we note that, if 0 < r < R(Q) is sufficiently small, then for all 2 € B,(x),

(x — o) -n > |(x — ) -n| — Cr?, (32)
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where C' depends on € only. This fact was already used in [LR] (Lemma IL.5). We recall
the argument. One may assume that, for » < R sufficiently small, B, is the uppergraph of
¢ : B1(0) € R — R and that ¥(0) = |V(0)| = 0, so that the tangent hyperplane at € at
¥ (0) = 0 is RV™! x {0}. Therefore, the outward normal writes

= (1+ V)2 (e §j&¢@)

where (€;)1<;<y is the canonical basis of RY. In order to prove (32), it suffices then to prove
(x —x0) - € > —C7r?,

since V¢(0) = 0, so |V¢| < Cr. This last inequality is a direct consequence of the fact that
To(0Q) = RN~ x {0} and Q is locally the uppergraph of 1». We now turn to the proof of Lemma
3.4.

Once more, we assume xy = 0. We have to estimate each term on the right hand side of (26).
For the fourth one, we use the rough estimate for the jacobian

|Ju(@)|| < C|Vu(z)]*> and [|&(2)|| < Or  forall x € B,
which yields

N -1 C
i E . . < 2
)QTN_I |10g€| /B;T(IO)<‘]U7 - Cl(x>£2(x)>‘ — TN_Q‘EIOOHOgd B, ‘VU(IE)‘
< CAglloge|E.(r). (33)

For the fifth one, by Cauchy-Schwarz,
llog e|?

2rN-1 / (%) = ‘“‘2)93'Vd(93)) <

<
,

C a.(x) — |ul?
© st [ 1)1

C a.(x) — |ul?)?\1/2
N_2A05\log5\2rN/2</ (ac( )52 ul®) )

< Cera|log5|2Eg(r)l/2
< E.(r) + CriA2e2|log e|*. (34)

Concerning the second term, we have by (32)

1 / 1 6u) S 1 / | | au‘z C / aur (35)
—x-n — x-n||—| — — .
N7 g noa 2 onl = 2rN=1 Jp cea on V=3 g noa | On

We use (28) of Lemma 3.3 to estimate

Ju |2
_ < '
T/BQQBT 0n) = C( /BT ee(u) + [loge|

log £|?
o [ T (g.) + o8¢
80N B, 2

In (36), we estimate the second term as in (33) and the fourth one as in (34) (since w C B,) to

obtain
1 / ou |2
V=3 90N B, on

(Y i)l = z0))|

%

lm,qmmx—%yvﬂ) (36)

< C(EE(T) +rG.(r) + A0|log5|EE(7’) + C’T2A352|10g5|4>. (37)
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Inserting (37) in (35) yields

1 / Bu‘ S 1 / | | ‘6u 2
— T-n — z-on|-|—
27"N_1 B,NoQ on o 27"N_1 B,NoQ on

— AE.(r) — CrG.(r) — Cr?A2e*|logel*, (38)
where A = C(1 + Ag|logel). For the last term in (26), we have first

1
s [ aenel (o) < 6u)
M

and since |z| <,

1 ou
)TN—I /Bmm(%aﬁ'vws)

IN

1 ou
TN_2 /BmaQ ‘ an ‘ TgE|

< rl=v / T(g) + rv=t / 1 aur
< — e. (g- V—— e
Z BrNnoN : rN=3 B,noQ 2 on

which yields, using (37), the estimate of the last term in (26)

1
rN-1

>?loge|®. (39)

vA - Ge(r)
< B -

ou
€ ) -V 5
| wenella) - (Gher Vo)

Inserting estimates (33), (34), (35), (38) and (39) into (26) gives

dE. 1 Ou |2 1 (a-(z) — |ul?)?
Z 5N |- ] ‘_‘ TN 2
dr 2rN=1 Jp naa on rN=1 g, 2e

A - G.
+ 2/ ’ = I; —F, ,(/T) — Cr* " A2e?|logel*,
r QNIB; r r

from which we infer for r < A='/¥ (note that r>7* < r*~!since 0 < v < 1)

3 (exp(ar) ) = expar) T 1+ Y e (art) (1)

s / ‘x.n|.‘_“ L] /(ae(l’)—|u|2)2
- QTN_l B,NoQ TN_I B, 252

1
+ ﬂ/ ‘ — Cexp(Ar” )G -(r) — Cexp(Ar”)r* ' A2e?|loge|*
r QNIB; r
> L / |z - n| - ‘ ) / (ac(@) — [u*)?
— 2rV g o " Js, 2¢e?
1 Ge(r ) Q°
— - — — (= A
* rN=2 /QnaB ‘ ¢ v dr( A exp(Ar )>
and the proof is complete. O

The previous monotonicity formula is useful for r < C(1 + Ag|loge|)~¥ = A=Y/, that is r
small if Ay > 0. As in [BOS], the monotonicity formula for large scales will be a consequence of
the refined estimates on jacobians as in [JS].
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Lemma 3.5. (Jerrard & Soner). Assume u € H} (Q,C), ¢ € CO1(Q, A’RYN). There exist K
and a € (0,1), depending only on N and ||, such that, denoting K := Supp(p),

| 0| € qolel Bl ) + KoL+ KB+ EwK)). (40)

The advantage of this estimate is the factor |log €| dividing the energy. Note that this lemma is
stated with the energy E. and not the usual Ginzburg-Landau energy used in [JS] (corresponding
to d = 0), but these two energies are close with our hypothesis, since one may infer from
0 <d < A that

(1 Juf2)? /( ey | \ /(1—|u|2>2
~ 7 — < Q|A2e]1 ~ .
\/Q . i QUAFelloge|'+ = [ S

Remark 3.1. We emphasize that this is the Pohozaev identity we used for Lemma 3.3 which
provides the control of the normal derivative using the estimate of Jerrard and Soner of Lemma
3.5. The extension procedure of [LR] would have led to a term

llog €| Z icy () O, 1;101g(x)),

Br 1=

where 7 is a “good” extension inside €2 of g, and this term would be difficult to handle since it
is not a jacobian if § # u, thus we do not expect a compensation property.

For our purpose, we will need for our study a boundary version of this result, in order to
have an estimate close to (40) for a ¢ having a support intersecting 0f2. This will be done by
a standard extension of g in a neighborhood of © as in [BO]. Nevertheless, in order to apply
Lemma 3.5, we need a map ¢ which has compact support (say in By, (), hence, as in [BOS], we
adapt the definition of the energy temporarily. We define a cut-off function f: Ry x R, — R,

1 if b <a,
fla,b) ;== 2—=>b/a ifa<b<2aq,
0 if 2a < b.

For 25 € Q and r > 0, we then set

1
v [ efile - ) do
r BQ’I‘(IO)

An integration by parts shows that, for any F' > 0 measurable,

[ r@reen - | [ @)

This formula is the link between the usual scaled energy E. and E..

E.(xg,7) =

18



Lemma 3.6. Assume u satisfies (1)-(5), xg € Q and r > 0. Then,

d 1 / 1 /2 / Ou |2
— (B (xg, 7)) = e-(u)f(r, |z —x t —
dr( (z0.7) P2 QN Bar (z0) (w)f(r.| o) ¥ rN=2 QNOB:(zo) an’
TN 1/ /B;tr SCO 0892 m_xo ’&n‘ dt
(ac(z) — [uf?)?
T /Bzr(xo) gz el
N —
— 9N 1|10g6| - )<Ju,zci(x)€i(x—wo)f(r,\x—l'ol)>
Bar(zo i
\logEP 2
— ot [ (a(@) = [ul)((z = @o) - V(@) f(r, [ = o)
BQT(xO)

1
~own [ @) nel (g o o)
r Bay (20)NOQ

1 ou
= AR RS E AV G

Proof. We still assume xy = 0. First, one has

dE. N -2 1
= [ e s [ e )

1
= AL

In (43), we have then for the first term (by (41))

N —2
it /B RECUEEE -2 / /B

and for the third term

s [ el -

(u —dp—

thus

dE. 1
- /a el

1 /2
t / e (u)
N-2 €
anBp r 1 QN Byy

(42)

(43)

The term between parenthesis is £’ (rt), hence inserting formula (26) for 7t and using formula

(41) we are led to the conclusion.

