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Abstract

This paper presents an analysis of the effects of noise and precision on a simplified model of the clarinet driven by a variable

control parameter.

When the control parameter is varied the clarinet model undergoes a dynamic bifurcation. A consequence of this is the

phenomenon of bifurcation delay: the bifurcation point is shifted from the static oscillation threshold to an higher value

called dynamic oscillation threshold.

In a previous work [8], the dynamic oscillation threshold is obtained analytically. In the present article, the sensitivity of the

dynamic threshold on precision is analyzed as a stochastic variable introduced in the model. A new theoretical expression is

given for the dynamic thresholds in presence of the stochastic variable, providing a fair prediction of the thresholds found in

finite-precision simulations. These dynamic thresholds are found to depend on the increase rate and are independent on the

initial value of the parameter, both in simulations and in theory.

Keywords: Musical acoustics, Clarinet-like instruments, Iterated maps, Dynamic Bifurcation, Bifurcation delay, Transient

processes, Noise, Finite precision.

1. INTRODUCTION

In classical (or static) bifurcation theory, all the parame-

ters are constant, including the bifurcation parameter. The

dynamic bifurcation theory focuses on systems where the

bifurcation parameter is varying slowly over time. For a

given system, the location of the bifurcation can be signifi-

cantly different in the latter case.

A simple illustration is the flip bifurcation undergone

by many one-dimensional discrete time nonlinear systems

(among which the well known logistic map [21] or a clar-

inet model [22, 25]). When the bifurcation parameter is

constant, the static bifurcation diagram summarizes the

behavior of the system around the bifurcation : below the

critical value of the parameter, the fixed point is stable (thus

attractive), and above the critical value of the parameter the

fixed point is unstable (thus repulsive) whereas a 2-valued

cycle, born at the bifurcation, is stable (thus attractive).

When the bifurcation parameter is varied over time, a bi-

furcation delay may appear : when the static bifurcation

point is passed, the orbit remains in the neighborhood of

the branch of the fixed points. After a certain time, the

dynamic bifurcation point is reached: the system escapes

from the branch of the fixed points and moves abruptly
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to the 2-valued cycle. This behavior may be depicted in a

dynamic bifurcation diagram. Fruchard and Schäfke [13]

published an overview of the problem of bifurcation delay.

A previous article by the authors [8] analyzed the be-

havior of a simplified model of a clarinet when one of its

control parameters (the blowing pressure) increases slowly

linearly with time. Oscillations corresponding to the pro-

duction of sound start at a much higher threshold than the

one obtained in a static parameter case (i.e. higher than

static bifurcation point of the system). The dynamic thresh-

old (i.e. the dynamic bifurcation point) was described by an

analytical expression, predicting that it does not depend on

the increase rate of the blowing pressure (within the limits

of the theory, i.e. slow enough increases), but that it is very

sensitive to the starting value of the linear increase. This is a

known behavior of such kind of system which time-varying

parameter, shown by Baesens [3] and, in the framework of

nonstandard analysis, by Fruchard [12].

These results are reproduced by simulations of the model,

but only when very high precisions are used in the simu-

lations. Running the simulation with the normal double-

precision of a CPU results in much lower thresholds, al-

though higher than the static ones.

The problem of the precision had already been men-

tioned in the seminal article [7] Chasse au canard (Duck



2 B. Bergeot et al.

Table 1: Table of notation. All quantities are dimensionless.

Table of Notation
G iterative function
γ musician mouth pressure (control parameter)
ζ control parameter related to the opening of the

embouchure at rest
p+ outgoing wave
p− incoming wave
p+∗ non-oscillating static regime of p+ (fixed points of

the function G)
φ invariant curve
w difference between p+ and φ

ε increase rate of the parameter γ
σ level of the white noise
γst static oscillation threshold
γd t dynamic oscillation threshold
γth

d t theoretical estimation of the dynamic oscillation
threshold of the clarinet model without noise or in
"deterministic" situation

γ̂th
d t theoretical estimation of the dynamic oscillation

threshold of the noisy clarinet model in "sweep-
dominant" situation

Γth
d t general theoretical estimation of the dynamic oscil-

lation threshold of the noisy clarinet model, both
for a "sweep-dominant regime" or a "deterministic
regime"

γnum
d t dynamic oscillation threshold calculated on nu-

merical simulations

Hunting in english).The canard phenomenon have similari-

ties with the bifurcation delay. However, it can also appear

in static situations: if the control parameter is higher than

the static bifurcation point a stable limit cycle appears but,

in particular cases, a delay can be observed in the limit

cycle itself (see [7, 13] for canards of forced Van der Pol

equation). The shape of the resulting canard cycle in the

phase space resembles that of a duck . This phenomenon

can only exist in a very narrow interval of the parameter.

Consequently, numerical simulations have to be performed

with high precision and it was impossible in the beginning

of the 80ies.

For the dynamic bifurcation, in contrast with the the-

ory and simulations using high precision, when numeri-

cal simulations are running with finite precision, the dy-

namic threshold depends on the parameter increase rate,

but doesn’t depend on the starting value of the parameter.

These properties have been observed on numerical simu-

lations of the logistic map by Kapral and Mandel [17] and

in [8] in the case of a clarinet model.

To explain this discrepancy, round-off errors of the com-

puter must be taken into account. In general this is done

by introducing an ad hoc additive white noise in the model.

