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Abstract

This paper presents an analysis of the effects of noise and precision on a simplified model of the clarinet driven by a

variable control parameter.

In a previous work [5], the dynamic oscillation threshold of a simplified model of a clarinet is obtained analytically. In

the present article, the sensitivity of the dynamic threshold on precision is analyzed as a stochastic variable introduced

in the model. A new theoretical expression is given for the dynamic thresholds in presence of the stochastic variable,

providing a fair prediction of the thresholds found in finite-precision simulations. The dynamic thresholds are found to

depend on increase rate and are independent on the initial value of the parameter, both in simulations and in theory.

Keywords: Musical acoustics, Clarinet-like instruments, Iterated maps, Dynamic Bifurcation, Bifurcation delay, Tran-

sient processes, Noise, Finite precision.

1. INTRODUCTION

A previous article by the authors [5] analysed the behavior

of a simplified model of a clarinet when one of its control

parameters (the blowing pressure) increases linearly with

time. The oscillations corresponding to the production

of sound start at a much higher threshold of the blowing

pressure than the one obtained in a static parameter case.

The dynamic threshold was described by an analytical

expression, predicting that it does not depend on the

increase rate of the blowing pressure (within the limits of

the theory, i.e. slow enough increases), but that it is very

sensitive to the starting value of the linear increase.

These results are reproduced by simulations of the

model, but only when very high precisions are used in the

simulations (Fig. 10 in [5]). Running the simulation with

the normal double-precision of a CPU results in much

lower thresholds, although higher than the static ones. In

contrast with the theory and simulations using high pre-

cision, the threshold depends on the rate of increase of

the parameter, but doesn’t depend on the starting value

of the blowing pressure.

The aim of the present article is to estimate the dy-

namic bifurcation threshold in simulations performed

with finite precision. The effect of finite numerical pre-

∗Corresponding author, baptiste.bergeot@univ-lemans.fr

cision in simulations is modeled as an ad hoc additive

white noise with uniform distribution. This hypothesis

is tested in section 3. In section 4, a mathematical rela-

tion is derived for the behavior of the model affected with

noise, following a general method given by Baesens [3].

The resulting theoretical expression of the dynamic os-

cillation threshold is compared to numerical simulations

and its range of validity is discussed. The clarinet model

and major results from [5] are first briefly recalled in sec-

tion 2.

A table of notation is provided in table 1 .

2. DYNAMIC OSCILLATION THRESHOLD OF THE

CLARINET MODEL WITHOUT NOISE

2.1 Clarinet model

The instrument is divided into two functional elements:

the exciter and the resonator. The exciter of the clarinet

is the reed-mouthpiece system described by a nonlinear

characteristics relating the instantaneous values of the

flow u(t) across the reed entrance to the pressure dif-

ference ∆p(t) = pm(t)−p(t) between the mouth of the

musician and the clarinet mouthpiece [10, 9]. The reed is

simplified into an ideal spring without damping or iner-

tia. The resonator is approximated to a straight cylinder,
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Figure 1: Graphical representation of γnum
d t for different precisions (prec. = 7, 15, 30, 100, 500 and 5000) with respect to the slope ε

and for γ0 = 0. Results are also compared to analytical static and dynamic thresholds: γst and γth
d t .

Table 1: Table of notation. All quantities are dimensionless.

Table of Notation
G iterative function
γ musician mouth pressure (control parameter)
ζ control parameter related to the opening of the

embouchure at rest
p+ outgoing wave
p− incoming wave
p+∗ non-oscillating static regime of p+ (fixed points of

the function G)
φ invariant curve
w difference between p+ and φ

ε increase rate of the parameter γ
σ level of the white noise
γst static oscillation threshold
γd t dynamic oscillation threshold
γth

d t theoretical estimation of the dynamic oscillation
threshold of the clarinet model without noise or in
"deterministic" situation

γ̂th
d t theoretical estimation of the dynamic oscillation

threshold of the noisy clarinet model in "sweep-
dominant" situation

γ̄th
d t general theoretical estimation of the dynamic oscil-

lation threshold of the noisy clarinet model, both
for a "sweep-dominant regime" or a "deterministic
regime"

γnum
d t dynamic oscillation threshold calculated on nu-

merical simulations

described by its reflection function r (t). Assuming per-

fect reflexions at the open of the resonator (no radiation

losses) and ignoring viscous and thermal losses the reflex-

ion function becomes a simple delay with sign inversion.