O

Lemma 3.7. (Monotonicity at large scales). There exist constants R > 0, depending only on
Q, and C, depending only on Q and v, such that, for any vo € Q, r. <r < min(R, (1 + Ag)~)

and u solution to (1)-(5), we have for every r. < s <r,

E.(s) < C(E.(r) +T"(s,2r) + Aoe?).
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Proof. We assume xy = 0 and we estimate each term on the right-hand side of (42). For the
sixth term, we have as for (34)
log e
2rN-1

/B(aa(ﬂf)—IUIQ)(x-Vd(fE))f(T,IZUD < E.(r) + CriAge’[logel". (44)

Concerning the fifth one, we proceed as in [BO] (Proposition 2.1 there). First, we extend u
outside the domain. There exists dy > 0 such that the nearest point projection II is well-defined
and is a smooth fibration from the dp-neighborhood (0€2)s, of 92 onto 0f, inducing smooth
diffeomorphisms II; : 09, — 92 (0 <t < dp). We extend u in a map @ in §25, by setting

au=wuoll on g \ Q.

We extend in the same way the ¢;’s (1 <i < N) and d on Qg,. Finally, we extend the &’s as in
[BOJ, that is we write on 02
&= (&)1 + (&)n,

where (&) and (§;)y are respectively the tangential and the normal components of & on 0
(see the Appendix of [BBO] for notations), and then we set, if d(z,0Q) = t,

&) = (I (&)1 () + (&)n (TT(2)),
where IT; ! denotes the inverse of the diffeomorphism II;. Next, we write
N —1 C
. . R < ~ ~
srtlosel-| [ (Y e@asen )| < sl (| | waal+] [ i),

i

where

p(a) =) ()& (@) f(r,]a]).

7

The first integral is estimated with Lemma 3.5. Since ¢ € C%(By,, A2RY) and
[elloo < CAor, ldpl|oc < Co, (45)
we obtain

[loge]|
rN-1

) c
/ (7, 0)] < CABL(2r) 4+~ hoe®lloge|(1 + E.(21).
B27‘

For the second integral, we have as in [BO], using the coarea formula and with d = dist(., 0Q)
(verifying |Vd| = 1),

) /BQ,«\Q<J€L’ Q0>‘ B ‘ /BQT\Q VAT 6. (p>)
-1/ " / o e g, (1) 6)r)

<cwy] [ tgen)

If N >3 (G N =2, Jg. = 0), to estimate the last integral, we also invoke Jerrard-Soner’s
result of Lemma 3.5 with this time the smooth manifold Bs, N 02 of dimension N — 1 > 2 and
o1 € COY(By, NN, A’RY) satisfying also (45), thus

[log €|
N—1

C
/ (Ju, gp}‘ < CAorG.(2r) + TN_2A0€°‘|log5|(1 +rV2GL(2r)).
Bar\Q2
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We therefore deduce the estimate for the fifth term in (42) (r < 1)

willogel-| [ (Y a@et@ o))

< CAE.(2r) + £1A05°‘|10g5|(1 + E.(2r))

+ CAorGe(2r) + LAogo‘Hog e|(1+ V726G (2r))

=) =) =)
< OAo(1 + @) E.(4r) + CAgrG(2r)(1 + ‘fgd) C'A |°g5|. (46)
For the seventh term, we have clearly
1
. /B anel () Ja]) < 2V Gof2r). (47)
2r M

We estimate also the normal derivative as for (37), using estimates similar to (44) and (46),

1 /
N-3
r 00N Ba,

We infer from (48) the estimate for the third term in (42) as for (38) (using (32))

1 ou |2
Nl// T —u‘ dt—T/ ol |50
2r Bir(20)NOQ on 2r BrNo0 on

—(J<1+A0(1+m

2—2)2 < o1+ a1+

e?|log ¢

)) E-(4r) (48)

e log |

r

el
))Ga(2T>+CA 262‘10gg|4+0A0 ‘ ng‘.

+c(1 + Agr(1+

r

) E-(dr) = O (14 rho(1 + 25 g ]

£*|log ¢
N1

))Ge(2r)

r

— AZe?|loge|* — Ag (49)

For the last term in (42), we obtain as for (39) and using (48)

1 du
i [ G o)1)

e®|loge| \ vE.(4r) e%[loge|,\ G<(2r)
<
<1+ a1+ =5 ))(4r)1_y+0(1+/\0r(1+ 2= (50)
=
+ CAZ|loge] 'r>™ + CA, ‘Olg_j‘

Combining estimates (44), (46), (47), (49) and (50) with (42) yields

e
r QNI Byr BrNOQ

o [ ZJ“” <mx|>—o(1+Ao<1+ “‘fgf‘))ﬁﬁfﬁ 1)

£*|log ¢ e*|log ¢
—1+4v °

|z - nl

— C<1 + Aor(1 4+ )) G5(3T> — CA2?|loge|*r*™ CAO
r

r
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Now, we assume 7 large enough so that r1=*"Ve%|loge| > r1=Ne|log e| (hence r~1e®|log g|) tends
to zero with . We therefore assume

r> (e loge) VY =i r, (52)

where 0 < 8 < «a is fixed (for instance, § = «/2, and set p := a — 3 > 0), so that (51) implies,
for r. <7 < min(R, (1+ Ag)~)

dE
c B
<> + 2+ ), (53)

/ / 2 1 /2/ |z - n||Ou 2

7’ = .

rN=2 QﬁaBt NV JBarea 2 10n
(ac(z ) IUI )?

e = e L n

In particular, since A(r) > 0, for r > r.,

(r) — c((l + Ay)

with

dE.
dr —

E.(4r)  G.(2r)
(4r)t-v +

To conclude the proof, we will need the following discrete Gronwall inequality.

((1 + Ay) + Aoeﬁ). (55)

/ral/

Lemma 3.8. (Discrete Gronwall inequality). Let 0 < s; < 4s; < s9 <1, f:[s1,8] — Ry
be continuous and assume h : [s1, s3] — Ry is continuously differentiable and satisfies

h(s) < N~ 2h(93) if 0€ll,s2/s1], s € [s1,82] and Os € [s1, 59, 6
B'(s) > — fs(‘llsy — f(s) for all s € [s1,82/4], (56)
for constants C' > 0 and v € (0,1]. Then, for all s; < s <t < s,
h(s) < 452 exp(CA)h / F(r dr) exp (M), (57)
where
A= 1
To4r(4r — 1)
Proof. We proceed by induction. Let s1 < s <t < s3. Assume t/4 < s <t. Then, by (56),
h(s) < 4V72h(t).
Assume that for some k& € N*, it holds
k—1 v t/4k—1 k—1 t/47-1 k—1 v
_ 3Ct 3Ct
h(s) <4V 2h(t) | (1 + 4W+1)+/ f(p) dp+Z(/t/4_ fp)dp) T] 1+ 2iroi)
i=1 s j=2 ! i=j—1

for all 5 < s < 5. If 7 < s < 5, then, by (56) and using the fact that

vt _ PR I L
. (4r = (E B S> (t/4k)l—1/ = gkl fl-v T flu+D)
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we obtain

t/4F r t/4*
e < it/ ¢ [ GS s [ o) ap

" = v
<[ s dpreno Jlaw oo [ )

5 Pl 41/2'—1—1 Jak
L o 3CH N\ 3CH

N-2
() o) TT 0+ 3) + gt 200 [0+ )

/4 i=j—1 i=1

k—1

+ ickil (/:4“ f(p) dp + Z(([Wl f(p) dp) 1:[ (1+ iity)>

=2 /¥ i=j—1

B 30t /4% 3o YA
<aV2h) T+ o)t flp) dp+(1+ —4ku+1>/t

i=1 s

k—1 t/4j—1 3CtV k—1

+3 ((/W ey dp)(1+ o) 11 (Hiiii))

Jj=2 i=j—1

k k

) " a1 k v
< [[0+ )+ [ r0 o () s o TLO+ ),

i=1 =2 /4 i=j—1

The conclusion follows then from the inequality, valid for all m € N,

ﬁ(l + 255;) < exp(%C’t” f:ll_”i) < exp(CAtY),
i=1

by definition of A\. Indeed, we have
t/4k k /491

hs) < 42 ep(@) + [ o) dpt @)Y [ f0) dp

s =1 t/43

t/4
< ANT2h(t) exp(CMY) + exp(C'/\t”)/ f(p) dp
and the proof is complete. U

To conclude the proof of Lemma 3.7, we apply Lemma 3.8 with s; = r., s = r, h = E.,
f(r) = C(r"G.(2r) + Age”), C = C(1 + Ay). Note that Asy = (1 + Ag)r” < 1. The first
hypothesis in (56) is easily verified for the modified scaled energy E. and the second one is (55).
We then infer that, for every 7. < s <r < min(R, (14 Ag)~'/),

E.(s) < C(E-(r) + T (s,2r) + Ae”).