For continuous-time systems we can cite Benoît [6] and

more recently Berglund and Gentz [9, 10]. For discrete-time

systems Baesens [3, 2] propose a general method which is

followed in the present paper.

Therefore, the aim of the present article is to formu-

late analytically an estimation of the dynamic bifurcation

threshold in simulations performed with finite precision.

The effect of finite numerical precision in simulations is

modeled as an ad hoc additive white noise with uniform

distribution. This hypothesis is tested in section 3. In sec-

tion 4, a mathematical relation is derived for the behavior of

the model affected with noise. The resulting theoretical ex-

pression of the dynamic oscillation threshold is compared

to numerical simulations and its range of validity is dis-

cussed. The clarinet model and major results from [8] are

first briefly recalled in section 2.

A table of notation is provided in table 1.

2. DYNAMIC OSCILLATION THRESHOLD OF THE

CLARINET MODEL WITHOUT NOISE AND PROBLEM

STATEMENT

2.1 Clarinet model

The instrument is divided into two functional elements:

the exciter and the resonator. The exciter of the clarinet

is the reed-mouthpiece system described by a nonlinear

characteristics relating, by the Bernoulli equation, the in-

stantaneous values of the flow u(t ) across the reed entrance

to the pressure difference ∆p(t ) = pm(t )−p(t ) between the

mouth of the musician and the clarinet mouthpiece [16, 15].

The reed is simplified into an ideal spring without damping

or inertia. The resonator is approximated by a straight cylin-

der, described by its reflection function r (t). Considering

that the resonator is a perfect cylinder in which the disper-

sion is ignored and the losses are assumed to be frequency

independent [22, 19]. The reflection function r (t ) becomes

a simple delay with sign inversion (multiplied by an loss

parameter λ) and is written:

r (t ) =−λδ(t −τ), (1)

where τ= 2L/c is the travel time for waves to propagate to

the end of the resonator of length L at speed c and to return

to the input.

The loss parameter λ takes into account the visco-

thermal losses along the resonator, which at low frequencies

are dominant over the radiation losses. It can be approxi-

mated by the expression:

λ= e−2αL , (2)

where α is the damping factor [18]:

α≈ 3 ·10−5
√

f /R. (3)
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R is the resonator radius and f is chosen to be the fun-

damental playing frequency. A realistic value of the loss

parameter is λ= 0.95.

The solutions p(t ) and u(t ) of the model depend on two

control parameters: γ representing the blowing pressure

and ζ related to the opening of the embouchure at rest.

In this work, the control parameter ζ is always constant

and equal to 0.5. Using the variables p+ = 1
2

(
p +u

)
and

p− = 1
2

(
p −u

)
(outgoing and incoming pressure waves re-

spectively) instead of the variables p and u, the nonlinear

characteristic of the exciter is written:

p+ = f
(−p−,γ

)
. (4)

Outgoing and incoming pressure waves are also related

through the reflection function r (t ):

p−(t ) = (
r ∗p+)

(t ) =−λp+(t −τ). (5)

Finally, by combining equations (4) and (5) and using

a discrete time formulation (the discretization is done at

regular intervals τ) and noting p+(nτ) = p+
n and p−(nτ) =

p−
n , we obtain the following iterated map [22, 23, 19]:

p+
n = f

(
λp+

n−1,γ
)=G

(
p+

n−1,γ
)

, (6)

with, by definition: G(x) ≡ f (λx). The function G can be

written explicitly for ζ< 1 (see Taillard et al. [25]).

When the control parameter γ is constant, for low values

of γ the solution of eq. (6) stabilizes at an equilibrium point

which corresponds to the fixed point p+∗(γ) of the iterated

function G . For a critical value γst , namely the static bifur-

cation point (also called the static oscillation threshold) a

flip bifurcation [21] occurs, i.e.

G ′ (p+∗(γst )
)=−1, (7)

leading to a 2-valued periodic regime that corresponds to

sound production.

For the lossless model (i.e. λ = 1) the static oscillation

threshold is equal to γst = 1/3. If λ < 1, γst is larger than

1/3, an expression of γst is given by Kergomard et al. [20].

2.2 Dynamic bifurcation

For a linearly increasing control parameter γ, eq. (6) is re-

placed by eq. (8a) and (8b) :

{
p+

n =G
(
p+

n−1,γn
)

(8a)

γn = γn−1 +ε. (8b)

The theory derived in section 4 requires that the parame-

ter γ increases slowly, hence ε is considered arbitrarily small

(ε¿ 1).

Because of the time variation of the control parameter

γ, the system (8) undergoes a bifurcation delay: the bifur-

cation point corresponding to the birth of the oscillations

is shifted from the static oscillation threshold γst [11] to

the dynamic oscillation threshold γd t [8]. The previous ar-

ticle by the authors [8] provides an analytical study of the

dynamic flip bifurcation of the clarinet model (i.e. system

(8)) in the case where λ = 1. The method is based on ap-

plications of dynamic bifurcation theory proposed by Bae-

sens [3]. The main focus of this work is on the properties of

the dynamic oscillation threshold, recalled hereafter.