The solutions p(t) and u(t) of the model depend on

two control parameters: γ representing the blowing pres-

sure and ζ related to the opening of the embouchure at

rest. In this work, the control parameter ζ is always con-

stant and equal to 0.5. Using the variables p+ = 1
2

(
p +u

)
and p− = 1

2

(
p −u

)
(outgoing and incoming pressure

waves respectively) instead of the variables p and u, the

state of the system can be calculated at regular intervals

τ= 2L/c , the round trip time of the sound wave along the

resonator. With these assumptions, the nonlinear system

becomes an iterated map [12, 13, 11] :

p+
n =G

(
p+

n−1,γ
)

. (1)

The function G can be written explicitly for ζ< 1 (see

Taillard et al. [15]). When the control parameter γ is con-

stant, for low values of γ the solution of eq. (1) stabilises

at an equilibrium point, and for a critical value γst a flip

bifurcation occurs leading to a periodic regime that cor-

responds to sound production.

2.2 Dynamic bifurcation

For a linearly increasing control parameter γ, eq. (1) is

replaced by eq. (2a) and (2b) :

{
p+

n =G
(
p+

n−1,γn
)

(2a)

γn = γn−1 +ε. (2b)

The theory derived in section 4 requires that the param-

eter γ increase slowly, hence ε is considered arbitrarily

small (ε¿ 1).

Because of the time variation in the control parame-

ter γ, the bifurcation point corresponding to the appear-

ance of the oscillations is shifted from the static oscilla-
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tion threshold γst [6] to the dynamic oscillation threshold

γd t [5]. The difference γd t −γst is called the bifurcation

delay [3, 7]. The previous article by the authors [5] pro-

vides an analytical study of the dynamic flip bifurcation of

the clarinet model (i.e. system (2)) based on applications

of dynamic bifurcation theory proposed by Baesens [3].

The main focus of this work is on the properties of the

dynamic oscillation threshold, recalled hereafter.

The trajectory of the system in the phase space (here

constituted of a single variable p+) through time is called

the orbit. The dynamic oscillation threshold is defined as

the value of γ for which the orbit escapes from the neigh-

borhood of the invariant curve φ(γ,ε). This definition

is different from the one used in [5] where the dynamic

threshold was defined as the value of gamma for which

the orbit starts to oscillate.

The invariant curve is the nonoscillating solution of

the system (2). It plays the role of an attractor for variable

parameters similarly to the role of the fixed point in a

static case. The invariant curve is written as a function of

the parameter, invariant under the mapping (2) and thus

satisfying the following equation:

φ(γ,ε) =G
(
φ(γ−ε,ε),γ

)
. (3)

The procedure to obtain the theoretical estimation γth
d t

of the dynamic oscillation threshold is as follows: a the-

oretical expression of the invariant curve is found for a

particular (small) value of the increase rate ε (i.e. ε¿ 1).

The system (2) is then expanded into a first-order Taylor

series around the invariant curve and the resulting linear

system is solved analytically. Finally, γth
d t is derived from

the analytic expression of the orbit.

The dynamic oscillation threshold γth
d t is defined by [5]:

∫ γth
d t+ε

γ0+ε
ln

∣∣∂xG
(
φ(γ′−ε),γ′

)∣∣dγ′ = 0, (4)

where γ0 is the initial value of γ (i.e. the starting value of

the linear ramp). Two important remarks can be made

on this expression (Fig. 6 of [5]):

• γth
d t does not depend on the slope of the ramp ε,

provided that ε is small enough,

• γth
d t depends on the initial value γ0 of the ramp.

These properties are also observed in numerical simula-

tions with very high precision.