This finishes the proof of Lemma 3.7. 0

3.2 The Neumann problem

In this subsection, we point out the modifications to make in order to handle the Neumann case,
that is for solutions u to (1)-(6). In the sequel, C' is a constant depending only on  (and N).
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Lemma 3.9. Let u be a solution of (1)-(6) in €2, then for r > 0 and xq €

d - 1 Ou |2 1 (ae(z) — |ul?)?
Y (B — o
dr( < (w0, 7)) N2 /QﬂaBT(:co) Bn‘ +TN—1 /Br(mo) 2¢2
N -1
— 5 v logel (Ju, ) ci(x)&(x — 20)) (58)
27’N 1 Br(u’CO) Zz:
L (o) ) - ) V)
2rN-1 B (z0) c 0

=)
- (x — x9) - nec(u).
riN-l By (x0)N0Q :

Proof. Assuming z = 0, we still have formula (27). It suffices to use the Neumann condition (6)
to obtain (58), since the last term in the last integral in (27) is 0. O

This time, the last term in equality (58) involves the energy on the boundary of . Note that
this term is not so bad since the term (x — ) - n is expected to be of order 2 if z; is close
enough to the boundary. The next lemma, analoguous to Lemma 3.3, provides an estimate for
this term.

Lemma 3.10. (Control of the boundary energy). Let u be a solution of (1)-(6). There
exist Q and 0 < R <1 depending only on ) such that, for all xqg € 2 and 0 < r < R, there exists
20 € By(xg) such that

r/ e-(u) < C(/ e-(u) + |loge| -
O0NByr(z0) Br(:c())

loge|?
2

[ a@ste =)

2

Ja—uk)e—z)-vd]). 69

where w C By(z) depends on u, o and 7.

Proof. The proof begins as for Lemma 3.3, that is assuming first that 0€Q is locally the half-plane
ORY = RV~ x {0}, that a < r/4 and exhibiting by averaging y and r’ € (r,9r/8) such that

C
/ e.(u) < — e-(u). (60)
Rﬂ\_’man(y) r BT(IO)
We also have for an o > 0,
(x —29) -n > ar. (61)

We also apply the Pohozaev identity of Lemma 3.1 with zy, x9 and w and use the Neumann
condition (6) to obtain

C e-(u) + Clloge| -
Br(mo)

[ atrsta =)

)

/w(a'a(x) — Ju?)(z — z) - Vd(a:)’ > 2/

o0QNBy

+ flog e

(x — z0) - ne(u) — Cr/ es(u).

QNIB,. (y)
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The last integral is estimated by (60) and for the before last integral, we use the starshapedness
assumption (61) to obtain

0 [, e Closel| [ (w3 ewta =)
+ C|loge|? /w(aa(m) — |ul®)(z — 20) - Vd(x)) > ar /anBT(z )ea(u)

and the conclusion follows. If @ > r/4 or for a general domain €2, the proof is the same as for
Lemma 3.3. 0

The monotonicity formula for small scales is then given in the following lemma, where X
stands for the characteristic function.

Lemma 3.11. (Monotonicity at small scales). There exist C and 0 < R <1, depending only
on N and Q, such that for any solution u of (1)-(6) in Q any xo € Q and 0 < r < min(R, A™1),
with

do = dist(10,09Q), A:=C(1+ Aglloge]), Q= CAoellogel?,

we have, with the convention dOX{rzdo}(% —3)=0ifdy=0,

%(exp |:AT+CdOX{TZdO}(di0 o %)} (Ea + %2)>

1 () — 2?1 O |2
> N_l/ (ac() 2|U| ) n N—2/ _U) > 0.
r QNOB, (z0) 2e r 9B, (z0)n02 | ON

In particular, exp[Ar + C’dOX{erO}(% - %)](EE + QTQ) is a nondecreasing function on (0, R).

Proof. First, we note that, if 0 < r < R(Q) sufficiently small, for all z € B, (),
(x —x0) -0 < C(dy +17), (62)

where C' depends on  only. This is a basic difference with Lemma 3.4. Arguing as in Lemma
3.4, that is assuming that for » < R sufficiently small, B,(xo) is the uppergraph of a map
¥ : B1(0) € RV — R and that ¥(0) = |V(0)| = 0, so that the tangent hyperplane at € at
¥(0) = 0 is R¥=! x {0}, we are led to prove, as for the proof of (32), that for z € B, (o),

N-1

(x —x9) -n=(x—u1x0)- <€N - Z &weﬁi) < C(dy +1?).

i=1
It is clear that
(.T—xo) 'é}\[ S C(d0+7’2) (63)

since either dy is of greater than or of the order of r and then inequality (63) is true, either
do < r < R and then inequality (63) is also true. Since |Ve¢| < Cr and |z — x| < 7, the second
term in (62) is < Cr?. Therefore, (62) holds. We now turn to the proof of Lemma 3.11.

We proceed as in Lemma 3.4 and estimate each term on the right hand side of (58). The third
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one and the fourth one are treated as in (33) (using the rough estimate for the jacobian) and
(34), which yields respectively

N -1 -
grlosel [ (Y et < CaoloselButr (64)
By (xg i
and
2 ~
D8 [ (o) ~ ) V)| < Bulr) + OA2 gl (63
B

We use (59) of Lemma 3.10 to estimate the last term in (58)

o] ewze(] el | [n Y@ -

|10g2£|2 /w(aa — uf?)(z — 20) - VdD' (66)

Note that we do not need to estimate the last term in (58) if r < dy, since in this case, B, = ().
Therefore, (62) and (66) imply

1 do + 1
. / v me(u) < Xz 2o ( / e.(u) + Jloge] - / (Tu, Y e@)eule — )]
oQNB; By w P
log e
| g | /(aa ~ )~ z) - V).
We estimate the two last terms as in (64) and (65) to infer
1 d .
e [ ) < X (1 + ) (14 rollogel) Eufr) + A2efogel). (07
r d0QNB; r

Inserting estimates (64), (65) and (67) into (58) gives, with A = C'(1+ Ag|loge|) and for r < A7

dE5> 1 / Bu‘2+ 1 /(ag(a:)—\uP)z
dr = rN=2 Jonop 10N rN=U s 2e2

do. -~ d
— (A + cx{rzdo}r—g)Eg(r) —C(1+ X{r?do}%’ A2e2[log <],

To conclude, we introduce the primitive

" do 1 1
/0 X{PZdO}E dp = doX{rzdo}(d—O --)=20
Consequently,
d 1 17 -~
% (exp |:A7’ + Cd()X{TZdO}(d—O — ;):| E€>
1 1.7/dE. 1 1. -

= exp |:A’f’ + CdoX{TZdO}(d—O — ;):| < dr + (A + CdOX{erQ}(d_O - ;)) E(T))

S oup 1 / (a.() — |u]?)?

— N2 Jorem, 100 rN=1 [ 2e2

d 1 1
- C(1+ X{TZdO}T’_2> exp [AT’ + CdOX{TZdO}(d—O — ;) AZe?|loge|.
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To conclude the proof, just note that the last term is (A > C')

2 1 1

> _dif" <% exp [Ar + CdoX{rzdo}(d_o - ;)} )7

where Q = C'Age|loge|®. O

In the next lemma, we compute the derivative of the modified scaled energy E.(xg,r) in the
same way as for Lemma 3.6.

