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Abstract : We prove the existence of travelling vortex helices to the Gross-Pitaevskii equation in R3. These

solutions have an infinite energy, are periodic in the direction of the axis of the helix and have a degree one at

infinity in the orthogonal direction.

Résumé : Nous prouvons l’existence d’ondes progressives à vorticité sur une hélice pour l’équation de Gross-

Pitaevskii dans R3. Ces solutions sont d’énergie infinie, périodiques dans la direction de l’axe de l’hélice et ont

un degré un dans la direction orthogonale.
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1 Introduction

1.1 Statement of the result

In this paper, we are interested in the existence of travelling waves solutions to the Gross-Pitaevskii
equation in space dimension 3

i
∂ψ

∂t
+ ∆ψ + (1 − |ψ|2)ψ = 0, (1)

where ψ : R
3 × R → C. This equation is used as a model for Bose-Einstein condensates, nonlinear

optics and superfluidity. On a formal level, it possesses two important quantities constant in time

• the energy

E(ψ) =
1

2

∫

R3

|∇ψ(., t)|2 +
1

2
(1 − |ψ(., t)|2)2 dx,

• the momentum
~P (ψ) = Im

∫

R3

ψ · ∇ψ dx =

∫

R3

(iψ,∇ψ) dx,

where (., .) is the scalar product in R
2 ' C. The first component of ~P is denoted P (ψ) =

∫

R3(iψ, ∂1ψ) dx.

Travelling waves solutions to (1) are solutions of the form (up to a rotation)

ψ(x, t) = U(x1 − Ct, x2, x3).
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The equation on ψ reads now on U

iC
∂U

∂x1
= ∆U + (1 − |U |2)U. (2)

The question of the existence of such travelling waves for small speeds has been studied in [BS] in
dimension 2 and in [BOS] and [C1] in dimension larger than 2. We refer to these papers for details
and references about the Gross-Pitaevskii equation. In [BS], travelling waves with a structure of two
vortices of degrees 1 and −1 are exhibited, and in [BOS] and [C1] the travelling wave is a vortex ring
(like a “smoke ring”).

We consider a function U ∗
L defined in the following way. We use cylindrical coordinates (x1, r, θ),

where (r, θ) ∈ R+ × (R/2πZ) are the polar coordinates in the (x2, x3)-plane. We set T := R/2πZ (we
do not identify T with S

1 to be able to define ∂x1
for example). We fix L ≥ 0 and define in cylindrical

coordinates
HL := {x ∈ T × R

2, r = L, x1 = θ}.
This is an helix of axis x1, of pitch L, and length M(HL) = 2π

√
1 + L2, that we denote ~HL when

endowed with the orientation given by the natural parametrization

T 3 θ 7→ γ(θ) := (θ, L cos θ, L sin θ).

If L = 0, then H0 = T × {0} is the x1 axis. We may then see 2π ~HL as a prescribed vorticity and
consider a map U ∗

L ∈ C∞(T×R
2 \HL,S

1), which will be precisely defined at the end of the subsection,
such that its vorticity concentrates on the helix HL in the sense that

curl(U ∗
L ×∇U∗

L) = 2π ~HL and div(U ∗
L ×∇U∗

L) = 0, (3)

that is the vector field U ∗
L ×∇U∗

L, representing the gradient of the phase of U ∗
L, is given in the figure

below. The map U ∗
L is therefore smooth outside HL, is S

1-valued and has a degree one around ~HL and

L

x
1

2π

Figure 1: The vector field U ∗
L ×∇U∗

L

at infinity (in the (x2, x3)-plane). Our main result states the existence, after rescaling, of solutions to
(2) close to U ∗

L. Due to the degree one at infinity, they are of infinite energy. Moreover, these solutions
are periodic in the x1 variable of the axis of the helix.
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Theorem 1. For every L > 0, there exists ε0(L) > 0 such that, for every 0 < ε < ε0(L), there exists
a solution Uε to (2), 2π

ε -periodic in the x1 variable, with C = C(ε) verifying, if ε→ 0,

C(ε)

ε|log ε| →
1√

1 + L2
and P (Uε) = 2

(

π
L

ε

)2
. (4)

Moreover,

|Uε(x)| → 1 as |(x2, x3)| → +∞ (5)

and, for every k ∈ N,

Uε

(x

ε

)

→ U∗
L in Ckloc(T × R

2 \ HL). (6)

Remark 1. In the limiting case L = 0, we can find solutions of (2) independent of x1, that is
U(x) = V (x2, x3), with V solution of infinite energy (in R

2) and with a degree one at infinity of

∆V + V (1 − |V |2) = 0 in R
2. (7)

These solutions have been studied in [BMR] and also [Sha], [San1] and [Mi]. The associated functions
U clearly have a vanishing momentum and are solutions of (2) for any speed C ∈ R. There exists a
particular radially symmetric solution of (7) of degree one at infinity of the form

V0(z) = ρ(|z|) z|z| ,

where ρ(r) increases from 0 to 1 as r goes from 0 to +∞.

Remark 2. It is important to note that the solution is 2π
ε -periodic in the x1 variable, and its singular

set is an helix of pitch L
ε . Therefore, we will work with functions U which are defined on Tε × R

2,
with Tε := R/(2π

ε Z).

Remark 3. We finally emphasize that the momentum in (4) is not exactly the one already introduced.
Indeed, since the solution Uε is periodic in the x1 variable, the integral which defines the momentum
is clearly not convergent in R

3. We will instead consider a momentum defined only on a period, that
is Tε × R

2. Even in this case, we clarify just below the definition.

We clarify the notion of momentum for our problem, and adapt to the situation with a degree one
at infinity the definition given in [BOS]. Note that neither the definition of P , since (iU, ∂1U) may not
be in L1 at infinity, nor an energy space is clear, since the degree one at infinity makes the energies
to diverge. We denote DR (R > 0) the disk in R

2 of radius R centered at 0. We consider the class of
functions

Yε := {U ∈ H1
loc ∩ L∞(Tε × R

2,C),
∫

Tε×R2 |∂1U |2 + 1
2(1 − |U |2)2 <∞, ∃R > 0 s.t.

for r ≥ R, |U(x)| ≥ 1/2 and U has degree one outside Tε ×DR}.

Note that if U ∈ Yε and |U(x)| ≥ 1/2 for r ≥ R, the degree of U outside Tε × DR is well-defined.
Indeed, from [BLMN], we know that, for every R′ > R, since

U

|U | ∈ H1(Tε × (DR′ \ D̄R),S1),

then its degree on almost every slice {x1} × (DR′ \ D̄R) is well-defined and is independent of x1 and
R′ > R : we will call this integer the degree of U outside Tε ×DR. For U ∈ Yε, we may then write

U(x) = ρ(x) exp(iϕ(x) + iθ),
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for r ≥ R, where ρ(x) = |U(x)| ≥ 1/2 and ϕ ∈ H1
loc(Tε × (R2 \ DR),R) is well-defined modulo a

multiple of 2π (note that imposing ∂1U ∈ L2(Tε × R
2) prevents U from having a degree in the x1

variable). We define then

P (U) :=

∫

Tε×R2

(iU, ∂1U)χ+

∫

Tε×R2

(1 − χ)(ρ2 − 1)∂1ϕ+

∫

Tε×R2

ϕ∂1(1 − χ), (8)

where χ is a smooth function compactly supported, such that 0 ≤ χ ≤ 1 and χ = 1 on Tε ×DR. It is
easy to verify that this definition of P (U) does not depend on the exact choice of χ and ϕ.

For our problem, it is convenient to perform the rescaling

uε(x) := Uε

(x

ε

)

, cε :=
C(ε)

ε|log ε| .

The function uε is then defined in T × R
2 and equation (2) reads now on uε

icε|log ε|
∂uε
∂x1

= ∆uε +
1

ε2
uε(1 − |uε|2). (9)

The expressions of the (diverging) energy and momentum are now

Eε(uε) = εE(Uε) =
1

2

∫

T×R2

|∇uε|2 +
1

2ε2
(1 − |uε|2)2 dx =

∫

T×R2

eε(uε) dx

and

p(uε) = ε2P (Uε) =

∫

T×R2

(iuε, ∂1uε) dx.

Finally, we would like to mention why we have been interested in these solutions. In [BOS] (see
Theorem 4), the study of the asymptotic of a general Ginzburg-Landau equation including (9) in a
domain Ω ⊂ R

N , N ≥ 3 under assumption supε |cε| <∞ for solutions uε satisfying the natural energy
bound

Eε(uε) ≤M0|log ε|
leads to the mean curvature equation for the concentration set

~H(x) = ?
(

c~e1 ∧ ?
dJ∗
dµ∗

)

,

where (all these limits are for a subsequence εn → 0) c = limε→0 cε, ? is Hodge duality, J∗ is a limiting

measure of the jacobian, µ∗ a limiting measure of eε(uε)dx
|log ε| , dJ∗

dµ∗
is the Radon-Nikodym derivative and

~H is the generalized mean curvature of the varifold V (Σµ∗ ,Θ∗) (Θ∗ is the 1-dimensional density of µ∗
and Σµ∗ = {Θ∗ > 0} its geometrical support). If N = 3 and d‖J∗‖

dµ∗
= 1, the singular set is a smooth

curve γ and this equation rewrites

~κ = c~e1 × ~τ, (10)

where ~τ is the unit tangent and ~κ := d~τ
ds is the curvature vector of γ. The solutions in R

3 are the circles
a+ {0} × ∂D(0, c−1) (a ∈ R

3), the straight lines a+ R~e1 (a ∈ R
3), and helices of axis parallel to ~e1.

The case of a singular circle comes from Theorem 1 in [BOS] (for N = 3). A straight line singular set
comes from a two dimensional solution (independent of x1) of the classical Ginzburg-Landau equation
in two dimensions, having a singularity of degree 1 in (x2, x3) = (0, 0), as the map V0 (see Remark 1),
having radial symmetry. We have constructed the last type of solution.
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Definition of the map U ∗
L. In order to define precisely the map U ∗

L, we note that the natural vector
field ~v verifying (3) is given by Biot-Savart law

~v(x) :=
1

4π

∫

R3

(x− y) × (2π ~HL(y))

||x− y||3 dy =
1

2

∫ +∞

−∞

(x− γ(θ)) × γ ′(θ)
||x− γ(θ)||3 dθ. (11)

Note that the integral is convergent since ‖γ ′‖2 = 1 + L2 and ‖γ(θ)‖ ∼ |θ| for |θ| → +∞. By
construction, the vector field ~v is smooth outside HL, satisfies div~v = 0 and its vorticity

curl~v = 2π ~HL

is concentrated on HL. Moreover, ~v has a circulation 2π around ~HL. We remark that we could have
reversed the orientation of the helix, which would have led to the vector field −~v. Another natural
helix, turning in the other sense, is

H̃L := {x ∈ T × R
2, r = L, x1 = −θ},

which may be seen as the image of HL by the symmetry x 7→ (−x1, x2, x3), and will be denoted ~̃HL

when endowed with the orientation T 3 θ 7→ γ̃(θ) := (−θ, L cos θ, L sin θ). The oriented helices ~HL

and ~̃HL are “right-hand” for the natural orientation of T×R
2. The reference vortex helix U ∗

L is defined
to be the only map U ∗

L ∈ C∞(T × R
2 \ HL,S

1) such that

U∗
L ×∇U∗

L = ~v,

where, if a, b ∈ C ' R
2, a × b = a1b2 − a2b1 denotes the exterior product. The map U ∗

L is unique
up to a phase change (since T × R

2 \ HL is connected and U ∗
L × ∇U∗

L is the gradient of the phase

of U∗
L). The map U ∗

L has therefore a degree one around ~HL and at infinity (in the (x2, x3)-plane).
Changing the orientation of the helix is only complex conjugation for the solution (up to a phase

change). Furthermore, changing the helix ~HL for ~̃HL changes ~v for ~̃v(x) := (−v1, v2, v3)(−x1, x2, x3),
still of circulation 2π around H̃L, and changes U ∗

L for Ũ∗
L(x) := U ∗

L(−x1, x2, x3), still of degree one
at infinity. In the degenerate case where L = 0, H0 is just the axis T × {0} and U ∗

0 is then the

2-dimensional map (in the (x2, x3)-plane) U ∗
0 (x) = (x2,x3)

|(x2,x3)| with a singularity of degree one at 0.

Remark 4. Denoting (Uε, C, P ) as in Theorem 1 and Ũε(x) := Uε(−x1, x2, x3), we remark that Ūε
is solution for (−C,−P ) and the oriented helix HL with reverse orientation; Ũε (resp. ¯̃Uε) is solution

for (−C,P ) (resp. (C,−P )) with the helix ~̃HL (resp. with the other orientation).

1.2 Stability of the solution

Concerning the stability of this solution, Uε must be seen as a minimizer on the whole Tε × R
2, with

the constraints of degree one at infinity and P = 2π2(Lε )2 but in view of the infinite energy, we can
only allow local perturbations, which will preserve the condition of degree one at infinity.

Theorem 2. For all 0 < ε < ε0(L), Uε ∈ Yε and is a constrained minimizer in the following sense.
For all R > 0, for all V ∈ H1

loc ∩ L∞(Tε × R
2,C) such that

V = Uε outside Tε ×DR

(then V ∈ Yε and P (V ) is well-defined) and such that

P (V ) = 2
(

π
L

ε

)2
,

then
E(V,Tε ×DR) ≥ E(Uε,Tε ×DR).
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The proof of Theorem 2 is based on a decay result for the energy at infinity (keep in mind that
the solution has a degree one at infinity in the variables (x2, x3)).