The trajectory of the system in the phase space (here con-

stituted of a single variable p+) through time is called the

orbit. The dynamic oscillation threshold is defined as the

value of γ for which the orbit escapes from the neighbor-

hood of the invariant curve φ(γ,ε). This definition is differ-

ent from the one used in [8] where the dynamic threshold

was defined as the value of γ for which the orbit starts to

oscillate.

The invariant curve is the nonoscillating solution of the

system (8). It plays the role of an attractor for variable pa-

rameters similarly to the role of the fixed point in a static

case. The invariant curve is written as a function of the

parameter, invariant under the mapping (8) and thus satis-

fying the following equation:

φ(γ,ε) =G
(
φ(γ−ε,ε),γ

)
. (9)

The procedure to obtain the theoretical estimation γth
d t

of the dynamic oscillation threshold is as follows: a the-

oretical expression of the invariant curve is found for a

particular (small) value of the increase rate ε (i.e. ε¿ 1).

The system (8) is then expanded into a first-order Taylor

series around the invariant curve and the resulting linear

system is solved analytically. Finally, γth
d t is derived from the

analytic expression of the orbit.

The dynamic oscillation threshold γth
d t is defined by [8]:

∫ γth
d t+ε

γ0+ε
ln

∣∣∂xG
(
φ(γ′−ε),γ′

)∣∣dγ′ = 0, (10)

where γ0 is the initial value of γ (i.e. the starting value of

the linear ramp). Two important remarks can be made on

this expression (Fig. 6 of [8]):

• γth
d t does not depend on the slope of the ramp ε, pro-

vided that ε is small enough,

• γth
d t depends on the initial value γ0 of the ramp.

These properties are also observed in numerical simula-

tions with very high precision.
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Figure 1: Graphical representation of γnum
d t for different precisions (prec. = 7, 15, 30, 100, 500 and 5000) with respect to the slope ε and

for γ0 = 0. Results are also compared to analytical static and dynamic thresholds: γst and γth
d t . (a) lossless model: λ= 1 and (b) typical

losses in a cylindrical clarinet, λ= 0.95.

2.3 Problem statement

The above theoretical predictions converge towards the ob-

served simulation results for very high numerical precision

(typically when thousands of digits are considered in the

simulation). Figure∗ 1(a) shows that for the usual double-

precision of CPUs (around 15 decimals), theoretical pre-

dictions of the dynamic bifurcation point γth
d t are far from

thresholds estimated on the numerical simulation results

γnum
d t . In particular, the numerical bifurcation point γnum

d t
depends on the slope ε, in contrast with the theoretical

predictions γth
d t .

Moreover, figure 2 reveals that for a low numerical pre-

cision (though even significantly higher than typical preci-

sions used in numerical simulations), the dependence of

the bifurcation point on the initial value γ0 is lost over a

wide range of γ0.

The minimum precision for which round-off errors do

not affect the behavior of the system depends on the pre-

cision itself and on the relative magnitude of the slope ε

and the initial condition γ0. Indeed, figure 1 shows that,

beyond a certain value of ε all curves join the one with

highest precision. Curves for even higher precisions would

overlap, allowing to conclude that they are representative

of an infinitely precise case. As shown in figure 2, for given

values of ε and of the numerical precision beyond a cer-

∗Figure 1(a) is a plot similar to figure 10 of [8]. The only difference
is that the bifurcation point γnum

d t estimated on the simulation results
is here defined by the point where the orbit leaves the neighborhood of
the invariant curve. The motivation for this choice will appear clearly in
section 3 where random variables are considered.

tain value of γ0, the theoretical result γth
d t allows to obtain a

good prediction of the bifurcation delay.

As a conclusion, the theoretical results obtained in [8] are

not able to predict the behavior of numerical simulations

carried out at usual numerical precision. The aim of this pa-

per is to show how the numerical precision can be included

in a theoretical model that correctly describes numerical

simulations. Firstly, it is shown that the model computed

with a finite precision behaves similarly to the model with

an ad-hoc additive white noise. This is done in the next

section. Then, using theoretical results given by Baesens [3],

a modified expression describing the behavior of the model

affected by noise (section 4) is proposed.

In figure 1(b), system (8) is simulated with λ = 0.95, a

typical value to take into account losses in the cylindrical

clarinet considered in this paper. The effect of the losses

is to increase the dynamic threshold, as for the static one.

However, the behavior of the lossless model and that of

system with losses are qualitatively the same. Therefore,

for sake of simplicity and without loss of generality, follow-

ing analytical calculation and numerical simulations are

performed using λ= 1.

3. FINITE PRECISION VERSUS ADDITIVE WHITE

NOISE

Differences between theoretical predictions and numerical

simulations highlighted in the previous section are due to

round-off errors that accumulate for finite precisions. The

aim of this section is to test whether round-off errors of
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Figure 2: Plot of γd t as a function of the initial condition γ0. Solid
lines are the theoretical prediction γth

d t calculated from equation
(10). Dashed line represent the values γnum

d t .

the computer can be modeled as an additive independent

and identically distributed random variable (referred to as

an additive white noise). This result is used in section 4 to

derive theoretical predictions of the dynamic bifurcation

point γd t .
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Figure 3: Comparison of the dynamic threshold γnum
d t obtained

in numerical simulations of a clarinet model in finite precision
case (8) and noisy case (11) with a noise of level σ= 10−30. The
dynamic threshold of oscillation obtained over an average of 20
runs is plotted against the precision used in the simulations, show-
ing that beyond a precision of about σ, the system affected with
noise is insensitive to the precision.