Lemma 3.12. Assume u satisfies (1)-(6), o € Q and v > 0. Then,

d, - 1 1 2 Ou |2
—(E.(xg, = / e-(w)f(r,|x —xo|) + /t/ —
7 (Ee(20,7)) = 55 b o (w) f(r, | o) + 5= L N
1 (ac(x) — Jul?)?
- TN_I /BQr(aco) 262 f(r7 |x xOD
N —
= 1|log5| (T a(@)éila — mo) f(r o — xol)) (68)

Bar(x0) i

_\log£|2 a.(z) — |ul*)((x — x0) - Vd(2)) f(r, |z — 20
o [ o) = Pt = 20)- V)0 o]

1
N—1 / (‘T - 370) ' nea(u)f(r7 |'T - -TO‘)
r Bay(z0)NON

Lemma 3.13. (Monotonicity at large scales). There erist constants C and 0 < R < 1,
depending only on Q0 such that, if vo € Q, r. <r < min(R, (1 + Ag)™") and u is a solution to
(1)-(6), then for everyr. < s <r,

1 1

D) (Belr) + Aoc?).

E.(s) < Cexp <C((1 + Ao) + 2d0X{t>2d0}(2d0 3

4

Proof. We assume x, = 0 and we estimate each term on the right-hand side of (68). For the fifth
term, we have as for (65)

giidl / ac(z) — [ul?)(z - Vd(z)) f(r, ]a:|)‘ < B.(r) + CA22[log e[ (69)

Concerning the fourth one, we may use a reflection with respect to the boundary. We assume
2r < §. We extend u in a map @ defined on U := By, U ¢~ (Bs,) by setting for z = ¢~ (y) €
¢~ (Ba) (y € Bay),

u(z) == uly) = uod(x).
It is then clear that on ¢~ (By,),

Ju = ¢*Ju

and that

E.(a,U) < CE.(u, By).

We also extend the 2-form Y, ¢;(x)&;(x) by this way setting ¢ := ¢*(>_, ci(@)&;(z)) in ¢~ 1(Ba,).
This 2-form is in Cy' (U, A’RY) and satisfies

[ello < CAgr and  ldpllc < CAy. (70)
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Moreover,

/U (Ji, o)) = 2 /B T Y el @)l

We apply the result of Jerrard and Soner of Lemma 3.5 for the first integral to infer
E.(2r

[ Y@t o 1ed)| < o 22

B2'r i |10g |

Consequently, we have the following estimate for the fourth term in (68)

[ e )| < Cao +

+ OA0€ ( + EE(QT’))

C'Aoe*|log ¢|

log | JE.(2r) + o (7])

pN-1

£*|log ¢

2r r

We estimate also the boundary energy as for (67). We first apply Lemma 3.10 to obtain

= [ etz o(Ben+ ] o SICEEHEEN
+ L8 [ Gacto) = 1l x-Vd(x»f(r,ra:D\).

Using then (62), E.(2r) < E.(4r), r < 1 and estimates similar to (69) and (71), we infer for
r <min(R, (1 + Ag)™!) the estimate of the last term in (68) as in (67)

1
w1 [ wenedfla)
r 90N Bay
do \ [ = e loge]
<1 + Xgorzan) 33 2 ) (Be(ar) + A3 log [ + g e ). (72)
Combmmg estimates (69), (71) and (72) with (68) yields
dE 1 (ac(x) — [uf*)?
73
d e“logel. . ~ 2 A £ |log5\
- c((1 + Xizrzaop g + (L+ A0) (14 ——2) Ec(4r) + Afe?lloge]' + Ao )
As in Lemma 3.7, we assume
r> (e logel) /YT =, (74)

where 0 < 8 < « is fixed (and take u = o — 8 > 0) so that r~e%loge| < r1"Ve?|loge| < £°.
Hence, with

1 2 Ou |2 1 (ac(x) — |ul?)?
= t - 75
R e e = (G} (75)
(73) implies
dE. do \ / -
e (r) — C<1 + Ao+ X{2T>do}4 2) <E (4r) + A055>. (76)
In particular, since B(r) > 0, for r. <r < min(R, (1 + Ag)™"),
dE. dy _
o <1 + Ao+ X{2r>d0}4 2) <E€(4r) + A055>. (77)

To conclude the proof, we also make use of a discrete Gronwall inequality.
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Lemma 3.14. (Discrete Gronwall inequality). Let 0 < s; < 451 < sg and h : [s1, s2] — R4
be continuously differentiable and such that

h(s) < OV"2h(0s) if 0€ll,s2/s1], s € [s1,82] and Os € [s1, sa],
W(s) > —C(1+ Mo+ X2} 2%)(h(4s) + D) for all s € [s1,s2/4],

where C, D and Ao are positive constants. Then, for all s; < s <t < 89,

h(s) < 4" 2 exp(C((1+ Ao)t/4 + 20X a5 = 7)) (1) + D). (78)

Proof. We reduce the proof to the case D = 0 considering ¢(s) := h(s) + D. We have

g(s) = h(s) +D < 0N 2h(0s) + 0V 2D = 6N 2g(0s) (79)
if 0 € [1,s2/51], s € [s1,52] and Os € [sy, s5] and
g(s) = 1'(s) = =C(1+ Ao+ Xpoza) 4d2)(h(4s) + D) = =C(1+ Ao + Xgaoza) f )g(4s) (0)
for all s € [s1,52/4]. Let 51 < s <t < s9. Assume t/4 < s < t. Then, by (79),

g(s) <4M2g(1).

By induction, assume that for some k € N* it holds

forallfkg <3
t/41 1 do
Zt = 1 A P —) dr.
ai(t) /W_ (L + Ao+ Xezrzaoy ) dr
If 7 < s < &, then, by (80),

t/4% d
95) < 9t/ +C [ (14 D Xprsap g 3)o(0r) dr

. k t/4% do
<20 [[1+ Car(t) + 47 2ColO [T+ Caut) [ (14 Mot Xasag 5)
11 Py t/4k+1
k+1
=4V 2g(t) [ + Cau(t)).
=2

The conclusion then follows from the definition of a;(t) and the inequality, valid for all m € N,

m oo t/4 do
H(l + Coy(t)) < exp (C;ai(t» =exp <C/O (1+ Ao+ X{zrzdo}zl—ﬂ) dr)

1=2

1 1
= exp <C’((1 + Ao) + 2d0X{t>2do}(2d Z)))
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Coming back to h, we deduce

h(s) < g(s) <4V 2 exp (C((l + Ao)% + 2d0X{t>2do}(2idO - %))) (h(t) + D),

and the proof is complete. U

To conclude the proof of Lemma 3.13, we apply Lemma 3.14 with s, = ., so = r, h = E.,
C=Cand D = Aoe?. The first hypothesis needed is still verified for the modified scaled energy
E. and the second one is (77). We then infer that, for every r. < s <r,

t 1 1

EE(S) S Cexp <C((1 + AO)Z + 2d0X{t22d0}(2—d0 — g))>(Eg(”f’) —+ Aogﬁ).

This finishes the proof of Lemma 3.13. U

3.3 Proofs of Propositions 1 and 2
Before giving the proof, we notice that for any dq > 0 and ¢ > 0,

1 1

0< dOX{tZdo}(d_O -7)=1

since, for t > dy > 0, do(1/dy — 1/t) = (1 — dy/t) € [0,1]. Therefore, in the Neumann case, this
extra term is less than a constant. We assume zq = 0 and first consider the case

Or < p:=(1+ Aolloge|)™' <r/2. (81)
By Lemma 3.4 (resp. Lemma 3.11) in the Dirichlet case (resp. the Neumann case), we deduce

E.(0r) < C(Ex(p) + T2 (0r, p) + Age’[logel") (82)

(vesp. E.(0r) < C(Ex(p) + Age®[loge[")). (83)

Next, by Lemma 3.7 (resp. Lemma 3.13), recalling r. < p for 0 < € < g¢ sufficiently small,
applied with s = p and r/2,

E.(p) < E.(p) < C(E(r) + T (p,7/2) + Noe”) (84)

(resp. Ex(p) < E(p) < C(B-(r) + Aoe”)). (85)
Combining (82) and (84) (resp. (83) and (85)) yields (17) (resp. (18)) if (81) holds. If
Or <r/2<p,
we only use Lemma 3.4 (resp. Lemma 3.11) as for (82) (resp. (83)), and if
p<0r<r/2,

we only use Lemma 3.7 (resp. Lemma 3.13) as for (84) (resp. (85)). The proof is complete. [J
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4 Proof of Theorems 2 and 3

We follow step by step the lines of [BBO] (Theorem 2 bis) and [BOS] (Theorem 2). The proof is
divided in three parts. Let 0 < § < 1/32 be a constant to be determined later, depending only
on N and €, and, in the Dirichet case, on v and the constant C' in (12).