Proposition 1. There exist smooth maps ϕ, ρ : T× (R2 \DL+1) → R such that for ε|(x2, x3)| ≥ L+1,

Uε(x) = ρ(εx)eiϕ(εx)+iθ = uε(εx),

and ρ ≥ 1/2. There exists CL > 0 and λ = λ(L) ∈ (0, 1] such that, for r ≥ L+ 1,

∫

T×(R2\Dr)
|∇ρ|2 + ρ2|∇ϕ|2 +

(1 − ρ2)2

2ε2
≤ CL

rλ
, (12)

that is, for L+ 1 ≤ r ≤ R,

∣

∣

∣Eε(uε,T × (DR \Dr)) − 2π2 log
(R

r

)∣

∣

∣ ≤ CL
rλ
.

Furthermore, the asymptotic of the energy near the helix as ε→ 0 is

ε

π|log ε|E(Uε,Tε ×D(L+1)/ε) =
Eε(uε,T ×DL+1)

π|log ε| → 2π
√

1 + L2. (13)

Remark 5. The solution U(x) = V0(x2, x3) with a straight line vortex satisfies a stronger stability
result. Indeed, from [BMR], [Sha], [San2] and [Mi], we know that V0 is a local (in space) minimizer
of the Ginzburg-Landau energy E on R

2, and the only local (in space) minimizers are only, up to a
translation and multiplication by a complex of modulus 1, V0 and V̄0. Therefore, U is also a local (in
space) minimizer of E without the constraint on the momentum.

Remark 6. Note that we first fix a (large) period 2π/ε for Uε, and then the result is that “local”
(in space) minimizers of the energy with the constraint on the momentum have vorticity on an helix
with the same period. Therefore, the solution Uε is not locally (in space) minimizing for perturbations
on m ∈ N periods, m ≥ 2 (with the appropriate constraint on the momentun which is for m periods
P = 2m(πLε )2), since the vorticity of this other minimization problem is an helix of period 2πm/ε
(and not 2π/ε). This last minimizer is the one obtained by changing ε for ε/m and L for L/

√
m.

Remark 7. Note finally that there exist maps of finite energy, if we drop the condition of degree one
at infinity. Replacing Yε by the space Xε of maps in L∞ ∩H1

loc(Tε × R
2,C) of modulus greater than

1/2 in a neighborhood of infinity, in which we can define the momentum, the problem of minimizing
E in Xε with the constraint P = 2(π Lε )2 has solutions and the corresponding minimizers of E are, as
in Theorem 1 in [BOS], vortex rings ( 2π

ε -periodic in the x1 variable) of radius L.

As in [BOS], we will not tackle the problem of the stability of the solution Uε for the Cauchy
problem associated to (1). The situation is here even more involved since the solution is of infinite
energy. The adapted context should be on a bounded domain (see subsection 1.4). Finally, we would
like to mention that vortex helices have been observed numerically in [ABK] for the general Ginzburg-
Landau type equation, with real constants c and b,

∂tA = A− (1 + ic)|A|2A+ (1 + ib)∆A.

For c, b → +∞ (and a suitable renormalization), we recover the standard nonlinear Schrödinger
equation (1). In section V of [ABK], in the case b = 1/ε � 1, a stable travelling vortex helix is
numerically obtained. The boundary conditions are of periodic type as well as the homogeneous
Neumann condition. Even for small values of c and b (see [RCK] and [GGNO] for phase twisted initial
data), there is convergence to an helical vortex.
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1.3 Discussing symmetries

In 3-dimensional space, the existence of travelling vortex rings is proved in [BOS]. This vortex is the
circle {0} × ∂D1(0) and has the cylindrical symmetry. Therefore, it is natural to consider for this
problem cylindrically symmetric solutions, that is solutions of the type

U(x) = Û(x1, r).

For our problem, even though we work on a (periodic) cylinder and the condition at infinity is

U(x) ' (x2, x3)

|(x2, x3)|
= eiθ,

thus cylindrically symmetric, we emphasize that the solution does not have the cylindrical symmetry
(except for L = 0). The more appropriate symmetry is “helicoidal symmetry”, that is

U(x) = e−iεx1Û(εx1 − θ, r) or U(x) = e−iεx1Û(εx1 + θ, r), (14)

for a Û : T × R+ → C. A straightforward computation shows that U(x) = e−iεx1Û(εx1 − θ, r)
(resp. U(x) = e−iεx1Û(εx1 + θ, r)) precisely means that the vector field U ×∇U satisfies the property
that its components in the cylindrical basis (~e1,~er,~eθ) are constant on each helix (α, 0, 0) + HR (resp.
(α, 0, 0) + H̃R), R ≥ 0 and α ∈ T. We may impose the first symmetry, for instance, for the solutions
without changing the main ideas of the proofs.

Theorem 3. For every L > 0, there exists ε0(L) > 0 such that, for every 0 < ε < ε0(L), there exists
a solution Uε to (2), 2π

ε -periodic in the x1 variable, with C = C(ε) verifying (4), (5) and (6) as ε→ 0,
and such that Uε is helicoidally symmetric in the sense that

Uε(x) = e−iεx1Ûε(εx1 − θ, r).

For the proof, it suffices to work on the subspace of maps with the helicoidal symmetry (14). One
may also work with the variables εx1 − θ and r, changing (2) for a 2-dimensional equation with a
degenerate elliptic operator.

Remark 8. We have not been able to prove that the solutions provided by Theorem 1 are helicoidally
symmetric. The solutions Uε and Uε are presumably the same up to a rotation, translation and
multiplication by a complex number of modulus one. For the helicoidally symmetric solution Uε,
we can prove a stability result analogous to Theorem 2. We have however to restrict ourselves to
perturbations which are also helicoidally symmetric.

Remark 9. One may obtain the other vortex helix Ũ∗
L imposing the other helicoidal symmetry

U(x) = e−iεx1Û(εx1 + θ, r).

1.4 Link with Euler equation

Let us perform on ψ the Madelung transform

ψ =
√
ρ exp(iϕ),

which has clear meaning if |ψ| 6= 0. We may then rewrite equation (1) in the variables (ρ,~v := 2∇ϕ) :

{

∂ρ
∂t + div(ρ~v) = 0,
∂~v
∂t + ~v · ∇~v + ∇(2ρ) = −∇

(

|∇ρ|2
2ρ2

− ∆ρ
ρ

)

.
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Neglecting the last term in the right-hand side, often called “quantum pressure”, this system reduces
to the Euler equations for compressible ideal fluids, with speed ~v and pressure ρ2. Concerning the
existence of vortex helices solutions for the incompressible Euler equation, that is div~v = 0 and

∂~v

∂t
+ ~v · ∇~v = −∇p, (15)

we may mention the work of [Du], where the question of global in time solutions with helicoidal sym-
metry to the incompressible Euler equation is investigated. In this context, helicoidal symmetry means
vector fields ~v such that the components in the cylindrical basis (~e1,~er,~eθ) are constant on each helix
(α, 0, 0) +HR, R ≥ 0, α ∈ T (this is the condition we impose in Theorem 3) and such that the vector
field ~v is orthogonal to every helices (α, 0, 0) + HR for R ≥ 0 and α ∈ T (that is ~v · (~e1 + r~eθ) = 0 for
every x ' (x1, r, θ)). We can not impose this last condition to Uε in Theorem 3 since U ∗

L ×∇U∗
L does

not satisfy it (we will see that U ∗
L ×∇U∗

L ' ~eθ
r as r → +∞). Notice also that we did not require the

first condition for the solution Uε, though the limiting vector field U ∗
L ×∇U∗

L satisfies this constraint.
Note that in dimension 3, the solutions to Euler equation may become singular in finite time. The
main point is that imposing the helicoidal symmetry reduces the problem to a two-dimensional prob-
lem, for which global in time existence results for the incompressible Euler equation are known. The
result of [Du] implies for instance that, given R > 0 and an initial vector field ~v0 which has helicoidal
symmetry, is divergence free and tangent to the boundary of the cylinder R×DR, then there exists a
unique solution ~v, global in time and divergence free, to (15) with initial datum ~v0. Moreover, ~v(t, .)
has helicoidal symmetry for all t ≥ 0. However, it is stated neither that we may choose ~v0 such that
the vorticity concentrates on an helix, nor that the solution may be a travelling wave, and a fortiori
its propagation speed is not computed. In any cases, the vector field ~v = U ∗

L×∇U∗
L is not orthogonal

to the helices (α, 0, 0) + HR, α ∈ T, R ≥ 0, that is the second hypothesis in [Du] is not satisfied.

Concerning the dynamics of vortex filaments described by a map X = X(s, t), where t is time and
s is arclength, the equation governing the motion of X in a perfect inviscid fluid, known as LIE (or
LIA) (Localized Induction Equation (or Approximation)), has been derived first by L.S. da Rios (see
[dR] and also [R]), and then rediscovered by F.R. Hama ([H]), and reads

∂tX = ∂sX × ∂2
sX (16)

(see also [KM] for the case where the filament may be self-stretched). Assuming the map X smooth,
this equation writes, in the Frenet basis (~τ , ~β, ~ν),

∂tX = ( ~H · ~ν)~β, (17)

where ~H := d~τ
ds is the (mean) curvature vector, ~β being called the binormal. In the case X is a travelling

wave with constant speed c~e1, i.e. X(s, t) = Y (s) + ct~e1, we clearly recover equation (10). A motion
verifying equation (17) is known as a (smooth) binormal curvature flow. The paper [GV] studies
self-similar solutions to (17) and shows that this equation is ill-posed and can develop singularities.
We mention the work of R.L Jerrard [J1], where the convergence in dimension N ≥ 3 as ε → 0 to a
(weak) binormal curvature flow is proved for the scaled Gross-Pitaevskii equation (1)

i|log ε|∂tu+ ∆u+
1

ε2
u(1 − |u|2) = 0,

if the initial datum is in 1 + H1(RN ) and has a jacobian concentrated on some round (N − 2)-
dimensional sphere. In the 2-dimensional case, the situation is different and involves the renormalized
energy W introduced in [BBH2]. In [LX] (Theorem 1) (see also [CJ]), it is proved that if uε solves

i∂tuε + ∆uε +
1

ε2
uε(1 − |uε|2) = 0, ut=0

ε = u0
ε,
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(either in a bounded domain with a boundary condition of degree n, either in R
2 with n = 0 and

u0
ε tends to 1 at infinity sufficiently fast), then the linear momentum ρ~v converges to a solution to

Euler equation, provided the vortices of the initial datum are of degree ±1. We note the different time
scalings for N = 2 and N ≥ 3. Moreover (Theorem 2 in [LX]), if the datum u0

ε is almost minimizing,
that is Eε(u

0
ε) = πn|log ε|+πW (a(0))+o(1) as ε→ 0, the vortices aj(t), 1 ≤ j ≤ n, obey the so called

Kirchhoff law for fluid point vortices

daj
dt

(t) =
(∂W

∂a2
j

,−∂W
∂a1

j

)

, i.e. i
daj
dt

(t) = 2
∂W

∂aj
,

where W is seen as a function of the n complex variables (a1, . . . , an).
From (16), R. Betchov establishes in [B] the intrinsic equations on the curvature K and torsion T

of the curve, namely
{

∂tK = −2∂s(KT ),

∂tT + 2T∂sT = 1
2

(

∂sK + ∂3
sK
K + (∂sK)3

K3 − 2 (∂sK)(∂2
sK)

K2

)

,

and the helicoidal solution (among others) is exhibited as a solution for T and K constant. However,
the corresponding linearized equations are shown to be unstable. These equations have then been
solved for vortex filaments without change of form in [K] and here again the helix is shown to be
unstable. On the other hand, vortex helices (and other vortex filaments) in an axial flow have been
experimentally observed by T. Maxworthy, E.J. Hopfinger and L.G. Redekopp in [MHR]. Later, Y.
Fukumoto and T. Miyazaki in [FM] have studied the stability of vortex filaments in axial flows, which
changes LIE for a more complex equation, and have shown that vortex helices are stable under some
conditions on the axial flow and the torsion of the helix, corroborating the observations of [MHR]. It
would be interesting, by analogy with the the study of [FM], to investigate the stability of the solution
Uε in the context of rotating superfluids. In this case, the energy in the rotating frame, taking into
account the Coriolis force, denoting ~ω = ω~e1 the rotation vector and ω the angular velocity around
the axis x1, is

1

2

∫

Ω
|∇u+ iu~ω × x|2 +

(1 − |u|2)2
2ε2

,

where Ω ⊂ R
3 is, for instance, a cylinder of axis x1. In this context, a homogeneous Neumann condition

should be prescribed, at least on the lateral boundary of the cylinder.
For superfluids like Helium II, an equation analoguous to LIA can be derived (see for instance [Do]

or [Sam]). This equation, called the Schwarz’s equation, writes

∂tX = ~vi + ~vap + α∂sX × (~vn − ~vap − ~vi) − α′∂sX ×
(

∂sX × (~vn − ~vap − ~vi)
)

,

where ~vap is the applied flow, ~vn is the velocity of the normal fluid, and ~vi is the velocity induced by
the filament. This term is given by the Biot-Savart law, and is approached in the Localized Induction
Approximation by (up to a physical constant factor) ∂sX × ∂2

sX. The constants α and α′ are friction
coefficients between the normal fluid and the superfluid. If there is no friction, α = α ′ = 0. The LIA
is not always a good approximation, especially when parts of the filaments get close one another or
self-intersect. However, for our helicoidal vortex, (16) remains a good approximation.