3.1 Results

Two numerical results are compared. The first is the sim-

ulation of the system (8) using a numerical precision pr1

(hereafter referred as a finite precision case). The second

one (hereafter referred as a noisy case) is the simulation of

the following stochastic system of difference equations:

{
p+

n =G
(
p+

n−1,γn
)+ξn (11a)

γn = γn−1 +ε, (11b)

where ξn is a uniformly distributed stochastic variable with

an expected value equal to zero (i.e. E [ξn] = 0) and a level

σ defined by:

E [ξmξn] =σ2δmn , (12)

where δmn is the Kronecker delta. The definition of the

expected value E is provided in [24]. For comparison with

the finite precision case the noise level σ is equal to 10−pr1 .

The bifurcation point γnum
d t estimated on the simulations

is defined as the value of γ for which the orbit leaves the

neighborhood of the invariant curve. Since the mean value

of the white noise ξn is zero, the relevant quantity to study

is the mean square deviation of the orbit from the invariant

curve. Therefore, γnum
d t is reached when:√

E
[
w2

n
]= ε, (13)

where wn = p+
n −φ(γn ,ε) describes the distance between the

actual orbit and the invariant curve. Among other possible

criteria, the condition (13) is chosen because it is also used
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Figure 4: Comparison between γnum
d t computed for finite precision cases and for noisy cases. For both cases and for each value of ε

we compute the average of the signals wn = p+
n −φ(γn ) obtained over 20 runs. Then, γnum

d t is calculated on the resulting signal. The
numerical precisions used to simulate the finite precision cases are 7, 15, 30 and 100 decimal digits. γ0 = 0.

in the analytical calculation made in section 4.

To simplify the notation, in the rest of the document

the invariant curve will be noted φ(γ). Its dependency on

parameter ε is no longer explicitly stated.

In figures 3 and 4, γnum
d t is estimated in the finite preci-

sion case and in the noisy case. In both cases an average

is made on w2
n obtained in 20 different simulations. Then,

γnum
d t is calculated on the mean signal using equation (13).

In figure 3, γnum
d t is plotted with respect to the numerical

precision for which both systems (8) and (11) are simulated.

The noise level σ of the noisy case modeled by the sys-

tem (11) is equal to 10−30. For numerical precision below

− log10(σ) = 30, the noise level is smaller than round-off

errors of the computer. In these situations, the effect of

the additive noise in system (11) is hidden by the effect of

the round-off errors of the computer. The consequence is

that the thresholds computed in finite precision case and in

noisy case are equals. For numerical precisions higher than

30, γnum
d t computed on system (11) is constant because the

influence of the round-off errors is now hidden by the ad-

ditive noise which have a fixed level. Figure 3 shows that

the transition between the regime for which the round-off

error effect prevails over the additive noise affect and the

regime for which the opposite occurs is abrupt. Therefore,

the region where mixed effects of both round-off errors and

additive noise play a role is very narrow. However, to avoid

any influence of the numerical precision, the system (11) is

simulated using a precision pr2 = 2pr1.

Figure 4 confirms that the kind of noise introduced in the

stochastic system can correctly describe the influence of a

finite precision. Indeed, with the exception of the smallest

precision (pr1 = 7), the curves are nearly superimposed.

Hence, in the next section, the stochastic system (11) is

studied theoretically in order to predict results of numerical

simulations of system (8) with finite precision.

3.2 Relevance of numerical results

To investigate the relevance of the numerical results, sev-

eral indicators are calculated. First, the standard devia-

tion STD
[
w2

n

]
of the signal w2

n is calculated at the dynamic

threshold γnum
d t and compared to E

[
w2

n

]
, also calculated

at γnum
d t . Secondly, the dynamic threshold is calculated on

each run. We obtain 20 values, noted γnum,i
d t (i ∈ [1,20]).

The mean value E
[
γnum,i

d t

]
is compared to the value γnum

d t ,

estimated on the mean signal
√
E
[
w2

n
]

(see section 3.1

where this numerical estimation method of γnum
d t is used

because it also used in analytical calculations in section 4.).

The standard deviation STD
[
γnum,i

d t

]
is calculated too.

Results are presented in table 2. The mean value E
[
w2

n

]
and the standard deviation STD

[
w2

n

]
at the dynamic thresh-

old have the same order of magnitude. This suggests a bad

repeatability of the numerical simulations. However, at the

dynamic threshold, wn diverges sharply and a large devia-

tion of it does not necessarily imply a large deviation of the

dynamic threshold. The standard deviation STD
[
γnum,i

d t

]
,

in table 2, shows precisely a good repeatability of γnum,i
d t .

4. ANALYTICAL STUDY OF THE NOISY DYNAMIC

CASE

4.1 General solution of the stochastic clarinet model

This section introduces a formal solution of the stochastic

model that is valid when the orbit is close to the invariant
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Table 2: Mean value E
[
w2

n
]

and standard deviation STD
[
w2

n
]

of the signal w2
n , calculated at the dynamic threshold γnum

d t . Mean

values
√
E
[
w2

n
]

and standard deviation STD
[
γ

num,i
d t

]
of dynamic thresholds γnum,i

d t (i ∈ [1,20]) calculated on each run. All results are

calculated for σ= 10−7 and 10−15 and for ε= 10−4, 10−3 and 10−3.