4.1 Proof of Theorem 2
Part A: Choosing a “good” radius.

Lemma 4.1. Assume 0 < ¢ < 639 that u is a solution of (1)-(5) and that

E.(7) <nlloge| and TY(xo,7e,7) < n|loge| (86)

holds for a ri* <7 < min(R, (1 + Ag)~Y"). Then, there exists a radius 7o € (ra,r;p) such that

1 e ?)?
. / = = 1) < o+ Aoejlog el 1o ],

T(J)V—z Bry 2e

° Ea(ro) — 2N_2E6(57‘0) < C(n+ Aoe®|loge| 1) |log 6.
Proof. From (53), we have for r. <r <min(R, (1+ Ag)™!)
dE.
dr

E.(4r
(4r)1-

G.(2r)
/rwl/

> Alr) — C((l + Ay) ?} + + A0€ﬁ>, (87)

where A(r) is defined in (54). Let k be the greatest integer such that 7.($)™* < 7/8 and define

the intervals 5 5
= —)iH - <7 <k.
L= (rd7 (7). 1<i<k

These intervals are clearly disjoint and Uj_,I; C (r,7/8). From 7 > ri/? and
llogr.] > C 'loge|,

we infer

1 log |

> (™ .
2 loga]

(88)

We integrate (87) over each [;, 1 < j <k, and use the monotonicity formula of Proposition 1

S / A= (@ + o) (Z;g‘fii + G0 pe ar

E.(F) + T"(r, 7) + Aoe?)
nlloge| + Aoeﬁ) (89)

—_ o~
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by hypothesis. Moreover, still with the monotonicity formula of Proposition 1, we have

> [ (00 M ) o

< O+ Ao)(E-(7) + TV (re, 7) +Aoeﬁ)/ dr

Tl—u

< C(nlloge| + Aoc?),

+ CTY (re,7) + CAge?

(90)

by (86) and the hypothesis 7 < (1 + Ag)~!. We deduce from (88), (89) and (90) the existence

of some jo € {1,...,k} such that

/ Ar) < Ee(rg(g)_j‘)“) — Ee(ra(g)_jo) <C(n+ A06ﬁ|10g5|_1)\10g dl.
I,

In particular, by the mean value formula, there exists some

24 4
such that . ( ‘ ‘2)2
a: — (U _
oz [ < Ol e logel o),
0 Br,

which is the first assertion of the Lemma. Noticing that %ro € 1,,, we infer from (91)

E.(ro) — 2N_2E5(6r0) < Eg(ro) — Eg(gro) <C(n+ Aogﬁ\log 5\_1)\10g Jl,

where we have used once more Lemma 3.7. This is the second assertion of the Lemma.

Part B: )-energy decay.

(91)

Lemma 4.2. There exist constants C' and €y, depending on N, v and €0, such that, if u is a

solution of (1)-(5) with g. satisfying (12) and
TEV(xO’ & 7“;/2) <,

with e <eg and e <r < r;/2, then

R < 0( 0"+ Iy [ R ) oy [t

N2 [y 22 5, 22
—4 a. — |ul?)?
+ OV (14 / ( 62' ) )0+ 8o?) + Oy
By

For the ease of presentation, we will assume that © is locally the half plane RY = RV ! xR,

By the mean-value inequality, there exists /32 < r; < r/16 such that

7“/ |Vul? < 96/ |Vul?,
QNOB, (x0) B, (20)

. / (a. — [uf?)? < 96 / (4. — [uf?)?.
QNABr, (z0) B, (20)

T{V_lGE(Tl) < 96nrV 2,
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To clarify the last one, if pN=1G.(p) > 96nr¥ =2 then p="G.(p) > 96np~17" > 96n~L. The proof
is divided in four steps.

Step 1: Hodge-de Rham decomposition of u x Vu.
Since w is a solution of (1) and div ¢ =0,

Jul* =

$wxdw:ux(ﬂmn:—umavmmga:d(mgd“

10), (95)

where ¢ := SN ¢;(x)dx;. We consider the solution of the auxiliary problem
AE=0 in B,, (x0),
% — yx % Jloge| M1z on RY N8B, (x0),
£E=0 on ORY N B,, (zo),

which exists and is unique. By (92) and (93), we have

1 — 2\2
/ |VE)? < C’r(/ ‘ + A2 2|10g5|2/ (S i |2u| ) )
3, RN B, ( RN NB,., (x0) €
gcxg<>+rzm5L (96)

from which we infer by standard estimates
/ wwgcw/,ww<oﬂ((>+ﬂmg) (97)
Bér Brl

We turn now to the Hodge-de Rham decomposition of u X du. By construction of ¢ and from
(95), we have in D'(RY)

d*[<uxdu—|1ogs|‘ ‘22 c—dg) } (98)

By classical Hodge theory (see for instance the Appendix of [BBO], Proposition A.8), there exists
some 2-form ¢ on RY such that

d* o = <u X du — \log5|‘u‘2_1c—d§>X in D'(RY), (99)
dp=0 inD'(RY), (100)
IVl fagy) < C(E(r1) + [IVE|IZ2s,,) + " Aoe”), (101)
ot =0 ondRY, (102)
lo@)] - o/t =0 as |z| — +oo. (103)

Step 2: Improved estimates for V¢ on B, (7).

Let f: R, — R, be any smooth function such that

fit)y=4 fl-y<t<l+y,
fity=1 ift<1—-2yort>1+2y,
|f(t)] <4 for any t > 0.
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We consider the function on Rf defined by

r(z) = { P in B,

outside,

so that, by construction,

0<7-1<4y inRY. (104)
Note that
FA(ul)u x du = f(lul)u x d(f(|ul)u),
thus, in Brl,
d(tu x du) = d[f(Ju|)u x d(f(|u|)u)] =2 Z@ (lu))w) x 0;(f(|u|)u) dx; A dz;.

1<j

Turning now to ¢, we apply the d operator to (99) to deduce that, in D'(RY),

2 _
—Ap =dd"¢ = d(XTu x du) — d(Xd§) — d<X\log E\MTlc> +d(X(1 —7)u x du)
= Wi +wy + w3 + wg + ws,

where, X standing for the characteristic function of B,, (zq),

wi = Xd(ru x du) = 2X Y 0:(f(|ul)u) x 0;(f(|ul)u) dz; A dz;,
1<J

wy = yp, crydr A (fP(Jul)u x du) — o, copydan A (F(1g:])ge x dge) — (r = |z — @),
wy := —d(Xd§) = —0pp, rrydr A dE,

_ Juf — 1
Wy 1= —d<X\log5| 5 c),
ws :==d(X(1 —7)u x du)

and o stands for surface measure. We denote also the 1-forms on aRﬂf

7 =1
A=Ay = A3 =0, Ay = —Xrl|loge| l9 er and Az = Xt(1-— f2(|g€\))ge X dg..

From the Appendix of [BBO], we know that the solutions of the problems on RY

Ay; = w; in ]Rf,
(p)r =0 on ORY = RN x {0},
(d*(pz)‘r = Az on 8Rf = RN_I X {O},

for i =1,2,3,4 and 5 exist in H} (RY), but are not unique for i = 4 and 5. We will consider in
this case the solutions given by convolutions (the w;’s and A;’s have compact support). Note that
this prevents us from imposing condition at infinity since, a priori, the integrals over 8]Rf of the
components of A, and As are not zero. Concerning ,, we note that the second measure in ws
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involves a measure supported on GRJJ\: , but the weak formulation of the equation has a meaning
for test functions in C¥°,(A’RY) (see Lemma A.4 in [BBOJ), namely, for all ¢ € CF,(A*RY),

(dipa, dC)+{d pa, d*C) = (wy, () = /

RYNOB;,

dr A S (Juluxdun(+C)7— / (P2(19:1) g2 xdge) A (xC) 7

oRY
Let ¢ := ¢ — 3.0, ¢;. Then, by (99) and the condition & = 0 on B,, () N RY,
(d* @)t = (d*p)T — Ay — A5 = XTf2(|ga\)gg X dg. =: A.