Acknowledgement : I would like to thank Fabrice Bethuel for suggesting me this problem.

2 Strategy of the proof

In this Section, we give the scheme of the proof of Theorems 1 and 2. The idea is to approximate the
problem on cylinders of growing diameter. We will point out the problems related to the fact that the
solution is of infinite energy. We will give the precise proofs in Sections 4 to 8. In the sequel, CL will
denote a constant depending on L only.
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2.1 Setting

We will denote (~e1, ~er, ~eθ) the usual cylindrical basis. The next Lemma states that ~v behaves like
~eθ
r = “∇θ“ at infinity, that is U ∗

L is expected to be close to eiθ as r → +∞.

Lemma 1. We have
∫

T×{r≥L+1}
‖~v − ~eθ

r
‖2 < +∞.

Since both energy and momentum are not easily defined, we approximate the problem on cylinders

Ωn := T ×Dn,

for n ∈ N
∗. In view of Lemma 1 above, we expect that the behavior of the solution Uε is

Uε(x) ' (x2,x3)
|(x2,x3)| as |(x2, x3)| → +∞,

thus we naturally impose a boundary condition on ∂Ωn = T × ∂Dn

g : x 7→ eiθ =
(x2, x3)

|(x2, x3)|
.

The function g is well-defined and smooth on T × (R2 \ {0}), and will impose a degree one on the
boundary (in the (x2, x3)-plane). We work on the affine space

Xn := H1
g (Ωn,C)

(note that H1(Ωn) embeds compactly in L4(Ωn)). Since Ωn is bounded, we can define the momentum

p(u) :=

∫

Ωn

(iu, ∂1u) dx.

We will work in the (clearly non void) set

Γn := {u ∈ Xn, p(u) = 2π2L2},

where the momentum 2π2L2 has to be understood as 2π × (πL2), that is 2π times the area of a disk
of radius L. We then consider the minimization problem

(Pn
ε ) In

ε := inf
u∈Γn

Eε(u).

The existence of a minimizer for the problem (Pn
ε ) is straightforward.

Proposition 2. There exist a minimizer uε,n ∈ Γn for the problem (Pn
ε ) and a constant cε,n ∈ R such

that uε,n satisfies (9), that is

icε,n|log ε|∂1uε,n = ∆uε,n +
1

ε2
uε,n(1 − |uε,n|2) in Ωn. (18)

Moreover, the following upper bounds hold for n ≥ L+ 2

Inε = Eε(uε,n) ≤ 2π2 log n+ 2π2
√

1 + L2|log ε| + CL (19)

and

1

2

∫

T×Dn

|∂1uε,n|2 +
∣

∣∇2,3|uε,n|
∣

∣

2
+

1

2ε2
(1 − |uε,n|2)2 dx ≤ CL|log ε|. (20)

10



Remark 2.1. The constant
cε,n

2 |log ε| ∈ R in (18) is the Lagrange multiplier, due to the constraint on
the momentum. In (19), the term 2π2 log n is the diverging term due to the degree one at infinity. The
term 2π2

√
1 + L2|log ε| is the one that will bound the length of the singular set. The upper bound

(20) is deduced from a lower bound taking into account this degree at infinity.

An important remark has to be made concerning the momentum. We recall the definition of the
jacobian for u ∈ H1(Ω,C)

Ju :=
1

2
d(u× du) =

∑

i<j

(∂iu× ∂ju) dxi ∧ dxj ,

and define ξ as the 2-form

ξ := x2 dx1 ∧ dx2 + x3 dx1 ∧ dx3 = rdx1 ∧ dr,

which appears when we integrate by parts the momentum, since d∗ξ = 2dx1. Indeed, in view of the
boundary condition, we have (uε,n × duε,n)> = (g × dg)> = dθ = 1

n2 ? ξ on T × ∂Dn, thus integration
by parts yields

p(uε,n) =

∫

Ωn

〈Juε,n, ξ〉.

Our first aim is to bound the speed cε,n to be able to use the equation. However, this bound does
not rely directly, as in [BOS], on Pohozaev identity, since the left hand side of (9) is of the order of
log n. A strategy could be to try to localize the energy, or the momentum, but this can not be done
with the use of the equation, which requires precisely a bound on cε,n. To break this vicious circle,
our approach will be to use a regularization technique.

2.2 The regularized problem

We consider the following parabolic regularization problem. First, define

ũ(x) :=

{

uε,n(x) if |uε,n(x)| ≤ 1,
uε,n(x)
|uε,n(x)| if not.

It is clear that
|ũ|∞ ≤ 1 and Eε(ũ) ≤ Eε(uε,n) = Inε .

We then consider the minimization problem

(Rn
ε ) inf

v∈Xn

Eε(v) +

∫

Ωn

|ũ− v|2
2ε

,

for which the existence of a minimizer vε,n is straightforward. Its first properties are given in the
following lemma.

Lemma 2.1. The map vε,n satisfies for n ≥ L+ 2 and 0 < ε < 1/4

Eε(vε,n) +

∫

Ωn

|ũ− vε,n|2
2ε

≤ Inε ≤ 2π2 log n+ 2π2
√

1 + L2|log ε| + CL. (21)

It satisfies also the equation

∆vε,n +
1

ε2
vε,n(1 − |vε,n|2) =

1

ε
(vε,n − ũ) on Ωn (22)

and for a constant C0 independent of ε, n and L,

|vε,n|∞ ≤ 1, |∇vε,n|∞ ≤ C0

ε
. (23)

11



Proof of Lemma 2.1. To obtain (21), just take ũ as a comparison map, and (22) is the Euler
equation for (Rn

ε ). Consider the orthogonal projection of vε,n on the disk D̄1

ṽ(x) :=

{

vε,n(x) if |vε,n(x)| ≤ 1,
vε,n(x)
|vε,n(x)| if not.

By convexity of D̄1, we have |∇ṽ| ≤ |∇vε,n|, |ṽ − ũ| ≤ |vε,n − ũ| and

∫

Ωn

(1 − |ṽ|2)2 =

∫

{|vε,n|≤1}
(1 − |vε,n|2)2 ≤

∫

Ωn

(1 − |vε,n|2)2,

with strict inequality unless |vε,n| ≤ 1 a.e. in Ωn. Therefore,

Eε(ṽ) +

∫

Ωn

|ũ− ṽ|2
2ε

≤ Eε(vε,n) +

∫

Ωn

|ũ− vε,n|2
2ε

with strict inequality unless |vε,n|∞ ≤ 1. Since vε,n is minimizing and ṽ = g on ∂Ωn, |vε,n|∞ ≤ 1. For
the estimate on the gradient, consider the scaled map v̂(x) := vε,n(εx), which satisfies

∆v̂ + v̂(1 − |v̂|2) = ε(v̂ − ũ(εx)),

and the estimate on the gradient comes from classical estimates for elliptic equations since v̂ = g = e iθ

on T × ∂Dn/ε, |v̂|∞ ≤ 1 and |ũ(ε.)|∞ ≤ 1. �

The advantage of working with vε,n instead of uε,n is that it is close enough to uε,n and satisfies
the bound (23) for the gradient, whereas uε,n does not since cε,n is not bounded yet. The next lemma
states that the two expressions integrated for the calculus of the momentum of vε,n and uε,n are close
(say roughly in L1(Ωn)), hence it suffices to localize the first one to localize the second one.

Lemma 2. For a constant CL independent of 0 < ε < 1/4 and n ≥ L+ 2 and for every (measurable)
set B ⊂ Dn, we have

∣

∣

∣

∫

T×B
(ivε,n, ∂1vε,n) −

∫

T×B
(iuε,n, ∂1uε,n)

∣

∣

∣
≤ CL

√
ε|log ε|. (24)

One of the main advantage of working with vε,n is that we will be able to localize sufficiently the
singular set of vε,n in order to bound the speed cε,n. This will use a result of [San2] (see also [J2])
concerning lower bounds for the Ginzburg-Landau energy. We denote

C(a,R) := T ×DR(a) and Č(a,R) := Ωn ∩ C(a,R),

and prove that the singular set {|vε,n| ≤ 1/2} of vε,n is included in some not too large cylinders.

Lemma 3. For 0 < ε < 1/4 and n ≥ CL|log ε|, there exists a finite family of cylinders (C(aj , rj))j∈J ,
depending on ε and n, such that

{|vε,n| ≤ 1/2} ⊂ ∪j∈JČ(aj , rj) and
∑

j∈J
rj ≤ CL|log ε|.

Since now the singular set of vε,n is localized, thus the momentum of uε,n, we are now in position
to control the Lagrange multiplier, using carefuly a Pohozaev-type identity.

Proposition 3. We have, for a constant K(L) depending on L but independent of 0 < ε < ε0(L) and
n ≥ CL|log ε|2,

|cε,n| ≤ K(L). (25)
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2.3 First estimates

Since now, cε,n is bounded, we can make use of equation (9) and derive the first estimates for uε,n.

Lemma 4. The function uε,n satisfies the L∞ bounds

|uε,n|2L∞(Ωn) ≤ 1 + (
cε,n
2
ε|log ε|)2 ≤ CL and |∇uε,n|L∞(Ωn) ≤

CL
ε
. (26)

Proof of Lemma 4. We argue as in Lemma 3 in [BOS]. Note uε,n = u for simplicity. From (9), we
deduce

∆|u|2 = 2(u,∆u) + 2|∇u|2 = −2ε−2|u|2(1 − |u|2) + 2cε,n|log ε|(u, i∂1u) + 2|∇u|2

≥ − 2

ε2
|u|2(1 − |u|2) − 2|cε,n| · |log ε| · |u| · |∇u| + 2|∇u|2

= − 2

ε2
|u|2(1 − |u|2) +

(√
2|∇u| − |cε,n|√

2
|u| · |log ε|

)2
− |cε,n|2

2
|u|2 · |log ε|2

≥ − 2

ε2
|u|2

(

1 − |u|2 + (
cε,n
2
ε|log ε|)2

)

.

Since |u| = 1 on T × ∂Dn, the function w = 1 − |u|2 + (
cε,n

2 ε|log ε|)2 satisfies

−∆w +
2

ε2
|u|2w ≥ 0 in Ωn,

w ≥ 0 on ∂Ωn,

and by the maximum principle, we deduce w ≥ 0 in Ωn, which is the first estimate. Concerning the
second one, we consider the scaled map û(x) := u(εx), which satisfies

∆û+ û(1 − |û|2) = icε,nε|log ε|∂1û in T ×Dn/ε,

û = eiθ on T × ∂Dn/ε.

By standard elliptic estimates (see [GT]),

|∇û|L∞ ≤ CL

and we conclude by scaling back. �

We will also use the following Clearing-Out (or η-ellipticity) result.

Theorem 4. Let σ > 0 be given. Then, there exist η > 0 and ε0 > 0, depending only on σ and L,
such that, for x0 ∈ Ω̄n, 0 < ε ≤ ε0 and εµ ≤ r ≤ 1 (with n ≥ CL|log ε|2 and µ ∈ (0, 1) absolute), if

r−1Eε(uε,n, Br(x0)) ≤ η|log ε|,

then
|uε,n(x0)| ≥ 1 − σ.

This result is an easy consequence of Theorem 2 in [BOS] inside the domain Ωn and Theorem 2 in
[C2] near the boundary, since the boundary condition g(x) = eiθ is uniformly smooth for n ≥ 1 and
of modulus 1, and the constants in [C2] involving the curvature of the boundary ∂Ωn = T × ∂Dn are
uniformly bounded in n.

We infer from Theorem 4 the finer localization of the singular set of uε,n defined by

Snε := {|uε,n| ≤ 1/2}.
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Corollary 1. Let 0 < ε < ε0(L) and n ≥ CL|log ε|2. There exist R0 > 0 and l ∈ N
∗, depending on L

only, and q cylinders C(ai, R0) (1 ≤ i ≤ q), with q ≤ l, such that the cylinders C(ai, 8R0) (1 ≤ i ≤ q)
are mutually disjoint,

Snε ⊂ ∪qi=1C(ai, R0),

∫

∪q
i=1

Č(ai,R0)
eε(uε,n) ≤ 2π2

√

1 + L2|log ε| + CL. (27)

Moreover, for every a ∈ R
2, we have

∫

Č(a,8R0)
eε(uε,n) ≤ CL|log ε|. (28)

We then define a rectifiable 1-dimensional integral current by the mean of the Γ-convergence results
of [JS] and [ABO]. This is possible thanks to the localization given in Corollary 1. Nevertheless, we
will be compelled to work with

ũε,n(x) :=

{

2uε,n(x) if |uε,n(x)| ≤ 1
2 ,

uε,n(x)
|uε,n(x)| if not.

It is clear that Jũε,n is supported in ∪qi=1C(ai, R0), since outside this set, ũε,n is smooth and of modulus
1, thus two partial derivatives of ũε,n are both tangent to S

1 at ũε,n, hence are colinear. Notice that,
comparing with Lemma 3.1 in [BOS], we do not know yet that Jũε,n and Juε,n are close globally in
Ωn, since the energy diverges as n→ +∞. We define (2π times) the flux of ~e1 through a 1-dimensional
current T with compact support, by

F(T ) := π〈T, ?ξ〉.
The name flux becomes clear when T = ∂R is a boundary, since then integration by parts yields

F(T ) = π〈∂R, ?ξ〉 = π〈R, ?d∗ξ〉 = 2π〈R, ?dx1〉.