σ= 10−7 σ= 10−15

ε 10−4 10−3 10−2 10−4 10−3 10−2

E
[
w2

n
]

at γnum
d t 1.01 ·10−8 1.18 ·10−6 2.83 ·10−4 1.20 ·10−8 1.46 ·10−6 5.46 ·10−4

STD[w2
n ] at γnum

d t 1.24 ·10−8 1.56 ·10−6 3.02 ·10−4 2.07 ·10−8 1.86 ·10−6 1.25 ·10−4

γnum
d t estimated on

√
E
[
w2

n
]

0.354 0.418 0.673 0.377 0.488 0.857

E
[
γ

num,i
d t

]
0.355 0.421 0.677 0.378 0.490 0.856

STD
[
γ

num,i
d t

]
0.002 0.005 0.014 0.001 0.003 0.005

curve. Function G in equation (11a) is expanded into a first-

order Taylor series around the invariant curve. Using the

variable wn = p+
n −φ(γn), the system (11) becomes:

{
wn = wn−1∂xG

(
φ(γn −ε),γn

)+ξn (14a)

γn = γn−1 +ε. (14b)

The solution of equation (14a) is [5]:

wn = w0

n∏
k=1

∂xG
(
φ(γk −ε),γk

)
+

n∑
k=1

ξk

n∏
m=k+1

∂xG
(
φ(γm −ε),γm

)
, (15)

where w0 is the initial value of wn .

Because the additive white noise ξn has a zero-value

mean, as in section 3, the relevant indicator is the mean

square deviation of the orbit from the invariant curve:√
E
[
w2

n
]
. Equation (15) squared becomes:

w2
n =

(
w0

n∏
k=1

∂xG
(
φ(γk −ε),γk

))2

+
(

n∑
k=1

ξk

n∏
m=k+1

∂xG
(
φ(γm −ε),γm

))2

+2w0

n∑
k=1

(
n∏

j=1
∂xG

(
φ(γ j −ε),γ j

))
ξk

×
n∏

m=k+1
∂xG

(
φ(γm −ε),γm

)
. (16)

Averaging has no effect on the first term of the right-hand

side of equation (16) because the stochastic variable ξn is

not present. Using eq. (12), the average of the second term

is simplified to:

σ2
n∑

k=1

(
n∏

m=k+1
∂xG

(
φ(γm −ε),γm

))2

. (17)

Because E [ξn] = 0, the average of the third term of the

right-hand side of equation (16) is also equal to zero. Using

the fact that a product can be expressed as an exponential

of a sum of logarithms, the final expression of E
[
w2

n

]
is

given by:

E
[
w2

n

]= w2
0

(
exp

(
n∑

k=1
ln

∣∣∂xG
(
φ(γk −ε),γk

)∣∣))2

︸ ︷︷ ︸
An

+σ2
n∑

k=1

(
exp

[
n∑

m=k+1
ln

∣∣∂xG
(
φ(γm −ε),γm

)∣∣])2

︸ ︷︷ ︸
Bn

. (18)

The two terms of the right-hand side of equation (18) are

denoted An and Bn .

Finally, using Euler’s approximation, sums are replaced

by integrals and the expressions of An and Bn become:

An ≈ w2
0 exp

(∫ γn+ε

γ0+ε
2ln

∣∣∂xG
(
φ(γ′−ε),γ′

)∣∣ dγ′

ε

)
, (19)

Bn ≈ σ2

ε

∫ γn+ε

γ0+ε{
exp

(∫ γn+ε

γ+ε
2ln

∣∣∂xG
(
φ(γ′−ε),γ′

)∣∣ dγ′

ε

)}
dγ. (20)

An corresponds to the precise case studied in [8] which

leads to the theoretical estimation γth
d t of the dynamic oscil-
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lation threshold for the system without noise (cf. equation

(10)). Bn is the contribution due to the noise.

The transform from discrete sums to integral can be ques-

tioned. Indeed, to transform the term An in equation (18)

to its integral form (19), we assume that:

n∑
k=1

ln
∣∣∂xG

(
φ(γk −ε),γk

)∣∣≈∫ γn+ε

γ0+ε
ln

∣∣∂xG
(
φ(γ′−ε),γ′

)∣∣ dγ′

ε
, (21)

but if ∂xG
(
φ(γi −ε),γi

)
crosses over zero, one term in the

sum comes close to ln(0) =−∞ and the equality (21) is re-

spected only for small enough values of ε. Otherwise, in

equation (18), we have: An → 0 and Bn → σ2, and conse-

quently
√
E
[
w2

n
] → σ. In this case, for small noise levels,

the difference between the orbit and the invariant curve

comes close to zero, and as a result, the orbit needs more

time to escape from the invariant curve neighborhood, i.e.

the bifurcation delay is lengthened. This phenomenon is

mentioned by Baesens [3, 4] and Fruchard [13]. It can be

observed for example in figure 1 where peaks (i.e. larger

bifurcation delay) are there on curves in the above right

part of the figure. In the rest of the paper, we use integral

form, because it allows analytical integrations of noise con-

tribution Bn which will be considered in the remaining of

this section.