Consequently, ¢ is the solution given by convolution of

A =0 in RY,
o =0 on ORY = RV~ x {0}, (105)
(d*¢)r =A on ORY = RV~1 x {0},
and
5
p=0+ Z ©i.-
i=1
We turn now to estimate ¢ and the ¢;’s.
Estimate for ¢. We have
> Or TYe <Cry e\ < nr o
Vo> <C Vrg|? <Cri @ CnrN =2 106
BTl (z0) B, r(mo)ﬂaRf

This is a direct consequence of standard estimates (see the Appendix of [BBO]) and a scaling
argument for the equation (105) combined with the bound

1Al 2 oryy < C Vrge]?.
L2 (8]R+ ) By, (xo)ﬂﬁR_‘]\_’ [

Estimate for ¢5. We claim that

/ Vsl < O / Vul® < CYE.(r). (107)
RY B,

+

Indeed, since ;5 is a solution of
—Aps =ws = d(X(1 — 7)u x du),

we obtain, multiplying by ¢5 and integrating (see Lemma A.4 in [BBO])

Vsl = [

N
R+

(d(X(1 —7)u x du), s) —/ As A (*@s5)T.

N
IR

Moreover, integration by parts once more yields

[ axa=ruxdu.gn) = [ x=rjuxdu g [ 060 gD)a x g Al

N
ORY
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Thus, by definition of A5 (this was done for that purpose !),

IV L2y = /RN<X(1 — T)u x du, d*ps5) < C|[1 = 7| poo(, ) 1l poo (5, ) I VUl 25,

+

and the result comes from Lemma 1 and (104).

Estimate for ¢,. We have

(ac — [uf*)*

/RN [Vipa|? < O(/B 5zt rNAogﬁ). (108)

+ 1

Since ¢, satisfies the equation

ul? —1
—Apy =wy = —d<X|log5|| | 5 c),

we argue as for @5, that is multiplying by ¢4 and using the definition of A4, to obtain

1 — 2\2 o 2\2
/ |V(,04|2 S CA(2)62‘10g6|2/ ( |U| ) S C(/ (aa ‘u‘ ) +TNA0€ﬁ>,
RY

B, 2¢e? Br, 2e2
which is the claim.
Estimate for ¢3. We claim that
/B (V3| < CSN(E-(r) + rV Age?). (109)
o
Indeed, we have first by (97) and arguing as for 5 since &1 = 0 on IRY N By, (2o),

[ Ve <c [VER < C(BL(r) + 1™ Age?).
RY 0B, NRY

Next, we note that ws has support in 9B,, N RY, thus ¢; is harmonic inside B, and thus by
standard estimates (and scaling),

19680l w5, o < O 2105 .
from which (§ < 1/32) we infer (109).
Estimate for ¢,. We have
/B |Vo|* < CONE.(r) + CrY1G.(r1) < CONE.(r) + Cpr¥ 2. (110)
5
We write

ws = 0o, v A (f2([ulJu x du) — o cgdirn A (f2(1g:])ge X dge) = was + w2

and thus write with obvious notations ¢g = @21 + ¢2.2. The estimate for ¢, ;
/ ‘V@2’1|2 S C(SNEg(T)
B(S'r
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follows as for (3. Concerning ¢ 2, we have

[ 19eaal < o 16r)

+

and the conclusion follows from these two inequalities and (94).

Estimate for ;. The crucial estimate is

C(a-—[u?)? . -
|W1‘ S ?T 1mn BT. (].1].)
Indeed,
wi = 2X Y O:(f(Jul)u) x 9;(f(|ul)u) da; A da;.
1<J

If1—7v <|ul <1+, since f(|u]) = 1/|u|, two partial derivatives 0;(f(|u|)u) and 0;(f(|u|)u)
are both tangent to S! at | | thus are colinear, and therefore w; = 0.

If |lul <1—=~or|ul >1+~, by Lemma 1,

C
(1= [uf*)?

g2~

| | < C <
w -
= 62
and the conclusion follows from

(1= Jul)* < 2(a. — Jul*)?,

valid at least if 0 < & < ¢ sufficiently small (depending on v and Ay).
Next, we claim that

C
||801||L<>0(RN

0 < gy (Belr) 7T (e 7% + Ao, (112)

Indeed, we know that (cf. Proposition A.3 in [BBO])

|wi(y)]
<2 —d
‘C,Ol(lr)‘ >~ 4CN /Rf |I’—y|N—2 y7

thus, using (111),

C a. — |ul?)?
o) < S / %dy (113)

v g, €l
Since ¢y is harmonic outside B,, and tends to 0 at infinity, we deduce by the maximum principle

H%HLoo(Rf) = ||901||L°°(B,«1)‘

In order to prove (112), it suffices then to prove

C

S (B 4 PV e ) Ao ).

o1l (s, <
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Let © € B,,. Since B, (o) C B,4(x), we deduce from (113)

(o — [P (0. = [uP)?
@) < < / < dp
B, ax 52‘33 y[N- 2 pN—2 QNOB,(z) e

Oy ML Ls—\w s O 1 (ac — [uf2)?7
) N—-1 2 P 2| ,N—2 2 :
Y o P QNB, () € YLp QNB,(x) € 0

Using the monotonicity formula of Lemma 3.4 (for 0 < p < r/4 < (1 + Aglloge|)™!), we obtain

C
, r) + T (e,r) + A0€6> < N <EE(7“) + V72 4+ AOTN_2€ﬁ>

fer(a)l < 5 (Buto

since B,4(x) C B,(x0), and the proof of (112) is complete.
To conclude, we go back to the equation

—Ap; = wy

[ 19l <lerllimn [ ol < loilimgeyy [ ol
RY By B,

1
since r; <, so that, by (111) and (112),

¢cr 1 (ac — Jul*)? _ .
2 N-2 N-2 8
/M [V |” < 74<7“N_2 /B )(Ea(r) + V72 N2 A e ) (114)

c2

to deduce

Step 2 completed. Combining the estimates for ¢ and ¢;, 1 < i < 5, we are led to, for
0<0<1/32,

—4 2\2 2\2
2 2 N, 7 (ac — |ul?) E / (ac — |ul*)
/BWO) Vil < C (72 + 0" + 2 / ) E(r)+C e

+CrN—2<1 P /B (a = ‘u‘z)z)(nJereﬁ). (115)

N2 -2
Step 3: Improved estimates for V(|u|?) on B, ().

The equation for |u|? reads

— [uf)|ul®

Alul® + 2 (a =

= 2|Vu|? + 2|loge|(i¢ - Vu, u).

Multiplying by a. — |u|? and integrating over B, (z,), we obtain

R e e Y R Ve Ry IR O K )

1 B 1 Brl

+/ V|u|2-Va5+/ 2[loge|(ic - Vu,u)(as — |ul?).
B i

1 Bl
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For the second term in the right-hand side of (116), we have first by (92) and (93)

Alul2 _ 22\ 1/2 1/2
[ I oo M o)
RYNOB,, on RYNOB,, € RYNOB,,

— |ul?)2\ 1/2 1/2
" N\JRYNB,, € RYNB;,

L 12)2
SC’YQ/ \Vu|2+0'y_2/ (ae \u\)
B

- 2
1 Bry €

since 7 > £, and next, using Lemma 1, Cauchy-Schwarz and (94), we have, since ¢ < r < e/ 2,

Qe — ‘UP‘

2
Lo i s f ]
RN B, on RN B, €

— lul?)2\ 1/2
< C(r{“/ (= " )
RN B, €

1/2
< C(r{v_lr{\f—2GE(r1)>
< CymrN 2

As a consequence,

2 22
)/ (a: — \u\2)—a‘u‘ ) < 072/ |Vul|? +C"y_2/ (= Jul’)” lu\ ) + C/rN 2, (117)
9By, on B, B €

T

We also have

[ = tupyvap| < [ jac = [uf?| - [Vl
B, Bryn{lae—|ul?|<~?}

1
+/ ‘aa - |u|2} | Vul?
B N{|ac—|u|?[>72}

L2)\2
< vt + & / (@ — Jul)" (118)
Vr ry Br

e2

where we have used Lemma 1 for the second term. Moreover, by Lemma 1 and (8),

1/2 _ 2)2\ 1/2
[ eltogeltie Vuwta: — )| < Caelogel ([ wu) ([ L=l
Bry B, B

e2

[2)2
SCVQ/ |Vu\2+%/ M. (119)
T BT

e2

Finally, using (8),

1 41 4
)/ Viul? - Va. g—/ \vqm?ﬂhm/ Vd|?
By, 2B, 2 B,

1
5/ IV ([af?)[* + OV Age?, (120)
B

IA
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Combining (117), (118), (119), (120) with (116) yields

2)2
/ ‘V\uﬁf < 072/ |Vul® + %/ w + OrNV Age? + CfrV 2. (121)
Tl BT BT

Step 4: Proof of Lemma 4.2 completed.