It has been noticed in [BS] and [BOS] that the momentum p may be interpreted as the flux F(T ). In
our context, since T is x1-periodic, the projection R of T on the (x2, x3)-plane is a closed “curve” R
and F(T ) is interpreted as the flux of ~e1 through the surface enclosed by R.

Lemma 5. For n ≥ CL|log ε|2 and 0 < ε < ε0(L), there exists a 1-dimensional integral current Tε,n
without boundary, supported in the cylinders C(ai, R0), 1 ≤ i ≤ q, such that

i) ‖Jũε,n − πTε,n‖[C0,1
c (Ωn)]∗

≤ r(ε),

ii) |p(uε,n) −F(Tε,n)| ≤ r(ε),

iii) M(Tε,n) ≤ Eε(uε,n,∪q
i=1

C(ai,8R0))
π|log ε| + r(ε),

where r(ε) is a function which tends to 0 if ε → 0 uniformly for n ≥ CL|log ε|2. Moreover, for every
a ∈ R

2,

||Jũε,n − Juε,n||[C0,1
c (Č(a,8R0))]∗ ≤ CLε|log ε|. (29)
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2.4 An isoperimetric problem

As in [BOS], we characterize the limiting singular set with the help of the equality case in an isoperi-
metric type inequality. We define the projection on the x1-axis of T

Pr1(T ) := 〈T, dx2 ∧ dx3〉 ∈ R.

For their purpose, in [BOS], it is made use of the standard isoperimetric inequality. We will make use
of the isoperimetric type problem given in the next lemma.

Lemma 6. Let L ≥ 0 and T be a 1-dimensional integral current in T × R
2 compactly supported and

without boundary such that

Pr1(T ) = 2π and F(T ) = 2π2L2.

Then,

M(T ) ≥ 2π
√

1 + L2.

If, moreover, we assume M(T ) ≤ 2π
√

1 + L2, then there exists a translation τ in T × R
2 such that

τ(T ) = HL.

Remark 2.2. We emphasize that this is the exact values of the flux F(T ) and Pr1(T ) that fix the
orientations and thus the exact helix. Indeed, one could have thought about the helix HL with reverse
orientation, but this would have changed the sign of Pr1(T ) or choose the helix H̃L (with an orientation
to be chosen) already mentionned, but this time, F(T ) would have changed sign since Pr1(T ) > 0
imposes the orientation of H̃L to be the one of the parametrization T 3 θ 7→ (θ, L cos θ,−L sin θ)).
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x1

T

R

S

Figure 2: The isoperimetric problem

Remark 2.3. Let us explain this isoperimetric type problem. The “curve” T is periodic in the x1

variable, thus the projection R of T on the (x2, x3)-plane is a closed curve enclosing an algebraic surface
S. The constraint on the flux imposes S to have an area at least πL2. By the isoperimetric inequality
in R

2, R has a length at least 2πL. Moreover, T has a length at least 2π in the x1 variable, hence
T has length at least 2π

√
1 + L2. The equality case imposes equality in the isoperimetric inequality,

and then R is a circle of radius L. We then conclude that T is the helix HL.

This result combined with Corollary 1 enables us to give a precise location of the singular set of
uε,n, included in a single cylinder, which concentrates the |log ε| term of the energy. The diverging
term log n is non-local and entirely outside the cylinder. We can also give the asymptotics for the
energy around and outside the cylinder containing the helix.

15



Proposition 4. There exist ε0 > 0 and R0 > 0 such that, for all n ≥ CL|log ε|2 and 0 < ε < ε0, there
exists b = b(ε, n) ∈ Dn such that

Snε ⊂ T ×DR0
(b) = CR0

(b), (30)

Eε(uε,n, ČR0
(b)) = 2π2

√

1 + L2|log ε| + r(ε)|log ε|, (31)

Eε(uε,n,Ωn \ ČR0
(b)) ≤ 2π2 log n+ r(ε)|log ε|. (32)

Moreover,

cε,n =
1√

1 + L2
+ r(ε), (33)

and up to a translation in the x1 variable, denoting τ−b the translation of vector (0,−b) ∈ T × R
2,

||τ−bTε,n − ~HL||[C0,1
c ]∗ ≤ r(ε). (34)

Statement (34) in Proposition 4 will imply that uε,n is close to the solution U ∗
L we want. In the

next Section, we complete the proofs of Theorems 1 and 2 and of Proposition 1 letting n → +∞. In
Section 4, we give the proof of Proposition 2. Lemmas 2 and 3 are proved in Section 5, Proposition 3,
Corollary 1 and Lemma 5 in Section 6. The proof of Proposition 4 is given in Section 7. Finally, the
proofs of the auxiliary Lemmas 1 and 6 are given in Section 8.

3 Proofs of Theorems 1 and 2 completed

3.1 Limits of growing cylinders

Before going further, we prove that b is not too close from the boundary.

Lemma 3.1. There exists 0 < γ < 1 such that, for n ≥ e1/ε and 0 < ε < ε0(L) sufficiently small,

‖b(ε, n)‖ ≤ γn.

Remark 3.1. Though it might be, we do not prove that the helix Tε,n is centered around the x1-axis,
that is ‖b‖ = r(ε), or even ‖b‖ ≤ CL. However, in Lemma 3.6 below, we will prove that

lim
n→+∞

‖b‖
n

= 0.

Proof of Lemma 3.1. From (19) and (20), we deduce by averaging that there exists a x1 ∈ T such
that

1

2

∫

Dn

|∇2,3uε,n(x1, .)|2 +
(1 − |uε,n(x1, .)|2)2

2ε2
≤ π log n+ CL|log ε|.

Consider the scaled map û : D1 → C defined by

û(y) := uε,n(x1, ny).

Then û = eiθ on ∂D1 and, denoting δ := ε/n, we have by scaling

1

2

∫

D1

|∇û|2 +
(1 − |û|2)2

2δ2
≤ π|log δ| +CL|log ε| ≤ π|log δ|(1 + o(1))
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since by hypothesis, n ≥ e1/ε. Therefore, we may apply the results of [J2] or [San2] stating that û has
only one “bad disk”, the center of which is clearly b

n + O(δ). Adapting the arguments of chapter I
and Lemma VI.1 in chapter VI in [BBH2], we infer that the vortex can not be on the boundary, for
otherwise the energy would be ≥ 2π|log δ|(1 + o(1)). Therefore, ‖ bn‖ ≤ γ < 1 for ε small enough and

n ≥ e1/ε. �

From now on, we translate the problem so that the helix is centered around the x1 axis, that is we
consider uε,n ◦ τ−b : Ωn(b) := T ×Dn(b) → C instead of uε,n. In particular, (x1, r, θ) will now refer to
cylindrical coordinates centered around the singular helix. From Lemma 3.1, we have ‖b‖ ≤ γn, and
therefore dist(0, ∂Ωn(b)) ≥ (1 − γ)n→ +∞ as n→ +∞.

We let now n → +∞ with fixed (small) ε to obtain a solution uε on T × R
2. To extract a

subsequence as n→ +∞, we use the local boundness for uε,n in H1
loc given in (28) in Corollary 1. As

a consequence, up to a subsequence, we may assume, as n→ +∞,

uε,n ⇀ uε in H1
loc(T × R

2,C) and uε,n → uε in L4
loc(T × R

2,C) and a.e.

and for every a ∈ R
2

Eε(uε, CR0
(a)) ≤ CL|log ε|. (35)

Moreover, by ellipticity of equation (9),

uε,n → uε in H1
loc(T × R

2,C) as n→ +∞.

Note also that (uε,n)n is bounded in L∞, so is uε, and since cε,n is bounded independently of ε and n,
we may assume also the existence of the limit

cε = lim
n→+∞

cε,n ∈ R.

We may then pass to the limit in equation (9) to obtain that uε satisfies (9) in T ×R
2 with speed cε.

Note that, in view of (33) in Proposition 4, the assertion (4) concerning the speed in Theorem 1 is
proved.

3.2 Bounds in W 1,p

loc (T × R2) and in Ck
loc

away from HL.

The first step is to establish bounds for uε in W 1,p
loc (T × R

2).

Lemma 3.2. Let 1 ≤ p < 3
2 . We have, for every a ∈ R

2,

∫

ČR0
(a)

|∇uε,n|p ≤ CL(p).

Proof of Lemma 3.2. The proof of Lemma 3.2 follows exactly the lines of Step 3 of Appendix C in
[BOS]. This uses the confinement property of the jacobian Jũ in the cylinder CR0

and the bound for
the energy of the Dirichlet datum (of modulus 1)

∫

∂Ωn
|∇g|2 = 4π2/n ≤ 4π2. The only difference is

that the Hodge-de Rham decomposition (see (C.19) there) of uε,n × duε,n on Ωn(b) now writes, since
T is not simply connected,

uε,n × duε,n = dϕ+ d∗ψ + αdx1, (36)

for a constant α ∈ R. This constant is easily controlled since α = L2

n2 . Indeed, from (36), we infer

2π2n2α = |Ωn(b)|α =

∫

Ωn(b)
〈uε,n × duε,n, dx1〉 =

∫

Ωn(b)
(iuε,n, ∂1uε,n) = p(uε,n) = 2π2L2,
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and the conclusion follows. �

We then establish uniform bounds in Ckloc for uε,n away from HL. We follow closely the lines of
[BOS] (Steps 6 and 7 in Section 4). These bounds are a direct consequence of the concentration of the
density energy (see the proof of Proposition 4) on HL as ε → 0 and n ≥ CL|log ε|2 and the bounds
W 1,p
loc just established.

Lemma 3.3. Let B̄ ⊂ T × R
2 \ HL be a closed ball and k ∈ N. Then, for constants C(k,B,L) and

ε(k,B,L) > 0 depending only on k, L and a lower bound for the distance from B̄ to HL, we have, for
every 0 < ε < ε(k,B,L), |uε,n| ≥ 1/2 on B̄, thus we may write, for a smooth ψ, uε,n = ρeiψ on B̄ and

i) ‖∇ψ‖Ck(B̄) ≤ C(k,B,L),

ii) ‖2(1−ρ)
ε2 + cε|log ε|∂1ψ‖Ck(B̄) ≤ C(k,B,L).

In particular,

||∇ψ||L∞(Ωn(b)\CR0
) ≤ CL and ||1 − ρ2||L∞(Ωn(b)\CR0

) ≤ CLε
2|log ε|. (37)

Proof of Lemma 3.3. We proceed as in Steps 6 and 7 in Section 4 of [BOS]. First, by (32) and Step
4 of the proof of Proposition 4 in Section 7,

Σµ∗ = HL and Eε(uε,n,Ωn(b) \ CR0
) ≤ 2π2 log n+ r(ε)|log ε|.

We apply Lemma 4.4 in subsection 4.3 with H = DR0
(a) \DR0

for an a ∈ R
2 \DR0

and n sufficiently
large (the radius |H| is defined at the beginning of subsection 4.3)

1

2

∫

T×(Dn(b)\H)
|∇2,3uε,n|2 +

(1 − |uε,n|2)2
2ε2

≥ 2π2 log n+ 2π2(1 − t2∗)|log ε| − 2π2t2∗ log(|H|) −C,

where C is a constant independent of ε, n and H and

t∗ :=

√

1 +
( πε

2
√

2|H|
)2

− πε

2
√

2|H|
.

Here, |H| ≤ R0, and since t∗ ∈ [0, 1],

Eε(uε,n,Ωn(b) \ (CR(a) ∩ CR0
)) ≥ 2π2 log n− CL.

As a consequence of (32), we infer

Eε(uε,n, CR0
(a) ∩ CR0

) ≤ r(ε)|log ε|. (38)

Thus, for any closed ball B̄ ⊂ T × R
2 \ HL, in view of the Clearing-Out result given in Theorem 4

(Theorem 2 of [BOS]), we have for ε sufficiently small (depending on B̄) and n sufficiently large,

|uε,n| ≥
1

2
in B̄.

Writing in B̄ uε,n = ρeiψ, and using Lemma 3.2, we obtain, as in Step 7 in Section 4 of [BOS], for all
k ∈ N, statements i) and ii) by exactly the same proof. �

We will finally use the following lemma concerning the behavior of the phase at infinity. It is close
to statement ii) of Theorem 4 in [BOS], but has to be adapted to our problem with a degree one
at infinity. We state it only for our solution and not (as in [BOS]) for every solution (on the torus
(R/(2nπZ))N , N ≥ 3).
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Lemma 3.4. The map uε,n writes, for r ≥ R0, uε,n = ρeiϕ+iθ for a smooth ϕ x1-periodic and
∫

Ωn(b)\CR0

|∇ϕ|2 ≤ CL. (39)

Proof of Lemma 3.4. We write, for r ≥ R0, uε,n = ρeiϕ+iθ and denote

v := e−iθuε,n = ρeiϕ,

which satisfies the equation on Ωn(b) \ CR0

∆v − v

r2
+ 2i

∂θv

r2
+

1

ε2
v(1 − |v|2) = icε,n|log ε|∂1v. (40)

We perform a Hodge-de Rham decomposition for v × dv in Un := Ωn(b) \ CR0

v × dv = dφ+ d∗ψ + αdx1, (41)

where φ is a smooth function such that φ = 0 in ∂Un, α ∈ R is a constant and ψ is a 2-form such that
dψ = 0 and ψ> = 0 on ∂Un. Applying the operators d and d∗ to (41) and using (40), we deduce the
equations in Un

−∆φ = −cε,n
2

|log ε|∂1(ρ
2 − 1) − ∂θ(ρ

2 − 1)

r2
, (42)

−∆ψ = 2Jv. (43)

We now turn to estimates for φ, ψ and α.