2.3 Problem statement

The above theoretical predictions converge towards the

observed simulation results for very high numerical pre-

cision (typically when thousands of digits are considered
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(a) Numerical precision is fixed (prec. = 50). γnum
d t is computed for

ε= 10−4 and 3 ·10−4.
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(b) The increase rate of γ is fixed (ε = 3 ·10−4). γnum
d t is computed for

numerical precisions equal to 15 and 100.

Figure 2: Plot of γd t as a function of the initial condition γ0.
Solid lines are the theoretical prediction γth

d t calculated from
equation (4). Dashed line represent the values γnum

d t .

in the simulation). Figure∗ 1 shows that for the usual

double-precision of CPUs (around 15 decimals), theoreti-

cal predictions of the dynamic bifurcation point γth
d t are

far from thresholds estimated on the numerical simula-

tion results γnum
d t . In particular, the numerical bifurcation

point γnum
d t depends on the slope ε, in contrast with the

∗This is a plot similar to figure 10 of [5]. The only difference is that
the bifurcation point γnum

d t estimated on the simulation results is here
defined by the point where the orbit leaves the neighborhood of the
invariant curve. The motivation for this choice will appear clearly in
section 3 where random variables are considered.
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theoretical predictions γth
d t . Moreover, figure 2 reveals

that for a low numerical precision (though even signifi-

cantly higher than typical precisions used in numerical

simulations), the dependance of the bifurcation point on

the initial value γ0 is lost over a wide range of γ0.

The minimum precision for which round-off errors do

not affect the behavior of the system depends on the

relative magnitude of the slope ε, the precision and the

initial condition γ0. Indeed, figure 1 shows that, beyond

a certain value of ε all curves join the one with highest

precision. Curves for even higher precisions would over-

lap, allowing to conclude that they are representative of

an infinitely precise case. As shown in figure 2, for given

values of ε and of the numerical precision beyond a cer-

tain value of γ0, the theoretical result γth
d t allows to obtain

a good prediction of the bifurcation delay.

As a conclusion, the theoretical results obtained in [5]

are not able to predict the behavior of numerical simula-

tions carried out at usual numerical precision. The aim of

this paper is to show how the numerical precision can be

included in a theoretical model that correctly describes

numerical simulations. Firstly, it is shown that the model

computed with a finite precision behaves similarly to the

model with an ad-hoc additive white noise. This is done

in the next section. Then, using theoretical results pro-

posed by Baesens [3], a modified expression describing

the behavior of the model affected by noise (section 4).

3. FINITE PRECISION VERSUS ADDITIVE WHITE

NOISE

Differences between theoretical predictions and numer-

ical simulations highlighted in the previous section are

due to round-off errors that accumulate for finite preci-

sions. The aim of this section is to verify that round-off

errors of the computer can be modeled as an additive

independent and identically distributed random variable

(referred to as an additive white noise). This result is

used in section 4 to derive theoretical predictions of the

dynamic bifurcation point γd t .

Two numerical results are compared. The first is the

simulation of the system (2) using a numerical precision

pr1 (hereafter referred as a finite precision case). The

second one (hereafter referred as a noisy case) is the sim-

ulation of the following stochastic system of difference

equations:

{
p+

n =G
(
p+

n−1,γn
)+ξn (5a)

γn = γn−1 +ε, (5b)

where ξn is a uniformly distributed stochastic variable

with an expected value equal to zero (i.e. E [ξn] = 0) and a

level σ defined by:

E [ξmξn] =σ2δmn , (6)

where δmn is the Kronecker delta. The definition of the

expected value E is provided in [14]. For comparison

with the finite precision case the noise level σ is equal to

10−pr1 .

The bifurcation point γnum
d t estimated on the simula-

tions is defined as the value of γ for which the orbit leaves

the neighborhood of the invariant curve. Since the mean

value of the white noise ξn is zero, the relevant quantity

to study is the mean square deviation of the orbit from

the invariant curve. Therefore, γnum
d t is reached when:√

E
[
w2

n
]= ε, (7)

where wn = p+
n −φ(γn ,ε) describes the distance between

the actual orbit and the invariant curve. Among other

possible criteria, the condition (7) is chosen because it is

also used in the analytical calculation made in section 4.