Recall that ,
4lul?- |Vul? = 4|u x Vu|* + }V|u|2 :
thus, from the Hodge-de Rham decomposition of Step 1,
4a. ()| Vul? = 4|u x Vul? + ‘V|u|2}2 + 4(as(z) — |ul®)|Vul?

< 12{ |Vl + Ve + (1= a2l log o] + |VIul?|” + 4(ac(@) — [u]?)|Vul?.

Since, by (8),
1 — 2\2
/ (1 - |U|2)2|5‘2|10g6|2 < A(2)52|10g5|2/ w
Bér .

<C

Bér 62
2)2
Sg/ M+OTNAO€6,
2 /5 -2
we deduce from (115) in Step 2 and (121) in Step 3, using 4a.(x) > 1 (for € < g¢(Ag) small
enough) and (118) (for the last term) that

o) < O3 0¥ + /, e DYy 4 02 [ L)

rN—-2 2 2

T

TN_2 52

—4 122
+ O (14 / (2 = Ju) )+ Age?) + Oy 2,
B,
which ends the proof. Il
Part C: Proof of Theorem 2 completed.

We consider a solution u of (1)-(5) on 2 satisfying

E(u,7) <nlloge| and  TZ(re,7) < nllogel, (122)
forar? <7< min(R, (1+Ag)~*/*). In Part A, we have exhibited some 74 € (7, 7’2/2) such that
1 a. — |u|?)? B
N_2/ ( 5 |2| ) < C(n + Aoe?|loge| ™) [log 4], (123)
To Bry €
E.(ro) — 2N72E_(0r) < C(n+ AoeP|loge|~1)|log d|. (124)

We apply Lemma 4.2 to obtain, since 0 < ¢ < 7. < ry < re/? < (1+ Aglloge|)~1,

B0m) < O(v2 4074 Dy [ T Y gy p oy [T

. 2 . 2
7o By, € B €

0

—4 a, — |uf?)?
+C’7‘év_2<1+7jv_2/3 ( 52‘ ) )(7}+A05ﬂ)+0\/ﬁrév_2.
0 o
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Therefore, by (123), (124) and dividing (125) by r) 2,

E.(r9) < 2N_2E€(5r0) +C(n+ Aogﬁ\log 5|_1)\log )

S 052—N

1 B
Tév_2EE(5ro) + C(n + Ao’ |log e| ") |log ]

< O (52 + 0N 497+ Ao flog | ) log 8] ) £ (o)
+ Cy72(n + Ao’ |log e|71)|log 6| (126)
+ O(1+y*(n + Aoe”|loge| ™) log ) (n + Aoe®) + C /1y

We now fix the values of v and §. First, we choose § small enough (depending on N, v, © and
the constant C' in (12) only) so that
C§* < 1/4.

Next, we fix v small enough so that
5> N 72 <1/4

and thus
Co*N(y* 4 6V) < 1/2.

Consequently, for these values of v and 9, there exist €y and 7y small such that, for any n < n
and ¢ < gq, then
C6* Ny (n + A’ |loge| M |log | < 1/4.

1/(N-1)

Hence, recalling ry € (7, 7“;/2) with r. = (¢*|loge]) , (126) rewrites, for 0 < n < 7,

B.(r)) < 2 E(r) + OV
provided 0 < & < g9(Ag,n) is small enough so that
Ape? < V.
We then infer that for n < 7y and & < gq(v, Ag, N),

E.(ro) < C /1.

Finally, we apply the monotonicity formula of Lemma 3.4 (note that ¢ < r. < (14 Agl|loge])
for e small) and obtain, for n <7y and £ < go(v, Ag, N, 7) since Age’|loge|™ < /7,

—-1/v

1 1

[ 1 — 2\2 < _/ .- 2\2 A2 8

[ WP <Oy [ G A
< C(E-(e) + /1)
< C(E-(ro) + V1 + Aoe?lloge]® + 1)
< O\,

We conclude with the following lemma, taken from [BBO] (Lemma III.3 there).
Lemma 4.3. Assume u satisfies |Vu| < C/e in a smooth domain w and x¢ € w. Then,

1

pug) V(N+2)
L= futan)| < Clnan) (g [ (1= Jul?)
wNBes(xo
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4.2 Proof of Theorem 3

We only point out the modifications to make for the Neumann case.

Part A: Choosing a “good” radius.

Lemma 4.4. Assume 0 < ¢ < 639 that u is a solution of (1)-(6), zo €  and that

Ec(xo,7) < nloge]

forari? <r< min(R, (1 + Ag)™'). Then, there exists a radius ro € (7’5,7’;/2) such that

1 a. — |ul?)? 3
o s [T E <l Ao o).
To Bry 2e

° Eg(ro) — 2N_2E6(57‘0) <C(n+ A055|10g5|_1)|10g5|.

Proof. The proof is exactely the same as in Lemma 4.1. It suffices to replace (53) by (76). We
then proceed as in Lemma 4.1. We bound E_(4r) by the monotonicity formula of Proposition 2
and use the fact (as in Lemma 3.14) that the primitive of X {2,>4} 2% with value 0 in r = 0 is
uniformly bounded between 0 and 1. U

Part B: )-energy decay.

Lemma 4.5. There exist constants C' and g > 0, depending on N and §2, such that, if u is a
solution of (1)-(6), then

E.(or) < O(*+ 0" + 7_4/ (a5_|u|2)2)E€(r)+C7_2</ (e 1) | o),

rN—-2 2 c2

Proof. For simplicity, we will assume that 2 is locally the half-plane RY = R¥~! x R, and that
xg = (xo)NEn =: Tay. First, we consider the rescaled maps on Bj(a€y), with & := £

)

| A | 2
= loge| (rx) and d(z):= T2| oge|

 [logél?

u(z) == u(re), é(z):

d(rx).

=7 c
|log £
We then define the reflected map 4 : w := By (a€y)UB;i(—aéey) — C with respect to the boundary

(z) = { u(x) if z € By(aéy), )
’ ﬁ(a:l,...,a?N_l,—a?N) ifoBl(—agN)\Bl(agN).

We extend d similarly in d and for ¢, we set on Bi(—aen) \ Bl(aéN)
5(93) = (51(5517 <oy TN-1, _xN)> cey éN—1(331> <oy TN-1, _xN)> —éN(-il?l, <oy N1, _xN))-
Since ¢-n = cy = 0 on ORY, ¢ is a lipschitz map on w. Therefore, since % = 0, u satisfies
illog &lé - Vii = At + a(a: — |a]?)  inw.
£

In particular, we may apply Lemma A.9 in Appendix A of [BOS] and obtain the desired result.
More precisely, we may apply step by step the lines of Lemma A.9 in the Appendix A in [BOS]
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to obtain, since, with our scalings, Ag(¢,d) < C and the basic estimates of Lemma 2 hold,

B, (@) < O+ 4 | e 0 (1)

+ 07—4( /w ) (@ — Jal)y® | gﬁ), (127)

where w(r) := B,.(aéy) U B,(—aéy) (note that w(1) = w). The only difference with Lemma A.9
in [BOS] is that for our problem, we work with w(r) instead of B,, but this does not affect the
arguments. Moreover, by scaling, we have

/(&g—|ﬂ\2)2_ 1 / (a: —la?)? 1 / (ac — |uf*)?
w & N2 Js ey E2 2N ez

aen r(20)
N 1 . 1
E:(u,w) = WEE(U,T) and  Ez(u,w(d)) = WEa(u,(Fr).
Inserting this in (127) yields the conclusion. O
Part C: Proof of Theorem 3 completed.
We consider a solution u of (1)-(6) on €2 satisfying
E.(u,7) <nllogel, (128)

forart/? <7< min(R, (1 + Ag)™!). In Part A, we have then exhibited some rq € (., 7“;/2) such
that