Estimate for α. We claim that

|α| ≤ r(ε)

|Un|
≤ r(ε)

n2
. (44)

We have, since v = ρeiϕ for r ≥ R0, with ϕ periodic in the x1 variable,

|Un|α =

∫

Un

〈v × dv, dx1〉 =

∫

Un

ρ2∂1ϕ =

∫

Un

(ρ2 − 1)∂1ϕ,

thus, by Cauchy-Schwarz and using (20) and ρ ≥ 1/2 for r ≥ R0,

|Un| · |α| ≤
ε

2

∫

Un

(ρ2 − 1)2

ε2
+ |∂1ϕ|2 ≤ CLε|log ε|

and the conclusion follows.

Estimate for φ. We claim that
∫

Un

|∇φ|2 ≤ CLε
2(1 +K(L)|log ε|)2|log ε| ≤ CL. (45)

Indeed, multiplying (42) by φ and integrating yields (φ = 0 on ∂Un)
∫

Un

|∇φ|2 = −cε,n
2

|log ε|
∫

Un

∂1(ρ
2 − 1)φ −

∫

Un

∂θ(ρ
2 − 1)

r2
φ

=
cε,n
2
ε|log ε|

∫

Un

ρ2 − 1

ε
∂1φ− ε

∫

Un

∂θφ

r2
ρ2 − 1

ε

≤ (K(L)ε|log ε| + ε)
(

∫

Un

(ρ2 − 1)2

ε2

)1/2(
∫

Un

|∇φ|2
)1/2

≤ ε(K(L)|log ε| + 1)CL|log ε|1/2
(

∫

Un

|∇φ|2
)1/2

(46)
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by (20), which yields the conclusion.

Estimate for ψ. We claim that
∫

Un

|∇ψ|2 =

∫

Un

|d∗ψ|2 ≤ CL + r(ε)

∫

Un

|v × dv|2. (47)

Note that from (41), we have (d∗ψ)> = (v × dv)> − αdx1 on ∂Un. Therefore, ψ is solution of







−∆ψ = 2Jv in Un,
ψ> = 0 on ∂Un,

(d∗ψ)> = (v × dv)> − αdx1 on ∂Un.

Recalling |v| = |uε,n| ≥ 1/2 in Un, we define ṽ := v
|v| and consider the solutions ψ0 and ψ1 of







−∆ψ0 = 2Jṽ in Un,
(ψ0)> = 0 on ∂Un,

(d∗ψ0)> = (v × dv)> − αdx1 on ∂Un

and







−∆ψ1 = 2(Jv − Jṽ) in Un,
(ψ1)> = 0 on ∂Un,

(d∗ψ1)> = 0 on ∂Un.

The existence of ψ0 and ψ1 are given by Proposition A.1 in the Appendix of [BBO] and we have
ψ = ψ0 + ψ1. Note also that Jṽ = 0 in Un. Thus, multiplying by ψ0 and integrating by parts gives

∫

Un

|∇ψ0|2 = −
∫

∂Ωn(b)
((v × dv)> − αdx1) ∧ (?ψ0)> −

∫

∂CR0

((v × dv)> − αdx1) ∧ (?ψ0)>.

Moreover, since the norm of the trace operator from H 1
>(DR), with the norm ‖u‖H1

>
= ‖∇u‖L2(DR)

(which is equivalent to ‖u‖H1), into L2(∂DR) is by scaling ≤ KR1/2 for an absolute K, we have
∫

Un

|∇ψ0|2 ≤ K
(

n‖(v × dv)> − αdx1‖2
L2(∂Ωn(b)) +R0‖(v × dv)> − αdx1‖2

L2(∂CR0
)

)

. (48)

From (44), we have

n‖αdx1‖2
L2(∂Ωn(b)) +R0‖αdx1‖2

L2(∂CR0
) ≤ Kα2(n2 +R2

0) ≤ CL
r(ε)

n2
= r(ε),

from (37) in Lemma 3.3
‖(v × dv)>‖2

L2(∂CR0
) ≤ CL

and finally, in view of the boundary condition, with z = x2 + ix3,

v = e−iθ
z − b

|z − b| ,

we have, since r ≥ (1 − γ)n on ∂Ωn(b) by Lemma 3.1

‖(v × dv)>‖2
L2(∂Ωn(b)) ≤ Kn

( 1

n2
+

1

((1 − γ)n)2

)

≤ CL
n
,

from which we infer
∫

Un

|∇ψ0|2 =

∫

Un

|d∗ψ0|2 ≤ r(ε) + CL ≤ CL. (49)

Moreover, for an absolute (by scaling) constant K

(

∫

Un

|∇ψ1|2
)1/2

=
(

∫

Un

|d∗ψ1|2
)1/2

≤ K sup

{
∫

Un

〈Jv − Jṽ, h〉, h ∈ C∞
0 (Un),

∫

Un

|∇h|2 = 1

}

.
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Since ṽ × dṽ = ρ−2v × dv on Un, for all h ∈ C∞
0 (Un) such that

∫

Un
|∇h|2 = 1, we have

∣

∣

∣

∫

Un

〈Jv − Jṽ, h〉
∣

∣

∣
=

1

2

∣

∣

∣

∫

Un

〈v × dv − ṽ × dṽ, d∗h〉
∣

∣

∣

≤ 1

8
‖1 − ρ2‖L∞(Un)

(

∫

Un

|v × dv|2
)1/2(

∫

Un

|∇h|2
)1/2

≤ r(ε)
(

∫

Un

|v × dv|2
)1/2

in view of (37). As a consequence,

∫

Un

|∇ψ1|2 =

∫

Un

|d∗ψ1|2 ≤ r(ε)

∫

Un

|v × dv|2. (50)

We deduce (47) from (49) and (50).

Combining (44), (45) and (47) with (41) yields

∫

Un

|v × dv|2 ≤ CL + r(ε)

∫

Un

|v × dv|2

and (39) follows. �

3.3 Convergence of uε to U∗

L

Convergence in W
1,p
loc (T × R

2,C). Up to a subsequence, we may assume, in view of Lemma 3.2
(and |uε|∞ ≤ CL), that, for 1 ≤ p < 3/2,

uε ⇀ u∗ in W 1,p
loc (T × R

2,C) and a.e. as ε→ 0.

Note also that outside CR0
, since |uε,n| ≥ 1/2 and uε,n converges a.e. to uε, we have |uε| ≥ 1/2 there,

thus
|u∗(x)| ≥ 1/2 for r ≥ R0.

We will show that u∗ = U∗
L. Since uε satisfies (9), taking the exterior product of (9) with uε yields

{

d∗(uε × duε) = cε
2 |log ε|∂1(1 − |uε|2),

d(uε × duε) = 2Juε.
(51)

Passing to the weak limit in H1
loc as n→ +∞, we deduce from (20) that

∫

T×R2

|∂1uε|2 +
(1 − |uε|2)2

2ε2
≤ CL|log ε|.

Thus Uε ∈ Yε and, if ε→ 0,

|log ε|(1 − |uε|2) → 0 in L2(T × R
2),

so |u∗| = 1 a.e. and since |cε| ≤ K(L), as ε→ 0,

cε|log ε|∂1(1 − |uε|2) → 0 in H−1(T × R
2). (52)

Concerning the second equation, we use (34) in Proposition 4 and the local jacobian estimate (29) to
see that, in the distributional sense, as ε→ 0, up to a translation in the x1 variable,

Juε → 2π ~HL.
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Passing to the limit in (51), we obtain
{

div (u∗ ×∇u∗) = 0,

curl(u∗ ×∇u∗) = 2π ~HL.
(53)

In order to identify u∗, we note that u∗ ×∇u∗ is x1-periodic and in Lploc (1 ≤ p < 3/2) since

|u∗| = 1, and ∇u∗ ∈ Lploc.

Therefore, the vector fields u∗×∇u∗ and ~v (defined in the introduction) both satisfy (53), except that
u∗ ×∇u∗ is, for the moment, only a Lploc map (for 1 ≤ p < 3/2). Moreover, u∗ ×∇u∗ satisfies

u∗ ×∇u∗ −
~eθ
r

∈ L2(T × {r ≥ R0})

by passing to the limit in (39), and by Lemma 1,

~v − ~eθ
r

∈ L2(T × {r ≥ R0}).

Furthermore, it is easily seen that ~v ∈ Lploc(T × R
2) for 1 ≤ p < 3/2. As a consequence, χ denoting a

smooth function with support in CR0+1 such that χ = 1 in CR0
, we may write

u∗ ×∇u∗ − ~v = χ(u∗ ×∇u∗ − ~v) + (1 − χ)(u∗ ×∇u∗ − ~v) ∈ (Lpc + L2)(T × R
2) (54)

for 1 ≤ p < 3/2 and satisfies

div (u∗ ×∇u∗ − ~v) = 0 and curl(u∗ ×∇u∗ − ~v) = 0, (55)

from which we infer u∗ × ∇u∗ − ~v ≡ 0, that is u∗ × ∇u∗ = ~v and thus u∗ = U∗
L (up to a constant

phase). Indeed, by (54), one may perform a Hodge-de Rham decomposition :

u∗ ×∇u∗ − ~v = dϕ+ d∗ψ + α dx1 = ∇ϕ+ curl ~ψ + α~e1 in T × R
2,

with α ∈ R, dψ = div~ψ = 0, and ϕ (resp. ψ) writes ϕ̃ + ϕ̂ (resp. ψ̃ + ψ̂) with ϕ̃, ψ̃ ∈ H1 and
ϕ̂, ψ̂ ∈ W 1,p such that ϕ̂, ψ̂ are O(r−2) as r → +∞. By (55), we deduce that ϕ and ψ are harmonic
and thus vanish in view of their behavior at infinity. Therefore, u∗ × ∇u∗ − ~v = α dx1. Moreover,
from the proof of Lemma 1, we know that, as r → +∞, ~v · ~e1 = O(r−2). Finally, passing to the limit
in Lemmas 3.3 and 3.4, we deduce that u∗ = exp(iθ + iϕ∗) for a smooth and x1-periodic ϕ∗, thus

2πα =

∫

T

u∗ × ∂1u∗ − ~v · ~e1 dx1 =

∫

T

∂1ϕ∗ + O(r−2) = O(r−2) → 0 as r → +∞,

that is α = 0. In view of the uniqueness of the possible weak limit, we have in W 1,p
loc ,

uεj ⇀ U∗
L as j → +∞

for any sequence εj → 0. We turn now to strong convergence outside HL.

Convergence in Ck
loc(T × R

2 \ HL). The weakW 1,p
loc (1 ≤ p < 3/2) convergence implies in particular

(up to a phase for uε)
uε → U∗

L in L1
loc as ε→ 0.

Moreover, by Lemma 3.3, uε is bounded in Ckloc(T × R
2 \ HL), thus, as ε→ 0,

uε → U∗
L in Ckloc(T × R

2 \ HL)

for all k ∈ N, which is (6) in Theorem 1.

Assertion (5) (|uε(x)| → 1 as r → +∞) in Theorem 1 is easily deduced from the fact that uε is
lipschitz (for instance, |∇uε|∞ ≤ CL/ε) and

∫

T×R2(1−|uε|2)2 <∞. We complete the proof of Theorem
1 with the following decay result.
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Proposition 5. We may write, for r ≥ R0, ε sufficiently small and n ≥ exp(1/ε),

uε,n(x) := ρeiϕ(x)+iθ,

for ϕ a smooth real-valued function unique up to a multiple of 2π and ρ ≥ 1/2. There exists constants
CL > 0 and λ = λ(L), independent of n ≥ exp(1/ε), such that, for R0 ≤ R < (1 − γ)n,

∫

Ωn(b)\CR

|∇ρ|2 + ρ2|∇ϕ|2 +
(1 − ρ2)2

2ε2
≤ CL
Rλ

+ σn(ε), (56)

where γ ∈ (0, 1) is the one of lemma 3.1, and for R0 ≤ R1 ≤ R2 < (1 − γ)n,

∣

∣

∣
Eε(uε,n,Ωn(b) ∩ (CR2

\ CR1
)) − 2π2 log

(R2

R1

)∣

∣

∣
≤ CL

Rλ1
+ 2σn(ε), (57)

where σn(ε) depends only on n and ε and σn(ε) → 0 as n→ +∞. In particular,

lim
n→+∞

p(uε,n) = p(uε) = 2π2L2. (58)

Note that (12) in Proposition 1 is deduced from (57) in Proposition 5 by passing to the limit
as n → +∞ and (58) concludes the proof of (4) in Theorem 1. The asymptotic (13) of the energy
on T × CL+1 stated in Proposition 1 is a direct consequence of (31) in Proposition 4 and the strong
convergence (for L+1 ≤ r ≤ R0 if necessary) given in Lemma 3.3. Proposition 1 is thus a consequence
of Proposition 5.

3.4 Proof of Proposition 5

The proof of Proposition 5 is based on the following decay lemma.