To simplify the notation, in the rest of the document

the invariant curve will be noted φ(γ). Its dependency on

parameter ε is no longer explicitly stated.

In figures 3 and 4, γnum
d t is estimated in the finite preci-

sion case and in the noisy case. In both cases an average

is made on w2
n obtained in 20 different simulations. Then,
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Figure 3: Comparison of the dynamic threshold γnum
d t obtained

in numerical simulations of a noiseless (2) clarinet model and
one (5) where a noise of level σ = 10−30 is introduced. The
dynamic threshold of oscillation obtained over an average of
20 runs is plotted against the precision used in the simulations,
showing that beyond a precision of about σ, the system affected
with noise is insensitive to the precision.
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Figure 4: Comparison between γnum
d t computed for finite precision cases and for noisy cases. For both cases and for each value of ε

we compute the average of the signals wn = p+
n −φ(γn ) obtained over 20 runs. Then, γnum

d t is calculated on the resulting signal. The
numerical precisions used to simulate the finite precision cases are 7, 15, 30 and 100 decimal digits. γ0 = 0.

γnum
d t is calculated on the mean signal using equation (7).

In figure 3, γnum
d t is plotted with respect to the numer-

ical precision for which systems (2) and (5) are simu-

lated. The noise level σ of the noisy case is equal to

10−30. Before the numerical precision becomes equal

to − log10σ= 30, the noise level is smaller than round-off

errors of the computer. In these situations, the thresholds

computed in finite precision case and in noisy case are

equals. For numerical precisions larger than 30, γnum
d t

computed on system (5) is constant because the influ-

ence of the noise overrides that of the round-off errors of

the computer. Therefore, to avoid the influence of the nu-

merical precision, the system (5) is now simulated using

a precision pr2 & 2pr1, we choose pr2 = 2pr1.

Figure 4 confirms that the kind of noise introduced in

the stochastic system can correctly describe a finite preci-

sion. Indeed, with the exception of the smallest precision

(pr1 = 7), the curves are nearly superimposed. Hence,

in the next section, the stochastic system (5) is studied

theoretically in order to predict results of numerical sim-

ulations of system (2) with finite precision.

4. ANALYTICAL STUDY OF THE NOISY DYNAMIC

CASE

4.1 General solution of the stochastic clarinet model

This section introduces a formal solution of the stochastic

model that is valid when the orbit is close to the invariant

curve. Function G in equation (5a) is expanded into a

first-order Taylor series around the invariant curve. Using

the variable wn = p+
n −φ(γn), the system (5) becomes:

{
wn = wn−1∂xG

(
φ(γn −ε),γn

)+ξn (8a)

γn = γn−1 +ε. (8b)

The solution of equation (8a) is [4]:

wn = w0

n∏
k=1

∂xG
(
φ(γk −ε),γk

)
+

n∑
k=1

ξk

n∏
m=k+1

∂xG
(
φ(γm −ε),γm

)
, (9)

where w0 is the initial value of wn .

Because the additive white noise ξn has a zero-value

mean, as in section 3, the relevant indicator is the mean

square deviation of the orbit from the invariant curve:√
E
[
w2

n
]
. Equation (9) squared becomes:

w2
n =

(
w0

n∏
k=1

∂xG
(
φ(γk −ε),γk

))2

+
(

n∑
k=1

ξk

n∏
m=k+1

∂xG
(
φ(γm −ε),γm

))2

+2w0

n∑
k=1

(
n∏

j=1
∂xG

(
φ(γ j −ε),γ j

))
ξk

×
n∏

m=k+1
∂xG

(
φ(γm −ε),γm

)
. (10)

Averaging has no effect on the first term of the right-

hand side of equation (10) because the stochastic variable
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Figure 5: Graphical representation of ∂xG
(
p+∗(γ),γ

)
and its

tangent function −1−K
(
γ−γst

)
around the static oscillation

threshold for ζ= 0.2, 0.5 and 0.8.