1 a — |ul?)? B
N_2/ &gC(n—i—Aoeﬂﬂogd Y [logdl,

o B, 2¢e2
E.(ro) — 2N72E_(0r¢) < C(n 4 AoeP|loge|~1)|log d|.
We apply Lemma 4.5 and obtain

E.(6r) < C’<72 LN 4 73\:12 / (ac — ‘UP)?)EE(TO) N C’y_2</ (ac = Ju’)* +€ﬁ>'

§ 2 | 2
B, € Br, €

We have therefore the same estimates as in Part C of Appendix A in [BOS] or Part C of the
previous subsection 4.1 (see (125), less some terms): the conclusion follows the same lines. [
5 Anchoring condition at the boundary

We prove in this Section that V is stationary. The proof of the stationarity inside the domain
follows from the curvature equation of [BOS] (Theorem 3 there),

H:*<5/\*§f) =0

if & — ¢ = 0 uniformly in .
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Notations : We denote (e;);<i<n the canonical basis in RY, and let €; := ¢; in Q and e = ¢*(e;)
in W, so that (€;)1<i<y is a smooth orthonormal frame in (M, g), and set D, := a_*’ and for a
function v : M — R, Dv = (D;jv)1<;<y € RN =T, M. Let @.(x) := u(z) in £, ue(m) = uc(o(2))

in W, _
| dx in €,
v |Jac,(¢)|dz in W

the measure on the riemannian manifold (M, g), and

fle = 2\loge| <Z|DZ AF+ %)dy(w)

be the energy density measure. We extend ¢, d. and a. = 1 — d.c%|logel?, defined in € to €
by the formulas é. = ¢*(¢.), d.(z) := d.(¢(z)) and a. := a. o ¢ in W. In view of (1) and the
Neumann boundary condition (6), . solves

1 ~
iflog £[(ez, dumite) = Amle + (1 = |@]?) = [loge*dti. in (M, g). (129)

Furthermore, it is clear that E.(t.,Qs) < CE (., Q) < CM]|loge|, hence we infer from [JS] and
[ABO] that Ju. is precompact in [C2*(Qs)]* for @ € (0,1] and more precisely, there holds for
@ € C%(Qs, A?) the estimate (40) of Lemma 3.5, namely

‘/ (Jie, ¢} dv| < CMeluc + CMe*loge]dplc (130)
Qs

We define
(Dia€7 Dj@e)

‘10g8| dl/(x)7

~74,] o~
Q" = :uE(Siyj -

so that the matrix (a%7) is g-symmetric, has trace larger than (N — 2)ji. and eigenvalues less
than or equal to ji.. Moreover,

|627] < Nje. (131)
Let also
O.(z) == h{nn_)lglf w
be the (N — 2)-dimensional density of fi., and ¥, : — {6, > 0} its geometrical support. It is

then clear that V := V(Xj,,6.) is the union of the varifold V(X,,,, ©,) and its reflection across
the boundary.

The argument then follows Appendix B of [BOS]. We fix X € C°(€);) and now, we compute
in the riemannian manifold (M, g), and denote - the scalar product in M. First, we have

(Dstie, D) .
/95 Nicjen - DX - &) dv(z) = / (diic, X /QZ log<] -D(X - &). (132)
=1 51:

Integrating by parts, we obtain

/Q Z Dy, Dic)] - D(X &) dv(a) = Y /Q ((DiDii; Dii.) + (Dyiie, A i) (X - &) duv(z)

o 1 -
_ / (X - Diie, Apgiis) — = | X - D(|Daf?).
Qs 2 Qs
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Since @, is a solution of (129), we then infer from (132)

/ Ni<jen - D(X é;)
Qs i=1

1 N R |log e .
= X - Di., A —(a. — |a.|? — X D
Toge] J,, (X Dt S + S50 = o)) + 5@ — )X - DL
— _ 5 ‘10g5‘ 5 U ~
=— [ (X, x(é. AxJa.)) dv(z) + 5 (. — |t.|")X - Dd. dv(z) (133)
Qs Qs

Up to a subsequence €; — 0, we may assume that
&é,j N @i,j
weakly as measures. Furthermore, we infer from (131) that |a%7| < Nji,, so we may write
6, = AV,

for fi, almost every x € Qy, where fl”(x) is g-symmetric, with eigenvalues less than or equal to
one and trace equal to N — 2 (this follows from Proposition A.1 in Appendix A of [BOS]). We
also have

1
‘ [log ¢ / @)X - Dd. dv(z)] < O(X)MAyelloge|.
Qs
Since, in the regime of interest for us, we have
¢. — 0 uniformly as ¢ — 0

(but é.|loge| #+ 0), we obtain, passing to the limit in (133),

/ 1<]<N D(X €Z>d,u*|_2u* =0. (134)
Qs =1

To be very precise, the convergence towards zero for the first term in (133) is deduced from (130)
since ¢, — 0, thus ¢ = XANé —0 uniformly, with a gradient uniformly bounded. Since X is
arbitrary in C>°(€2s), this states that the reflected varifold V = § Ay -2, (2) is stationary (see
[S]) in (M, g), which concludes the proof of Theorem 1. In the case ¢ — & # 0, equation (134)
becomes

. dJ.. -
/ Z AZ 1<j§N . D(X . é;)dﬂ*L Eﬁ* = —/ <*(50 N *— ),X) dv
Qs i=1 Qs dlu*
and this completes the proof of (11). O

45



References

[ABO|] G. ALBERTI, S. BALDO AND G. ORLANDI, Variational convergence for functionals of
Ginzburg-Landau type. To appear in Indiana Univ. Math. J. (2005).

[BBBO] F. BETHUEL, J. BOURGAIN, H. BREZIS AND G. ORLANDI, W!? estimates for solu-
tions to the Ginzburg-Landau equation with boundary data in H'2. C. R. Acad. Sci., Sér.
I, Math. t. 333, no. 12 (2001), 1069-1076.

[BBO] F. BETHUEL, H. BREZIS AND G. ORLANDI, Asymptotics for the Ginzburg-Landau
equation in arbitrary dimensions. J. Funct. Anal. 186 (2001), 432-520. Erratum ibid. 188
(2002), 548-549.

[BO] F. BETHUEL AND G. ORLANDI, Uniform estimates for the parabolic Ginzburg-Landau
equation. ESAIM, C.0.C.V. 8 (2002), 219-238.

[BOS] F. BETHUEL, G. ORLANDI AND D. SMETS, Vortex rings for the Gross-Pitaevskii equa-
tion. J. Eur. Math. Soc. 6, no. 1 (2004), 17-9.

[B] H. BREZzIS, Semilinear equations in RY without conditions at infinity. Appl. Math. Optim.
12 (1984), 271-282.

[CH] S.J. CHAPMAN AND D.R. HERON, The motion of superconductivity in thin films of
varying thickness. STAM J. Appl. Math. 58, no. 6 (1998), 1808-1825.

[C] D. CHIRON, Vortex helices for the Gross-Pitaevskii equation. J. Math. Pures Appl., , no.
(2005).

[F] A. FARINA, From Ginzburg-Landau to Gross-Pitaevskii. Monatsh. Math. 139, no. 4 (2003),
265-269.

[GT] D. GILBARG AND N. TRUDINGER, Elliptic partial differential equations of second order.
Springer, (1983).

[JS] R.L. JERRARD AND H.M. SONER, The Jacobian and the Ginzburg-Landau energy. Calc.
Var. PDE 14 (2002), 151-191.

K] T. KATo, Schrédinger operators with singular potentials. Isr. J. Math. 13 (1973), 135-148.

[LR] F.H. LiNn AND T. R1VIERE, Complex Ginzburg-Landau equations in high dimensions and
codimension two area minimizing currents. J. Eur. Math. Soc. 1 (1999), 237-311. Erratum
ibid. 2 (2000), 87-91.

[R] T. RIVIERE, Line vortices in the U(1)-Higgs model. ESAIM, C.0.C.V. 1 (1996), 77-167.

[S] L. SmMON, Lectures on Geometric Measure Theory. Proc. of the center for Math. Anal.,
Austr. Nat Univ. (1983).

46