Lemma 3.5. There exists a constant CL > 0 such that, for every R0 ≤ R < (1 − γ)n, n ≥ exp(1/ε)
and 0 < ε < ε0(L) sufficiently small,

∫

Ωn(b)\CR

fε ≤ CLR

∫

Ωn(b)∩∂CR

fε +
CLε

R2
+

1

2
σn(ε),

where

fε :=
1

2

(

ρ2|∇ϕ|2 + |∇ρ|2 +
(1 − ρ2)2

2ε2

)

and σn(ε) depends only on ε, n and L and, for fixed ε, σn → 0 as n→ +∞.

Proof of Lemma 3.5. We argue as in [BOS] (Lemma 5.1). Since |uε,n| ≥ 1/2 for r ≥ R0 and uε,n
has a degree one outside CR0

, we may write, for r ≥ R0,

uε,n = ρeiϕ+iθ,

where ϕ is a smooth real-valued function on Ωn(b) \ CR0
and 1/2 ≤ ρ ≤ CL. Equation (9) reads now

for r ≥ R0 (with ~eθ = (0,− sin θ, cos θ)),

−∆ρ+ ρ
∣

∣∇ϕ+
~eθ
r

∣

∣

2 − cε,n|log ε|ρ∂1ϕ =
1

ε2
ρ(1 − ρ2). (59)

The estimate for the modulus is very close to the one in [BOS], whereas the estimate for the phase is
slightly different because of the degree one at infinity.
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Estimate for the modulus. Multiplying (59) by ρ2 − 1 and integrating over Ωn(b) \ CR gives

∫

Ωn(b)\CR

2ρ|∇ρ|2 + ρ
(1 − ρ2)2

ε2
=

∫

∂(Ωn(b)\CR)

∂ρ

∂ν
(1 − ρ2) +

∫

Ωn(b)\CR

ρ(1 − ρ2)
∣

∣∇ϕ+
~eθ
r

∣

∣

2

−cε,n|log ε|
∫

Ωn(b)\CR

ρ(1 − ρ2)∂1ϕ. (60)

By Cauchy-Schwarz, since ρ = 1 on ∂Ωn(b),

∣

∣

∣

∫

∂(Ωn(b)\CR)

∂ρ

∂ν
(1 − ρ2)

∣

∣

∣ =
∣

∣

∣

∫

Ωn(b)∩∂CR

∂ρ

∂ν
(1 − ρ2)

∣

∣

∣ ≤ 2ε

∫

Ωn(b)∩∂CR

fε. (61)

From Lemma 3.3, we know that |∇ϕ+ ~eθ
r | ≤ CL for r ≥ R0, thus |∇ϕ| ≤ CL and then

∣

∣

∣

∫

Ωn(b)\CR

ρ(1 − ρ2)
∣

∣∇ϕ+
~eθ
r

∣

∣

2
∣

∣

∣
≤ CLε

∫

Ωn(b)\CR

(1 − ρ2)2

2ε2
+ |∇ϕ|2 +

1

r4

≤ CLε

∫

Ωn(b)\CR

fε +
CLε

R2
, (62)

since
∫

{T×R2\CR} r
−4 ≤ CR−2. For the last term, Cauchy-Schwarz yields

|cε,n| · |log ε| ·
∣

∣

∣

∫

Ωn(b)\CR

ρ(1 − ρ2)∂1ϕ
∣

∣

∣ ≤ K(L)ε|log ε|
∫

Ωn(b)\CR

fε. (63)

Combining (61), (62) and (63) with (60), we deduce, since ρ ≥ 1/2,

∫

Ωn(b)\CR

|∇ρ|2 +
(1 − ρ2)2

2ε2
≤ CLR

∫

Ωn(b)∩∂CR

fε + r(ε)

∫

Ωn(b)\CR

fε +
CLε

R2
. (64)

Estimate for the phase. Concerning the phase, we will argue as for the proof of Lemma 3.4.
Nevertheless, we need a more precise estimate for ‖b‖, ensuring us that the helix is nearly centered
around the x1 axis, so that the phase ϕ is nearly 0 on ∂Ωn(b). The result is given in the following
lemma, whose proof is postponed to subsection 3.5.

Lemma 3.6. We have, for fixed ε,

lim
n→+∞

‖b‖
n

= 0.

For the proof of the estimate for the phase, we follow the lines of the proof of Lemma 3.4 and then
consider, on Vn := Ωn(b) \ CR, for R0 ≤ r ≤ R < (1 − γ)n,

v = e−iθuε,n = ρeiϕ.

We note that, by Lemma 3.1, for R < (1 − γ)n, C̄R ⊂ Ωn(b). We then perform a Hodge-de Rham
decomposition of v × dv on Vn

v × dv = αdx1 + dφ+ d∗ψ, (65)

where φ is a smooth function such that φ = 0 on ∂Vn, α ∈ R is a constant and ψ is a 2-form such that
dψ = 0 and ψ> = 0 on ∂Vn. Applying the operators d and d∗ to (65) and using the equation (40) for
the phase, we deduce the equations in Vn

−∆φ = −cε,n
2

|log ε|∂1(ρ
2 − 1) − ∂θ(ρ

2 − 1)

r2
, (66)

−∆ψ = 2Jv. (67)
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We now turn to estimates for φ, ψ and α. For R ≤ (1 − γ)n, we still have

|Vn| ≥ 2π(πn2 − πR2) ≥ 2π2(1 − (1 − γ)2)n2 ≥ n2

CL

and the estimate for α follows as for (44)

|α| ≤ r(ε)

|Vn|
≤ CL
n2
. (68)

To estimate φ, we have as for (46)

∫

Vn

|∇φ|2 ≤ ε(K(L)|log ε| + 1)
(

∫

Vn

(ρ2 − 1)2

ε2

)1/2(
∫

Vn

|∇φ|2
)1/2

,

and therefore
∫

Vn

|∇φ|2 ≤ r(ε)

∫

Vn

(ρ2 − 1)2

ε2
≤ r(ε)

∫

Ωn(b)\CR

fε. (69)

We finally estimate ψ. As for the estimate (47), we write ψ = ψ0 + ψ1, where ṽ = v/|v|,






−∆ψ0 = 2Jṽ = 0 in Vn,
(ψ0)> = 0 on ∂Vn,

(d∗ψ0)> = (v × dv)> − αdx1 on ∂Vn

and







−∆ψ1 = 2(Jv − Jṽ) in Vn,
(ψ1)> = 0 on ∂Vn,

(d∗ψ1)> = 0 on ∂Vn.

The estimate for ψ1 follows as for (50)
∫

Vn

|∇ψ1|2 ≤ r(ε)

∫

Vn

|v × dv|2 ≤ r(ε)

∫

Vn

fε. (70)

Concerning ψ0, we still have, as for (48),
∫

Vn

|∇ψ0|2 ≤ K
(

n‖(v × dv)> − αdx1‖2
L2(∂Ωn(b)) +R‖(v × dv)> − αdx1‖2

L2(∂CR)

)

.

Since R ≤ (1 − γ)n, we deduce from (68) that

n‖αdx1‖2
L2(∂Ωn(b)) +R‖αdx1‖2

L2(∂CR) ≤
CL
n2
,

and there holds

R‖(v × dv)>‖2
L2(∂CR) ≤ CLR

∫

∂CR

fε.

It remains to estimate n‖(v × dv)>‖2
L2(∂Ωn(b)). To that aim, we note that on ∂Ωn(b),

v(x) = e−iθ
z − βn
|z − βn|

= e−iθ(z − βn),

with z = (x2 + ix3)/n ∈ ∂D1(βn) and βn := b/n. By scaling, we then have

n‖(v × dv)>‖2
L2(∂Ωn(b)) =

∫

∂D1(βn)

∣

∣

∣
∇

(

e−iθ(z − βn)
)∣

∣

∣

2
dz.

We use Lemma 3.6 to deduce that this last integral tends to 0 as n→ +∞. Indeed,

∣

∣

∣∇
(

e−iθ(z − βn)
)∣

∣

∣

2
=

1

r2
+ 1 − 2

cos(θ − ω)

r
, (71)
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where (1, ω) are the polar coordinates of z − βn (that is z − βn = eiω). By Lemma 3.6, as n → +∞,
βn → 0, so r → 1 and θ−ω → 0 pointwise and the right-hand side of (71) is uniformly bounded (since
r ≥ 1 − γ), thus by dominated convergence,

σ̃n(ε) := n‖(v × dv)>‖2
L2(∂Ωn(b)) → 0 as n→ +∞.

As a consequence, we have
∫

Vn

|∇ψ0|2 ≤ Kσ̃n(ε) + CLR

∫

∂CR

fε +
CL
n2
. (72)

From (70) and (72), we infer
∫

Vn

|∇ψ|2 ≤ CLR

∫

∂CR

fε + r(ε)

∫

Vn

fε +Kσ̃n(ε) +
CL
n2
. (73)

Finally, combining (68), (69) and (73), we obtain
∫

Vn

|ρ∇ϕ|2 ≤ CL

∫

Vn

|v × dv|2 ≤ CLR

∫

∂CR

fε + r(ε)

∫

Vn

fε +
1

2
σn(ε), (74)

where σn(ε) → 0 as n→ +∞. From (64) and (74), we conclude, for R0 ≤ R < (1 − γ)n,
∫

Ωn(b)\CR

fε ≤ CLR

∫

∂CR

fε + r(ε)

∫

Ωn(b)\CR

fε +
CLε

R2
+

1

2
σn(ε).

Taking 0 < ε < ε0(L) sufficiently small (so that r(ε) ≤ 1/2), we are led to the conclusion. �

Proof of Proposition 5. Consider the function, for R0 ≤ R < (1 − γ)n,

gn(R) :=

∫

Ωn(b)\CR

fε.

From Lemma 3.5, we deduce that gn satisfies

gn(R) ≤ CLR

∫

∂CR

fε +
CLε

R2
+

1

2
σn(ε) = −CLRg′n(R) +

CL
R2

+
1

2
σn(ε). (75)

Therefore, we have, with λ := C−1
L > 0,

d

dR

(

Rλgn(R)
)

= λRλ−1
(

gn(R) + CLRg
′
n(R)

)

≤ λRλ−1
(CL
R2

+
1

2
σn(ε)

)

.

Enlarging CL if necessary, we may assume CL ≥ 1, so λ ≤ 1. Integrating between R0 and R yields

Rλgn(R) −Rλ0gn(R0) ≤
1

2
σn(ε)(R

λ −Rλ0 ) + CL
λ

λ− 2

(

Rλ−2 −Rλ−2
0

)

.

Moreover, we have by Lemma 3.3
g′n(R0) ≤ CL,

thus applying (75) with R = R0, we obtain, for n sufficiently large, gn(R0) ≤ CL, and therefore

gn(R) ≤ CL
Rλ

+
1

2
σn(ε),

which concludes the proof of (56). Concerning (57), it suffices to write

Eε(uε,n, CR2
\ CR1

) =

∫

R1≤r≤R2

fε +
1

2

∫

R1≤r≤R2

ρ2(|∇ϕ+
~eθ
r
|2 − |∇ϕ|2).
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Since CR1
⊂ C̄R2

⊂ Ωn(b) for R1 < R2 < (1 − γ)n, we have by smoothness of ϕ,

∫

R1≤r≤R2

∂θϕ

r2
= 0,

thus

∣

∣

∣
Eε(uε,n, CR2

\ CR1
) − 2π2 log

(R2

R1

)∣

∣

∣
≤ |gn(R2) − gn(R1)| +

1

2

∣

∣

∣

∫

R1≤r≤R2

(ρ2 − 1)
( 1

r2
+ 2

∂θϕ

r2

)∣

∣

∣

≤ |gn(R2)| + |gn(R1)| +
1

2

∫

R1≤r≤R2

|ρ2 − 1|
( 1

r2
+ 2

|∂θϕ|
r2

)

≤ CL

Rλ1
+ 2σn(ε) +

Cε

R1

∫

R1≤r≤R2

(ρ2 − 1)2

2ε2
+

1

r3
+ |∇ϕ|2

≤ CL

Rλ1
+ 2σn(ε) +

CLε|log ε|
R1

≤ CL

Rλ1
+ 2σn(ε),

which is (57). We easily deduce from this decay that

p(uε) = 2π2L2. (76)

Indeed, let R ≥ R0 and fix χ a smooth function compactly supported such that 0 ≤ χ ≤ 1, χ = 1 on
CR(0), and χ = 0 outside C2R(0). We can choose χ radial. Recalling the definition of the momentum
(8), we have (we already know that Uε ∈ Yε)

p(uε) =

∫

T×R2

(iuε, ∂1uε)χ+

∫

T×R2

(1 − χ)(ρ2
ε − 1)∂1ϕε, (77)

since the last term in (8) vanishes if χ is radial. On the other hand, for n ≥ exp(1/ε), since, as already
seen, ϕε,n is periodic in the x1 variable,

p(uε,n) =

∫

T×R2

(iuε,n, ∂1uε,n)χ+

∫

T×R2

(1 − χ)(ρ2
ε,n − 1)∂1ϕε,n. (78)

By strong H1
loc convergence as n→ +∞, the first term in (78) converges to the first term in (77). For

the second terms in (77) and (78), they both have the decay established in Propositions 1 and 5, thus,
for any R0 < R < (1 − γ)n and any n ≥ exp(1/ε),

∣

∣

∣

∫

Ωn(b)
(1 − χ)(ρ2

ε,n − 1)∂1ϕε,n

∣

∣

∣ +
∣

∣

∣

∫

T×R2

(1 − χ)(ρ2
ε − 1)∂1ϕε

∣

∣

∣ ≤ CL
Rλ

+ σn(ε).