ξn is not present. Using eq. (6), the average of the second

term is simplified to:

σ2
n∑

k=1

(
n∏

m=k+1
∂xG

(
φ(γm −ε),γm

))2

. (11)

Because E [ξn] = 0, the average of the third term of the

right-hand side of equation (10) is also equal to zero. Us-

ing the fact that a product can be expressed as an expo-

nential of a sum of logarithms, the final expression of

E
[
w2

n

]
is given by:

E
[
w2

n

]= w2
0

(
exp

(
n∑

k=1
ln

∣∣∂xG
(
φ(γk −ε),γk

)∣∣))2

︸ ︷︷ ︸
An

+σ2
n∑

k=1

(
exp

[
n∑

m=k+1
ln

∣∣∂xG
(
φ(γm −ε),γm

)∣∣])2

︸ ︷︷ ︸
Bn

. (12)

Finally, using Euler’s approximation, sums are replaced

by integrals and the expressions of An and Bn become:

An ≈ w2
0 exp

(∫ γn+ε

γ0+ε
2ln

∣∣∂xG
(
φ(γ′−ε),γ′

)∣∣ dγ′

ε

)
, (13)

Bn ≈ σ2

ε

∫ γn+ε

γ0+ε{
exp

(∫ γn+ε

γ+ε
2ln

∣∣∂xG
(
φ(γ′−ε),γ′

)∣∣ dγ′

ε

)}
dγ. (14)

An corresponds to the precise case studied in [5] which

leads to the theoretical estimation γth
d t of the dynamic os-

cillation threshold for the system without noise (cf. equa-

tion (4)). Bn is the contribution due to the noise, which

will be considered in the remaining of this section.

A first glance on equations (13) and (14) allows to ex-

plain observation made in Section 2.3. Indeed, compar-

ing the expressions of An and Bn , it possible to distin-

guish [3, 2] two operating regimes, which, for a given

values of w0, depends on ε, σ and γ0:

• An À Bn (deterministic regime)

In this case the noise does not affect the bifurcation

delay and the dynamic oscillation threshold can be

determined by eq. (4).

• An ¿ Bn (sweep-dominant regime)

In this case, the bifurcation delay is affected by the

noise. This regime is studied in the following section.

In Section 2.3, figures 1 and 2 represent two different

cases distinguished by the parameter values: in certain

areas of the figures, the dynamic bifurcation threshold

does not depend on ε but depends on γ0, while in other

areas the dynamic bifurcation threshold depends on ε

but is not dependent on γ0. This observation may be

interpreted as the existence of the two regimes detailed

above: a sweep-dominant regime and a deterministic
regime. The transition between the two regimes occurs

abruptly as observed in figures 1 and 2.
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Figure 6: Graphical representation of γnum
d t for different precisions (prec. = 7, 15, 30, 100, 500 and 5000) with respect to the slope ε

and for γ0 = 0. Results are also compared to analytical static and dynamic thresholds: γst , γth
d t and γ̂th

d t . (a) γnum
d t and only finite

precision cases are represented. (b) Both finite precision cases and noisy cases are represented for prec. = 7 and 15.

4.2 Theoretical expression of the dynamic oscillation
threshold of the stochastic model

The next step is to find an approximate expression of

the standard deviation
√
E
[
w2

n
]

for the sweep-dominant

regime. In this regime, the term An is negligible with

respect to the contribution Bn due to the noise, i.e.√
E
[
w2

n
] ≈ p

Bn . The purpose is to obtain a statistical

prediction of the dynamic oscillation threshold for the

stochastic system, hereafter referred as γ̂th
d t .