A first glance on equations (19) and (20) allows to explain

observation made in Section 2.3. Indeed, comparing the ex-

pressions of An and Bn , it possible to distinguish [3, 2] two

operating regimes, which, for a given value of w0, depends

on ε, σ and γ0:

• An À Bn (deterministic regime)

In this case the noise does not affect the bifurcation

delay and the dynamic oscillation threshold can be

determined by eq. (10).

• An ¿ Bn (sweep-dominant regime)

In this case, the bifurcation delay is affected by the

noise. This regime is studied in the following section.

In Section 2.3, figures 1 and 2 represent two different

cases distinguished by the parameter values: in certain ar-

eas of the figures, the dynamic bifurcation threshold does

not depend on ε but depends on γ0, while in other areas

the dynamic bifurcation threshold depends on ε but is not

dependent on γ0. This observation may be interpreted as

the existence of the two regimes detailed above: a sweep-
dominant regime and a deterministic regime. The transi-

tion between the two regimes occurs abruptly as observed

in figures 1 and 2.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−2

−1
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1

•

γst

γ

∂xG (p+∗(γ),γ)
−1−K0.2 (γ − γst)

(a) ζ= 0.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−3

−2

−1

0

1

•

γst

γ

∂xG (p+∗(γ),γ)
−1−K0.5 (γ − γst)

(b) ζ= 0.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−8

−6

−4

−2

0
•

γst

γ

∂xG (p+∗(γ),γ)
−1−K0.8 (γ − γst)

(c) ζ= 0.8

Figure 5: Graphical representation of ∂xG
(
p+∗(γ),γ

)
and its tan-

gent function −1−K
(
γ−γst

)
around the static oscillation thresh-

old for ζ= 0.2, 0.5 and 0.8.

4.2 Theoretical expression of the dynamic oscillation
threshold of the stochastic model

The next step is to find an approximate expression of

the standard deviation
√
E
[
w2

n
]

for the sweep-dominant

regime. In this regime, the term An is negligible with

respect to the contribution Bn due to the noise, i.e.√
E
[
w2

n
]≈p

Bn . The purpose is to obtain a statistical pre-

diction of the dynamic oscillation threshold for the stochas-

tic system, hereafter referred as γ̂th
d t .

It is assumed that ε¿ 1, which implies that the invariant

curve φ(γ) and the curve p+∗(γ) of the fixed points in eq. (6)

are close [8], and allows the approximation:

∂xG
(
φ(γ−ε),γ

)≈ ∂xG
(
p+∗(γ),γ

)
. (22)

Moreover, because of the noise, the bifurcation delay is
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expected to occur earlier, so that the dynamic oscillation

threshold γd t is assumed to be close† to the static oscil-

lation threshold γst . The term ∂xG
(
p+∗(γ),γ

)
is then ex-

panded in a first-order Taylor series around the static oscil-

lation threshold γst :

∂xG
(
p+∗(γ),γ

)≈ ∂xG
(
p+∗(γst ),γst

)︸ ︷︷ ︸
,−1: flip bifurcation

+ (
γ−γst

)
∂x yG

(
p+∗(γst ),γst

)︸ ︷︷ ︸
noted−K

, (23)

finally we have:

∂xG
(
p+∗(γ),γ

)≈−1−K
(
γ−γst

)
, (24)

which is used in equation (20). Figure 5 shows the com-

parison between ∂xG
(
p+∗(γ),γ

)
and its tangent function

−1−K
(
γ−γst

)
around the static oscillation threshold for

ζ= 0.2, 0.5 and 0.8. The linearisation appears as a good ap-

proximation of the function in a wide domain of γ around

the static oscillation threshold γst . For large values of the

control parameter ζ (cf. fig. 5(c)) the linear approximation

is valid over a narrower range of γ.

Using expression (24) the integral

I1 =
∫ γn+ε

γ+ε
2ln

∣∣∂xG
(
φ(γ′−ε),γ′

)∣∣ dγ′

ε
, (25)

contained in the expression (20) of Bn becomes:

I1 = 2K

ε

∫ γn+ε

γ+ε
(
γ′−γst

)
dγ′ = K

ε

[(
γ′−γst

)2
]γn+ε
γ+ε . (26)

The small correction ε in the domain of integration can

be neglected since ε¿ 1. Therefore, we obtain:

I1 = K

ε

[(
γ′−γst

)2
]γn

γ

= K

ε

[(
γn −γst

)2 − (
γ−γst

)2
]

. (27)

†This hypothesis could be questioned because according to figures 1
and 2, even in the presence of noise, the bifurcation delay can be large.
However, this hypothesis is required to carry out following calculations.
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Figure 6: Domain of existence of the deterministic, sweep-
dominant and noise-dominant regimes in a plane (ε,− log10(σ)).
For finite precision cases, − log10(σ) corresponds to the value of
the precision.