Next, let n→ +∞ to deduce

lim sup
n→+∞

|p(uε,n) − p(uε)| ≤
CL
Rλ

,

and then let R→ +∞. This proves (76), which is the assertion (4) in Theorem 1 for the momentum,
and thus completes the proof of Theorem 1. �

3.5 Proof of Lemma 3.6

The proof of Lemma 3.6 relies on the reduction to a 2-dimensional problem, for which results about
the location of the vortices can be proved, with the help of the renormalized energy (see [BBH2]): the
limiting vortices are critical points of the renormalized energy. We consider the map wn : T×D1 → C

defined by
wn(x) := uε,n(x1, nx2, nx3)
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with ε fixed and let n→ +∞. By scaling from (19) and (20), we have, with δ := ε/n,

1

2

∫

T×D1

|∇2,3wn|2 +
(1 − |wn|2)2

2δ2
+
n2

2

∫

T×D1

|∂1wn|2 ≤ 2π2 log n+ CL|log ε|, (79)

1

2

∫

T×D1

(1 − |wn|2)2
2δ2

+
n2

2

∫

T×D1

|∂1wn|2 ≤ CL|log ε|, (80)

wn = eiθ on T × ∂D1 (81)

and, with ∆2,3 := ∂2
2 + ∂2

3 ,

∆2,3wn +
wn
δ2

(1 − |wn|2) = icε,n|log ε|n2∂1wn − n2∂2
1wn. (82)

Here, we adopt the point of view ε > 0 fixed and n → +∞, that is δ → 0. We expect that, as
n → +∞, wn tends to a map independent of the variable x1, with only one vortex at βn := b/n
(the bound (79) is then the natural one for wn to have only one vortex) and merely satisfies the
2-dimensional Ginzburg-Landau equation (82) (provided the right-hand side of (82) is small in some
sense), so that we expect that the limiting vortex must be a critical point of the renormalized energy,
which is 0. The proof is divided in several steps, and we prove all the ingredients needed in the proof
of Theorem VII.4 in [BBH2]. In the sequel, K will denote a constant independent of n, but depending
only on ε and L.

Step 1: W 1,p bounds for wn. We prove that, for any 1 ≤ p < 3/2,

∫

T×D1

|∇wn|p ≤ Kp. (83)

We proceed as in the proof of Proposition C.2 in Appendix C in [BOS].

Estimate for the modulus. Since wn satisfies (82), then ρ := |wn| satisfies

−∆2,3ρ
2 − n2∂1ρ

2 + 2|∇2,3wn|2 + 2n2|∂1wn|2 = 2
ρ2

δ2
(1 − ρ2) − cε,nn

2|log ε|(wn, i∂1wn). (84)

We consider ρ̄ := max(ρ, 1−δ1/2). Since ρ = 1 on T×∂D1, then ρ̄2−1 = 0 on T×∂D1 and multiplying
(84) by ρ̄2 − 1 and integrating yields

∫

T×D1

(∇2,3ρ
2) · (∇2,3ρ̄

2) + n2(∂1ρ)(∂1ρ̄) +
2

δ2

∫

T×D1

(1 − ρ2)(1 − ρ̄2) (85)

=

∫

T×D1

2(1 − ρ̄2)(|∇2,3wn|2 + n2|∂1wn|2) + cε,nn
2|log ε|

∫

T×D1

(1 − ρ̄2)(iwn, ∂1wn).

We note that the integrand in the second integral of the left hand side is non-negative, since either
ρ ≥ 1 − δ1/2 and then ρ = ρ̄ so (1 − ρ2)(1 − ρ̄2) = (1 − ρ2)2 ≥ 0; either 0 ≤ ρ ≤ 1 − δ1/2 ≤ 1 and then
ρ, ρ̄ ∈ [0, 1] so (1−ρ2), (1− ρ̄2) ≥ 0. Moreover, 0 ≤ 1− ρ̄ ≤ δ1/2 by construction, so 0 ≤ 1− ρ̄2 ≤ 2δ1/2

and then, by (79),

∫

T×D1

2(1 − ρ̄2)(|∇2,3wn|2 + n2|∂1wn|2) ≤ 4δ1/2(4π2 log n+K) ≤ K, (86)

since δ1/2 ≤ Kn−1/2. Finally, we carefully estimate the last term in (85). First, note that, by (80),

|{ρ < 1 − δ1/2}| ≤ Kδ.
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As a consequence, by Cauchy-Schwarz and (80),

∣

∣

∣cε,nn
2|log ε|

∫

{ρ<1−δ1/2}
(1 − ρ̄2)(iwn, ∂1wn)

∣

∣

∣ ≤ K(L)δ1/2|log ε|n2

∫

{ρ<1−δ1/2}
|∂1wn|

≤ Kδ1/2n2
(K

n2

)1/2
(Kδ)1/2 ≤ K,

since δ ≤ Kn−1. Moreover, since ρ = ρ̄ in {ρ ≥ 1 − δ1/2}, by (80),

∣

∣

∣cε,nn
2|log ε|

∫

{ρ≥1−δ1/2}
(1 − ρ̄2)(iwn, ∂1wn)

∣

∣

∣ ≤ K(L)|log ε|
∫

T×D1

(n|1 − ρ2|)(n|∂1wn|)

≤ K

∫

T×D1

(1 − ρ2)2

δ2
+ n2|∂1wn|2 ≤ K.

Therefore, the last term in (85) verifies

∣

∣

∣cε,nn
2|log ε|

∫

T×D1

(1 − ρ̄2)(iwn, ∂1wn)
∣

∣

∣ ≤ K. (87)

Finally, ∇(ρ̄2) = ∇(ρ2) if ρ ≥ 1 − δ1/2 and 0 otherwise, so, inserting (86) and (87) into (85) yields

∫

{ρ≥1−δ1/2}
|∇ρ2|2 ≤ K

and then, since ρ ≥ 1 − δ1/2 ≥ 1/2 if δ ≤ 1/4, for 1 ≤ p ≤ 2,

∫

{ρ≥1−δ1/2}
|∇ρ|p ≤ Kp. (88)

Since, as already seen, |{ρ < 1 − δ1/2}| ≤ Kδ, we infer by Hölder inequality that, for 1 ≤ p < 2,

∫

{ρ<1−δ1/2}
|∇ρ|p ≤ |{ρ < 1 − δ1/2}|1−p/2

(

∫

T×D1

|∇ρ|2
)p/2

≤ Knp/2−1(log n)p/2 ≤ Kp. (89)

We deduce from (88) and (89) the estimate for the modulus, for 1 ≤ p < 2,

∫

T×D1

|∇ρ|p ≤ Kp. (90)

Estimate for the pre Jacobian. We perform a Hodge-de Rham decomposition of wn × dwn:

wn × dwn = dϕ+ d∗ψ + αdx1, (91)

where α ∈ R is a constant, ϕ is a function satisfying ϕ = 0 on T × ∂D1, and ψ is a 2-form such that
ψ> = 0 on T × ∂D1 and dψ = 0. To estimate α, we write

2π2α = α|T ×D1| =

∫

T×D1

〈wn × dwn, dx1〉 =
1

n2

∫

T×Dn

(iuε,n, ∂1uε,n) =
2π2L2

n2

by scaling and in view of the constraint on the momentum, so

α =
L2

n2
. (92)
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Applying the d and the d∗ operators to (91) and using (81) and (82), we deduce the equations







−∆ψ = 2Jwn in T ×D1,
ψ> = 0 on T × ∂D1,

(d∗ψ)> = dθ on T × ∂D1

(93)

and
{

−(∆2,3 + n2∂2
1)ϕ = − cε,n

2 |log ε|n2∂1(ρ
2 − 1) in T ×D1,

ϕ = 0 on T × ∂D1.
(94)

From Proposition 3.1 in [BO] (since |dθ|∞ = 1), we infer from (93) that, for 1 ≤ p < 3/2,

∫

T×D1

|∇ψ|p ≤ Kp. (95)

Multiplying (94) by ϕ and integrating by parts yields by Cauchy-Schwarz and (80)

∫

T×D1

|∇2,3ϕ|2 + n2|∂1ϕ|2 =
cε,n
2

|log ε|
∫

T×D1

(n(ρ2 − 1))(n∂1ϕ)

≤ K(L)

∫

T×D1

(ρ2 − 1)2

δ2
+ n2|∂1ϕ|2 ≤ K.

As a consequence, by Hölder inequality, for 1 ≤ p ≤ 2,

∫

T×D1

|∇2,3ϕ|p + np|∂1ϕ|p ≤ K. (96)

Therefore, combining (92), (95), (96) with (91), we obtain, for 1 ≤ p < 3/2,

∫

T×D1

|wn × dwn|p ≤ Kp. (97)

To conclude, we use the identity

ρ2
n|∇wn|2 = ρ2

n|∇ρn|2 + |wn × dwn|2,

and the estimate |∇wn|∞ ≤ Kn, which comes by scaling from (26), to deduce,

|∇wn|2 = |∇ρn|2 + |wn × dwn|2 + (1 − |wn|2)(|∇wn|2 − |∇ρn|2)
≤ |∇ρn|2 + |wn × dwn|2 +Kn

∣

∣1 − |wn|2
∣

∣ · |∇wn|

≤ |∇ρn|2 + |wn × dwn|2 +
1

2
|∇wn|2 +Kn2(1 − |wn|2)2,

thus
|∇wn|2 ≤ K

(

|∇ρn|2 + |wn × dwn|2 + n2(1 − |wn|2)2
)

,

and then, for 1 ≤ p < 3/2,

∫

T×D1

|∇wn|p ≤ K

∫

T×D1

|∇ρn|p + |wn × dwn|p +K
(

∫

T×D1

(1 − |wn|2)2
δ2

)p/2
.

Estimate (83) follows then from (80), (90) and (97). �
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From Step 1, we know that, up to a subsequence, wn weakly converges in W 1,p to a map w∗ in
W 1,p(T ×D1,S

1) for 1 ≤ p < 3/2, as n→ +∞, satisfying w∗ = eiθ on T × ∂D1. Moreover, from (80),
∫

T×D1

|∂1wn|2 ≤ K

n2
→ 0,

thus w∗ is independent of the variable x1. We will denote w̃∗ = w∗(x1, .) for any x1 ∈ T. We denote
also β∗ = limn→+∞ b/n ∈ D1 (and not ∈ D̄1, since we already know that ‖b‖ ≤ (1 − γ)n).

Step 2: The vector field w̃∗ × ∇2,3w̃∗ is divergence free. Let ζ ∈ C1
0(D1,R). We write the

right-hand side of (82) as ∂1Υn, where Υn := icε,nn
2|log ε|wn − n2∂1wn. Therefore, by (82),

〈div2,3(wn ×∇2,3wn), ζ〉 = 〈wn × ∆2,3wn, ζ〉 = 〈∂1Υn, ζ〉 = 0,

since ζ does not depend on x1 and Υn is x1-periodic. As a consequence, passing to the limit as
n→ +∞ (up to the subsequence), we obtain that the vector field w̃∗ ×∇2,3w̃∗ is divergence free. �

We then apply Remark I.1 in chapter I of [BBH2] to conclude from Steps 1 and 2 that

w̃∗ = w0 exp(iκ log |z − β∗|) exp(iχ), (98)

where z = x2 + ix3, w0 is the canonical harmonic map associated to the boundary map eiθ and the
singularity β∗, κ is a real constant and χ the solution of

{

−∆χ = 0 in D1,
χ+ κ log |z − β∗| = 0 on ∂D1.

Step 3: Strong convergence outside T × {β∗}. We prove that, a ball BR(a) in T × (D̄1 \ {β∗})
being given, for n sufficiently large (depending on the ball), we have

∣

∣|wn| − 1
∣

∣ ≤ K

n2
in BR(a),

‖∇2,3wn‖L∞(BR(a)) + n2‖∂1wn‖L∞(BR(a)) + n2‖∂2
1wn‖L∞(BR(a)) ≤ K.

These estimates are similar to the bounds in Ckloc(T × R2 \ HL) given in Lemma 3.3, and are also
related to the result given in Theorem VI.1 in [BBH2]. We define

ŵn(x) := (1 +
c2ε,n
4
ε2|log ε|2)−1/2 exp(−i cε,n

2
|log ε|x1)wn(x)

in T ×D1, which verifies

(∆2,3 + n2∂2
1)ŵn +

ŵn

δ̂2
(1 − |ŵn|2) = 0, (99)

where δ̂2 := (1 +
c2ε,n

4 ε2|log ε|2)−1δ2. We will follow the lines of the proof of Theorem IV.1 in [BBO].
We do not prove Step 1 there. However, from Lemma 3.3, we know that

η := sup
T×Dn\CR0

∣

∣|uε,n| − 1
∣

∣ ≤ CLε
2|log ε| ≤ 1/2 (100)

for 0 < ε < ε0(L) sufficiently small. Let us fix R ∈ (0, 1) and a ∈ T × (D̄1 \ {β∗}), and denote BR(a)
the ball in T× D̄1 of radius R centered at a. By (100), we have for n sufficiently large (depending on
BR(a)),

|ŵn| ≥
1

2
in B̄R(a),
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so that we may write ŵn = ρne
iϕn in B̄R(a), for a ϕn such that

1

|B7R/8(a)|

∫

B7R/8(a)
ϕn ∈ [0, 2π).

In the proof of [BBO], we replace each time the standard Laplace operator ∆ by ∆2,3 + n2∂2
1 , so that

the scaled energy now writes

F̃δ̂(ŵn, a, r) =
1

2r

∫

Br(a)
|∇2,3ŵn|2 + n2|∂1ŵn|2 +

(1 − |ŵn|2)2
2δ̂2

.