It is assumed that ε¿ 1, which implies that the invari-

ant curve φ(γ) and the curve p+∗(γ) of the fixed points in

eq. (1) are close [5], and allows the approximation:

∂xG
(
φ(γ−ε),γ

)≈ ∂xG
(
p+∗(γ),γ

)
. (15)

Moreover, because of the noise, the bifurcation delay

is expected to occur earlier, so that the dynamic oscilla-

tion threshold γd t is assumed to be close† to the static

oscillation threshold γst . The term ∂xG
(
p+∗(γ),γ

)
is then

expanded in a first-order Taylor series around the static

oscillation threshold γst :

∂xG
(
p+∗(γ),γ

)≈ ∂xG
(
p+∗(γst ),γst

)︸ ︷︷ ︸
,−1: flip bifurcation

+ (
γ−γst

)
∂x yG

(
p+∗(γst ),γst

)︸ ︷︷ ︸
noted−K

, (16)

finally we have:

∂xG
(
p+∗(γ),γ

)≈−1−K
(
γ−γst

)
, (17)

which is used in equation (14). Figure 5 shows the com-

†This hypothesis could be questioned because according to figures 1
and 2, even in the presence of noise, the bifurcation delay can be big.
However, this hypothesis is required to carry out following calculations.
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(b) The increase rate of γ is fixed (ε= 3 ·10−4). γ̂th
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Figure 7: Comparison between theoretical prediction of dy-
namic oscillation threshold (without noise: γth

d t and with noise:

γ̂th
d t ) and the dynamic threshold γnum

d t computed on numerical
simulations for finite precision case. Variable are plotted with
respect to the initial condition γ0.

parison between ∂xG
(
p+∗(γ),γ

)
and its tangent function

−1−K
(
γ−γst

)
around the static oscillation threshold for

ζ= 0.2, 0.5 and 0.8. The linearisation appears as a good

approximation of the function in a wide domain of γ

around the static oscillation threshold γst . For large val-

ues of the control parameter ζ (cf. fig. 5(c)) the linear

approximation is valid over a narrower range of γ.

Using expression (17) the integral

I1 =
∫ γn+ε

γ+ε
2ln

∣∣∂xG
(
φ(γ′−ε),γ′

)∣∣ dγ′

ε
, (18)

contained in the expression (14) of Bn becomes:

I1 = 2K

ε

∫ γn+ε

γ+ε
(
γ′−γst

)
dγ′ = K

ε

[(
γ′−γst

)2
]γn+ε
γ+ε . (19)

The small correction ε in the domain of integration can

be neglected since ε¿ 1. Therefore, we obtain:

I1 = K

ε

[(
γ′−γst

)2
]γn

γ

= K

ε

[(
γn −γst

)2 − (
γ−γst

)2
]

. (20)

By combining equations (14) and (20), Bn is now writ-

ten as:

Bn ≈
σ2

ε

∫ γn+ε

γ0+ε
exp

(
K

ε

[(
γn −γst

)2 − (
γ′−γst

)2
])

dγ′

= σ2

ε
exp

(
K

ε

(
γn −γst

)2
)

×
∫ γn+ε

γ0+ε
exp

(
−K

ε

(
γ′−γst

)2
)

dγ′︸ ︷︷ ︸
I2

. (21)

The function which appears in the integral I2 is a Gaus-

sian function with standard deviation

ν=
√

ε

2K
. (22)

Integral I2 is then [8]:

I2 =
[

1

2

√
πε

K
erf

(√
K

ε

(
γ′−γst

))]γn

γ0

, (23)

where erf(x) is the error function. The initial condition γ0

is supposed to be much lower than the static threshold

γst , so that equation (23) can be written:

I2 = 1

2

√
πε

K

[
erf

(√
K

ε

(
γn −γst

))+1

]
. (24)

The dependence on the initial condition γ0 is now lost.

Since ε ¿ 1, for γn > γst the error function quickly

becomes equal to 1 and the integral I2 is simplified to

I2 =
√

πε
K . Finally the expression of Bn is:
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Figure 8: Relative errors: RE
[
γst

]
, RE

[
γth

d t

]
and RE

[
γ̄th

d t

]
for numerical precisions equal to 15 (a) and 100 (b).