By combining equations (20) and (27), Bn is now written

as:

Bn ≈
σ2

ε

∫ γn+ε

γ0+ε
exp

(
K

ε

[(
γn −γst

)2 − (
γ′−γst

)2
])

dγ′

= σ2

ε
exp

(
K

ε

(
γn −γst

)2
)

×
∫ γn+ε

γ0+ε
exp

(
−K

ε

(
γ′−γst

)2
)

dγ′︸ ︷︷ ︸
I2

. (28)

The function which appears in the integral I2 is a Gaus-

sian function with standard deviation

ν=
√

ε

2K
. (29)

Integral I2 is then [14]:

I2 =
[

1

2

√
πε

K
erf

(√
K

ε

(
γ′−γst

))]γn

γ0

, (30)
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Figure 7: Graphical representation of γnum
d t for different precisions (prec. = 7, 15, 30, 100, 500 and 5000) with respect to the slope ε and

for γ0 = 0. Results are also compared to analytical static and dynamic thresholds: γst , γth
d t and γ̂th

d t . (a) γnum
d t and only finite precision

cases are represented. (b) Both finite precision cases and noisy cases are represented for prec. = 7 and 15.

where erf(x) is the error function. The initial condition γ0

is supposed to be much lower than the static threshold γst ,

so that equation (30) can be written:

I2 = 1

2

√
πε

K

[
erf

(√
K

ε

(
γn −γst

))+1

]
. (31)

The dependence on the initial condition γ0 is now lost.

Since ε ¿ 1, for γn > γst the error function quickly

becomes equal to 1 and the integral I2 is simplified to

I2 =
√

πε
K . Finally the expression of Bn is:

Bn ≈ σ2

p
ε

√
π

K
exp

(
K

ε

(
γn −γst

)2
)

. (32)

From equation (32) it is possible to obtain the expression

of
√
E
[
w2

n
]≈p

Bn :

√
E
[
w2

n
]≈σε−1/4

( π
K

)1/4
exp

(
K

2ε

(
γn −γst

)2
)

. (33)

The dynamic oscillation threshold γ̂th
d t is defined [3, 2] as

the value of γn for which the standard deviation
√
E
[
w2

n
]

leaves the neighborhood of the invariant curve. More pre-

cisely, the bifurcation occurs when
√
E
[
w2

n
]

becomes equal

to the increase rate ε, as defined in eq. (13). Finally, using

equation (33), we have:

γ̂th
d t = γst +

√
−2ε

K
ln

[( π
K

)1/4 σ

ε5/4

]
, (34)

which is the theoretical estimation of the dynamic oscilla-

tion threshold of the stochastic systems (11) (or of the sys-

tem (8) computed using a finite precision) when it evolves

in a sweep-dominant regime. The bifurcation delay is a

by-product of eq. (34) since it is simply γ̂th
d t −γst .

The method presented in this section is based on a first-

order Taylor expansion of the system (11) around the invari-

ant curve φ(γn), leading to the linear system (14). Using

an asymptotic expansion of the error function it is possi-

ble to investigate the behavior of
p

Bn before γn enters the

neighborhood of the static oscillation threshold γst . This

study allows to define the domain of validity of this linear
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approximation, as done by Baesens [3, 2]. This is σ.
p
ε

(more details on obtaining the domain of validity are given

in Appendix A). Otherwise, if σ&
p
ε, the orbit of the series

p+
n leaves the neighborhood of invariant curve φ(γ) before

the static oscillation threshold is reached. In this case, the

linear approximation is no longer valid. This situation is

called by Baesens [3, 2] noise-dominant regime and it is

not investigated in the present paper. However, figure 6

shows the domain of existence of the different regimes in

a plan [ε ; − log10(σ)]. The frontier between deterministic

and sweep-dominant regime corresponding to An = Bn is

determined numerically using the equality γth
d t = γ̂th

d t .

The condition σ .
p
ε is respected in this work since

σ= 10−pr with 7 ≤ pr ≤ 5000 and 8.10−5 ≤ ε≤ 10−2.

4.3 Discussion

In figure 7, γ̂th
d t defined by equation (34) is plotted against

the increase rate ε. It is compared with γnum
d t for different

values of the precision and for γ0 = 0. In figure 7(a), γnum
d t

is represented for finite precision cases. The differences be-

tween finite precision cases and stochastic cases observed

for prec. = 7 and 15 are shown in figure 7(b). The theoret-

ical result γ̂th
d t provides a good estimation of the dynamic

oscillation threshold as long as the system remains in the

sweep-dominant regime (with a better estimation when

the bifurcation delay is small‡). Otherwise, γth
d t is a better

approximation of γnum
d t , as expected in the deterministic

regime.

Figure 8 shows the comparison between γ̂th
d t and γnum

d t
(only for finite precision cases) plotted against the initial

condition γ0. In figure 8(a), variables are plotted for sev-

eral values of ε and for a fixed numerical precision. The

opposite is done in figure 8(b). As in figure 7, γ̂th
d t provides a

good estimation of the dynamic oscillation threshold in the

sweep-dominant regime, as well as γth
d t in the deterministic

regime.

Finally, to predict theoretically the dynamic bifurcation

threshold Γth
d t of the stochastic system (11) (as well as of the

system (8) when it is computed with a finite precision) the

following procedure is proposed:

• compute the theoretical estimation γ̂th
d t of the stochas-

tic system through eq. (34)

• compute the theoretical estimation γth
d t of the system

without noise through eq. (10)

• if γ̂th
d t < γth

d t the system remains in the “sweep-

dominant regime” and the dynamic threshold Γth
d t is

equal to γ̂th
d t , otherwise the “deterministic regime” is

‡This is an expected result because of the initial assumption of a small
bifurcation delay in the presence of noise, leading to first-order Taylor
expansions γst in previous calculation (see equation (23)).
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Figure 8: Comparison between theoretical prediction of dynamic
oscillation threshold (without noise: γth

d t and with noise: γ̂th
d t ) and

the dynamic threshold γnum
d t computed on numerical simulations

for finite precision case. Variable are plotted with respect to the
initial condition γ0.

attained and the dynamic threshold Γth
d t is equal to

γth
d t .