Bn ≈ σ2

p
ε

√
π

K
exp

(
K

ε

(
γn −γst

)2
)

. (25)

From equation (25) it is possible to obtain the expres-

sion of
√
E
[
w2

n
]≈p

Bn :

√
E
[
w2

n
]≈σε−1/4

( π
K

)1/4
exp

(
K

2ε

(
γn −γst

)2
)

. (26)

The dynamic oscillation threshold γ̂th
d t is defined [3, 2]

as the value of γn for which the standard deviation√
E
[
w2

n
]

leaves the neighborhood of the invariant curve.

More precisely, the bifurcation occurs when
√
E
[
w2

n
]

be-

comes equal to the increase rate ε, as defined in eq. (7).

Finally, using equation (26), we have:

γ̂th
d t = γst +

√
−2ε

K
ln

[( π
K

)1/4 σ

ε5/4

]
, (27)

which is the theoretical estimation of the dynamic oscil-

lation threshold of the stochastic systems (5) (or of the

system (2) computed using a finite precision) when it

evolves in a sweep-dominant regime. The bifurcation de-

lay is a by-product of eq. (27) since it is simply γ̂th
d t −γst .

The method presented in this section is based on a

first-order Taylor expansion of the system (5) around the

invariant curve φ(γn), leading to the linear system (8).

Using an asymptotic expansion of the error function it

is possible to investigate the behavior of
p

Bn before γn

enters the neighborhood of the static oscillation threshold

γst . This study allows to define the domain of validity of

this linear approximation, as done by Baesens [3, 2]. This

is σ&
p
ε. This condition is respected in this work since

σ= 10−pr with 7 ≤ pr ≤ 5000 and 8.10−5 ≤ ε≤ 10−2. More

details on obtaining the domain of validity are given in

Appendix A.
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4.3 Discussion

In figure 6, γ̂th
d t defined by equation (27) is plotted against

the increase rate ε. It is compared with γnum
d t for different

values of the precision and for γ0 = 0. In figure 6(a), γnum
d t

is represented for finite precision cases. The significant

differences between finite precision cases and stochastic

cases observed for prec. = 7 and 15 are shown in figure

6(b). The theoretical result γ̂th
d t provides a good estima-

tion of the dynamic oscillation threshold as long as the

system remains in the sweep-dominant regime (with a

better estimation when the bifurcation delay is small‡).

Otherwise, γth
d t is a better approximation of γnum

d t , as ex-

pected in the deterministic regime.

Figure 7 shows the comparison between γ̂th
d t and γnum

d t
(only for finite precision cases) plotted against the ini-

tial condition γ0. In figure 7(a), variables are plotted for

several values of ε and for a fixed numerical precision.

The opposite is done in figure 7(b). As in figure 6, γ̂th
d t

provides a good estimation of the dynamic oscillation

threshold in the sweep-dominant regime, as well as γth
d t

in the deterministic regime.

Finally, to predict theoretically the dynamic bifurcation

threshold γ̄th
d t of the stochastic system (5) (as well as of

the system (2) when it is computed with a finite precision)

the following procedure is proposed:

• compute the theoretical estimation γ̂th
d t of the

stochastic system through eq. (27)

• compute the theoretical estimation γth
d t of the system

without noise through eq. (4)

• if γ̂th
d t < γth

d t the system remains in the “sweep-

dominant regime” and the dynamic threshold γ̄th
d t is

equal to γ̂th
d t , otherwise the “deterministic regime” is

attained and the dynamic threshold γ̄th
d t is equal to

γth
d t .

Figure 8 compares the relative error RE of the three

theoretical predictions of the oscillation threshold (γst ,

γth
d t and γ̄th

d t ) with respect to γnum
d t , as a percent value:

RE [X ] = 100×
( |γnum

d t −X |
γnum

d t

)
, (28)

where X takes successively the values of γst , γth
d t and γ̄th

d t .

For standard double-precision (fig. 8(a), prec.=15), the

sweep-dominant regime is prevalent throughout most of

the range of increase-rates studied in this article. Higher

precisions (for instance prec.=100) imply the appearence

‡This is an expected result because of the initial assumption of a
small bifurcation delay in the presence of noise, leading to first-order
Taylor expansions γst in previous calculation (see step one in section
4.2).

of the deterministic-regime for lower increase-rates. In

this case, γ̄th
d t provides a better estimation of the oscilla-

tion threshold of the clarinet with a linearly increasing

blowing pressure. Indeed, in situations represented in

figure 8, RE
[
γ̄th

d t

]
never exceeds 15% while RE

[
γst

]
and

RE
[
γth

d t

]
can reach 60% and 145% respectively. At slightly

lower values of ε than the limit between the two regimes,

γth
d t still provides a better estimation of γnum

d t than γ̄th
d t , a

situation that occurs for all values of the precision, ac-

cording to figure 6.

5. CONCLUSION

In many situations, the finite precision used in numerical

simulations of the clarinet system does not produce ma-

jor errors in the final results that are sought. Such is the

case, for instance, when estimating the amplitudes for a

given regime.

However, when slowly increasing one of the control

parameters, the distances between the state of the system

and the invariant curve can become smaller than the

round-off errors of the calculation, with dramatic effects

on the time required to trigger an oscillation. In these

cases, the inclusion of a stochastic variable in the theory

allows to correctly estimate the threshold observed in

simulations, which lies between the static and dynamic

thresholds found for precise cases.

As a final remark, the present theoretical study is prob-

ably not restricted to describe numerical simulations. In-

deed, the noise level σ measured in an artificially blown

instrument is typically of the order of magnitude of 10−3.

The domain of validity of the results: σ &
p
ε suggests

that the comparison with experiment using blowing pres-

sure with increase rates ε > 10−6, seems to be possible

although the noise level usually increases with the pres-

sure applied to the instrument.
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A. LIMIT OF THE LINEAR CALCULATION

The method presented in Section 4 is based on a first-

order Taylor expansion of the system (5) around the in-

variant curve φ(γn) leading to define the linear system (8).

Following Baesens [3, 2], we give here the upper bound

of the domain of validity of this linear approximation.
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Using equations (14) and (24), the expression Bn is

given by:

Bn = σ2

2

√
π

εK
exp

(
K

ε

(
γn −γst

)2
)

×
[

erf

(√
K

ε

(
γn −γst

))+1

]
. (29)

We investigate the behavior of E
[
w2

n

]
before γn enters

in the neighborhood of the static oscillation threshold

γst . More precisely, we compute an approximate expres-

sion of E
[
w2

n

]
when γn < γst −ν, where ν is defined by

equation (22). To do this, the error function in equation

(29) is expanded in a first-order asymptotic series [1] (the

asymptotic expansion of the error function erf(x) for large

negative x is recalled in Appendix B):

Bn = σ2

2

√
π

εK
exp

(
K

ε

(
γn −γst

)2
)

×

−1−
exp

(
−K

ε

(
γn −γst

)2
)

√
Kπ
ε

(
γn −γst

) +1

 , (30)

which is simplified in:

Bn =− σ2

2K
(
γn −γst

) . (31)

Using the explicit form of γn , solution of equation (2b):

γn = εn +γ0, (32)

and (31), we have:

√
Bn = σp

2K ε

1p
nst −n

, (33)

where nst is the iteration for which γst is reached.

Equation (33) means that when γn < γst −µ, the stan-

dard deviation
√
E
[
w2

n
] ≈ p

Bn increases with the time

(i.e. with n) like 1/
p

nst −n to order σ/
p
ε, and there-

fore remains small if σ¿p
ε. Otherwise, if σ&

p
ε, the

orbit of the series p+
n leaves the neighborhood of invari-

ant curve φ(γ) before the static oscillation threshold is

reached. In this case, linear calculation made in Section

4 is no longer valid.

B. ASYMPTOTIC EXPANSION OF ERROR

FUNCTION

The asymptotic expansion of the error function erf(x) for

large negative x (x →−∞) is [1]:

erf(x) ≈−1− exp
(−x2

)
p
πx

×
(

1+
+∞∑

m=1
(−1)m 1 ·3 . . . (2m −1)(

2x2
)m

)
(34)
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