Figure 9 compares the relative error RE of the three theo-

retical predictions of the oscillation threshold (γst , γth
d t and

Γth
d t ) with respect to γnum

d t , as a percent value:

RE [X ] = 100×
( |γnum

d t −X |
γnum

d t

)
, (35)

where X takes successively the values of γst , γth
d t and Γth

d t .

For standard double-precision (fig. 9(a), prec.=15), the

sweep-dominant regime is prevalent throughout most of
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Figure 9: Relative errors: RE
[
γst

]
, RE

[
γth

d t

]
and RE

[
Γth

d t

]
for

numerical precisions equal to 15 (a) and 100 (b).

the range of increase-rates studied in this article. Higher

precisions (for instance prec.=100) imply the appearence

of the deterministic-regime for lower increase-rates. In this

case, Γth
d t provides a better estimation of the oscillation

threshold of the clarinet with a linearly increasing blow-

ing pressure. Indeed, in situations represented in figure

9, RE
[
Γth

d t

]
never exceeds 15% while RE

[
γst

]
and RE

[
γth

d t

]
can reach 60% and 145% respectively. At slightly lower val-

ues of ε than the limit between the two regimes, γth
d t still

provides a better estimation of γnum
d t than Γth

d t , a situation

that occurs for all values of the precision, according to fig-

ure 7.

5. CONCLUSION

In many situations, the finite precision used in numerical

simulations of the clarinet system does not produce major

errors in the final results that are sought. Such is the case,

for instance, when estimating the amplitudes for a given

regime.

However, when slowly increasing one of the control pa-

rameters, the distances between the state of the system and

the invariant curve can become smaller than the round-

off errors of the calculation, with dramatic effects on the

time required to trigger an oscillation. In these cases, the

inclusion of a stochastic variable in the theory allows to

correctly estimate the threshold observed in simulations,

which lies between the static and dynamic thresholds found

for precise cases.

As a final remark, the present theoretical study is prob-

ably not restricted to describe numerical simulations. In-

deed, the noise level σ measured in an artificially blown

instrument is typically of the order of magnitude of 10−3.

The domain of validity of the results: σ.
p
ε suggests that

the comparison with experiment using blowing pressure

with increase rates ε > 10−6 (typically for usual clarinets

that corresponds to ≈ 5Pa/s), seems to be possible although

the noise level usually increases with the pressure applied

to the instrument.

It is known that the static oscillation of the clarinet is

difficult to measure by increasing, even slowly, the mouth

pressure. The phenomenon of dynamic bifurcation is a

possible reason. If that were proven experimentally, we

could imagine to inverse the equation (34) to deduce the

static threshold from the measurement of the noise level,

the increase rate of the blowing pressure and the dynamic

threshold.
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A. LIMIT OF THE LINEAR CALCULATION

The method presented in Section 4 is based on a first-order

Taylor expansion of the system (11) around the invariant

curve φ(γn) leading to define the linear system (14). Fol-

lowing Baesens [3, 2], we give here the upper bound of the

domain of validity of this linear approximation.

Using equations (20) and (31), the expression Bn is given

by:

Bn = σ2

2

√
π

εK
exp

(
K

ε

(
γn −γst

)2
)

×
[

erf

(√
K

ε

(
γn −γst

))+1

]
. (36)

We investigate the behavior of E
[
w2

n

]
before γn enters

in the neighborhood of the static oscillation threshold γst .

More precisely, we compute an approximate expression of
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E
[
w2

n

]
when γn < γst −ν, where ν is defined by equation

(29). To do this, the error function in equation (36) is ex-

panded in a first-order asymptotic series [1] (the asymptotic

expansion of the error function erf(x) for large negative x is

recalled in Appendix B):

Bn = σ2

2

√
π

εK
exp

(
K

ε

(
γn −γst

)2
)

×

−1−
exp

(
−K

ε

(
γn −γst

)2
)

√
Kπ
ε

(
γn −γst

) +1

 , (37)

which is simplified in:

Bn =− σ2

2K
(
γn −γst

) . (38)

Using the explicit form of γn , solution of equation (8b):

γn = εn +γ0, (39)

and (38), we have:

√
Bn = σp

2K ε

1p
nst −n

, (40)

where nst is the iteration for which γst is reached.

Equation (40) means that when γn < γst −ν, the standard

deviation
√
E
[
w2

n
]≈p

Bn increases with the time (i.e. with

n) like 1/
p

nst −n to order σ/
p
ε, and therefore remains

small if σ¿p
ε. Otherwise, if σ&

p
ε, the orbit of the series

p+
n leaves the neighborhood of invariant curve φ(γ) before

the static oscillation threshold is reached. In this case, linear

calculation made in Section 4 is no longer valid.

B. ASYMPTOTIC EXPANSION OF ERROR

FUNCTION

The asymptotic expansion of the error function erf(x) for

large negative x (x →−∞) is [1]:

erf(x) ≈−1− exp
(−x2

)
p
πx

×
(

1+
+∞∑

m=1
(−1)m 1 ·3 . . . (2m −1)(

2x2
)m

)
(41)
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