We follow the lines of Step 2 of the proof of Theorem IV.1 in [BBO], which implies the existence of
n0 = n0(ε, L,R, a) ∈ N such that, for x ∈ B7R/8(a), n ≥ n0, µ ∈ (0, 1/2) and 0 < r < R/8, then

F̃δ̂(a, µr) ≤ K0(µ
2 + µ−1(n−1 + η))F̃δ̂(a, r),

where K0 is absolute. Note that we may here reach the boundary T × ∂D1, but since the boundary
map eiθ is independent of n and smooth of modulus 1, this does not change the proof. In particular,
for µ and ε < ε0 sufficiently small (µ and ε0 absolute) (note that η → 0 as ε → 0 uniformly in n by
(100)), we have

F̃δ̂(x, µr) ≤
1

2
F̃δ̂(x, r).

Consequently, we infer from this decay and the W 1,p bound (83) as in Step 3 in [BBO] that

‖ŵn‖C0,α(B6R/8(a)) ≤ K,

for an α ∈ (0, 1) depending on µ, and K depends only on L, ε, and BR(a). In particular,

‖ρn‖C0,α(B6R/8(a)) ≤ K.

The equation for the phase is then

div2,3(ρ
2
n∇2,3ϕn) + n2∂1(ρ

2
n∂1ϕn) = 0 in B6R/8(a),

from which we infer by Schauder estimates

‖ϕn‖C1,α(B5R/8(a)) ≤ K. (101)

We finally have the estimate for 1 − ρ2
n

0 ≤ 1 − ρ2
n ≤ K

n2
in BR/2(a). (102)

The lower bound is usual for the Ginzburg-Landau equation (99), and here is also a consequence of
Lemma 4. The upper one is derived as in Step 5 in [BBO]. The equation for hn := 1 − ρ2

n is

−(∆2,3 + n2∂2
1)hn +

ρn

δ̂2
(1 + ρn)hn = ρn|∇ϕn|2 in B7R/8(a),

thus by (100) and (101),

−(∆2,3 + n2∂2
1)hn +

1

2δ̂2
hn ≤ K in B5R/8(a),

and hn = 0 on T×∂D1. Therefore, as in Lemma 2 in [BBH1], we obtain (102). A bootstrap argument,
as in [BBH1] and Step 6 in [BBO], shows that

n2‖∂2
1wn‖L∞(BR/2(a)) + n2‖∂1wn‖L∞(BR/2(a)) ≤ K (103)
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and then w̃∗ ∈ C∞(D1 \ {β∗}) ∩ C0(D̄1 \ {β∗}). �

Step 4: Convergence for the potential term. Let

Wn :=
(1 − |wn|2)2

4δ2
.

Then (up to a subsequence), in the weak ? topology of C(D̄1),

∫

T

Wn dx1 ⇀W∗ = mδ{β∗}, with m ∈ R+.

This step is the analogue of Lemma VII.1 in chapter VII of [BBH2]. First, note that by (80),
∫

T
Wn dx1 is bounded in L1(D1), thus we may assume

∫

T
Wn dx1 ⇀ W∗ in the weak ? topology of

C(D̄1). It remains to establish the structure of the measure W∗, which will follow from the strong
convergence results of Step 3. Indeed, (102) implies that for BR(a) ⊂ T × (D1 \ {β∗}), we have

Wn(BR/2(a)) ≤
K

n2
→ 0 as n→ +∞,

thus W∗(BR/2(a)) = 0. The measure W∗ is then nonnegative and has a support included in {β∗} : it
is then of the form mδ{β∗}, with m ∈ R+. �

Step 5: An auxiliary problem. Let

qn := (∂2wn, ∂1Υn) − i(∂3wn, ∂1Υn),

that we extend by 0 outside T ×D1. There exists λ = λ(ε) ∈ R such that, for all φ ∈ C1(D̄1,C), as
n→ +∞,

∫

T×D1

qn(x)φ(x2, x3) dx = n2

∫

T×D1

(cε,n|log ε|(iwn, ∂1wn) − |∂1wn|2)
∂φ

∂z̄
→ −λ∂φ

∂z̄
(β∗), (104)

where 2 ∂
∂z̄ = (∂2 − i∂3). In other words, the distribution in R

2 Sn : φ 7→
∫

T×D1
qn(x)φ(x2, x3) dx

converges as a distribution to λ ∂
∂z̄ δβ∗ . Moreover, the distribution in R

2

Λn :=
1

2π
log |(x2, x3)| ∗ Sn

is bounded in Lp(D1), 1 ≤ p < 2 and converges in the sense of distributions to

Λ∗ :=
λ

2π

∂

∂z̄
log |(x2, x3)| ∗ δβ∗ .

Let us first derive the first identity in (104) by integration by parts (φ does not depend on x1)

∫

T×D1

(∂2wn, ∂
2
1wn)φ(x2, x3) dx = −

∫

(∂2∂1wn, ∂1wn)φ = −1

2

∫

∂2(|∂1wn|2)φ =
1

2

∫

|∂1wn|2∂2φ,

where we have used that ∂1wn = 0 on T × ∂D1. Similarly, since 2(∂2wn, i∂1wn) = 2∂1wn × ∂2wn =
∂1(wn × ∂2wn) − ∂2(wn × ∂1wn),

∫

T×D1

(∂2wn, i∂1wn)φ(x2, x3) dx = −1

2

∫

∂2(wn × ∂1wn)φ =
1

2

∫

(iwn, ∂1wn)∂2φ.
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The case of the other term (with ∂3wn) is similar. To conclude, note that µ1
n := n2

∫

T
|∂1wn|2 dx1 and

µ2
n := n2

∫

T
(iwn, ∂1wn) dx1, extended by 0 outside D̄1, are bounded in L1(R2). Indeed, for the first

one, this follows from (80), and for the second one, we write first
∫

T×DR0/n(βn)
n2

∣

∣(iwn, ∂1wn)
∣

∣ ≤ nCL

(

∫

n2|∂1wn|2
)1/2(K

n2

)1/2
≤ K,

by (80) and Cauchy-Schwarz, and then, since ρn ≥ 1/2 outside CR0/n(βn) and writing for a real-valued

map ψn, x1-periodic, wn = ρne
iψn+iθ, we have

∫

D1\DR0/n(βn)
n2

∣

∣

∣

∫

T

(iwn, ∂1wn) dx1

∣

∣

∣
=

∫

D1\DR0/n(βn)
n2

∣

∣

∣

∫

T

ρ2
n∂1ψn dx1

∣

∣

∣

= ε

∫

D1\DR0/n(βn)

∣

∣

∣

∫

T

ρ2
n − 1

δ
(n∂1ψn) dx1

∣

∣

∣ ≤ K

∫

T×D1

(ρ2
n − 1)2

δ2
+ n2|∂1wn|2 ≤ K.

Therefore, we may assume that µ1
n and µ2

n weakly converge as measures to µ1
∗ and µ2

∗ respectively.
From the strong convergence result of Step 3 (as in Step 4), we deduce that the supports of µ1

∗ and µ2
∗

is in fact included in {β∗}. As a consequence, there exists λ = λ(ε, L) ∈ R such that (104) is satisfied
for any φ ∈ C1(D̄1). The convergence in the distributional sense for Λn then follows. Concerning the
Lp bound, we write by (104)

Λn =
∂

∂z

( 1

2π
log |(x2, x3)| ∗ (µ2

n − µ1
n)

)

,

and since µ1
n − µ2

n is bounded in L1(R2) and with compact support in D̄1, we deduce that

1

2π
log |(x2, x3)| ∗ (µ2

n − µ1
n) is bounded in W 1,p

loc (R2), for 1 ≤ p < 2,

and thus Λn is bounded Lp(D1) for 1 ≤ p < 2. The proof of Step 5 is complete. �

Step 6: We prove that κ = 0 and β∗ = 0. We follow chapter VII of [BBH2] (the proofs of
Theorem VII.1, Step 1, and Theorem VII.2). We introduce the Hopf differential defined in T ×D1

ωn :=
∣

∣∂2wn
∣

∣

2 −
∣

∣∂3wn
∣

∣

2 − 2i(∂2wn, ∂3wn),

where, we recall, (., .) is the scalar product in R
2 ' C. A straightforward computation shows that

since wn satisfies (82), then

∂ωn
∂z̄

=
∂

∂z
(2Wn) + 2(∂2wn, ∂1Υn) − 2i(∂3wn, ∂1Υn) =

∂

∂z
(2Wn) + 2qn(x), (105)

where 2 ∂
∂z = (∂2+i∂3). Identity (105) has to be compared with (5) in Step 1 of [BBH2]. We define also

Wn = Wn in T×D1 extended by 0 outside T×D1 in T×R
2, and define the distribution T := ∂

∂z (
1
πz ).

We consider αn := T ∗
∫

T
W n dx1 in the sense of distributions. Furthermore, by definition of Λn, we

have
∫

T

qn dx1 = −∆Λn = −4
∂

∂z̄

∂

∂z
Λn.

Therefore, by (105), we have in D1,

∂

∂z̄

(

∫

T

ωn dx1 − 2αn

)

= 2

∫

T

qn(x) dx1 = −8
∂

∂z̄

∂

∂z
Λn. (106)

Let us denote fn :=
∫

T
ωn dx1−2αn+8 ∂

∂zΛn. By Step 5, ∂
∂zΛn is bounded in Lp(D1), 1 ≤ p < 2. From

Step 3,
∫

T
ωn dx1 is bounded in L∞

loc(D1 \ {β∗}), thus in Lploc(D1 \ {β∗}), 1 ≤ p < 2. Moreover, as for
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the claim in [BBH2], αn is bounded in L∞
loc(D1 \ {β∗}). Consequently, fn is, by (106), a holomorphic

function in D1 bounded in Lploc(D1 \ {β∗}), 1 ≤ p < 2 thus bounded in Ckloc(D1) for any k ∈ N (by the
Cauchy formula and an averaging argument), and we may then assume, up to another subsequence,
that

fn → f∗ in Ckloc(D1) ∀k ∈ N. (107)

Since, by Step 3,
∫

T
W n dx1 converges as measure (up to a subsequence) to mδ{β∗}, we have

αn → α∗ = mT ∗ δ{β∗} = − m

π(z − β∗)2
in D′(D1). (108)

Finally, combining Step 5, (107) and (108), we have in D ′(D1)
∫

T

ωn dx1 = fn + 2αn − 8
∂Λn
∂z

→ ω∗ := f∗ + 2α∗ − 8
∂Λ∗
∂z

, (109)

and in view of Step 3, this convergence holds in Ckloc(D1 \ {β∗}), ∀k ∈ N and ω∗ is 2π times the Hopf
differential of w̃∗ in D1 \ {β∗}. To conclude, note that, by Step 5,

Λ∗ =
λ

2π

∂

∂z̄
log |(x2, x3)| ∗ δβ∗ ,

thus
∂Λ∗
∂z

=
λ

2π

∂

∂z

∂

∂z̄
log |(x2, x3)| ∗ δβ∗ =

λ

8π
(∆ log |(x2, x3)|) ∗ δβ∗ =

λ

4
δ0 ∗ δβ∗ =

λ

4
δβ∗ .

From (109), we then infer, in D′(D1 \ {β∗}), with z = x2 + ix3,

ω∗ = f∗ + 2α∗ = f∗ −
2m

π(z − β∗)2
. (110)

This has to be compared with (13) and (14) in [BBH2], chapter VII. From (98) and the fact that the
canonical harmonic map w0 writes z−β∗

|z−β∗|e
iχ1 for some harmonic map χ1 in a neighborhood of β∗, we

infer that

w̃∗ =
z − β∗
|z − β∗|

exp(iκ log |z − β∗| + iχ′),

for some smooth real harmonic map χ′ near β∗. Computing then the Hopf differential of w̃∗ and
comparing with (110), we obtain as in [BBH2] that for z near β∗ and z 6= β∗

f∗ −
2m

π(z − β∗)2
= ω∗ = 2π

( κ− i

z − β∗
+ 2

∂χ′

∂z

)2
= 2π

[ (κ− i)2

(z − β∗)2
+ 4

κ− i

z − β∗

∂χ′

∂z
+ 4

(∂χ′

∂z

)2]

.

Since f∗ and χ′ are continuous in a neighborhood of β∗ (including β∗), multiplying by (z − β∗)2 and
letting z → β∗, we obtain

2π(κ− i)2 = −2m

π
, (111)

and then, multiplying by z − β∗ and letting z → β∗, we deduce

8π(κ − i)
∂χ′

∂z
(β∗) = 0. (112)

From (111), we infer that κ = 0 and m = π2, since κ ∈ R, thus w̃∗ = w0 the canonical harmonic

map. From (112), it follows ∂χ′

∂z (β∗) = 0, which means ∇χ′(β∗) = 0 since χ′ is real-valued. This last
condition is equivalent to the fact that β∗ is a critical point to the renormalized energy (see [BBH2],
chapter VIII). From Theorem VIII.6 in [BBH2], we then know that the only critical point of the
renormalized energy with one vortex and the boundary map eiθ is 0. Therefore, β∗ = 0 and the proof
is complete. �

Remark 3.2. With a little more work, one can show that λ = 0.
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3.6 Proof of Theorem 2 completed

In order to complete the proof of Theorem 2, we notice that Uε ∈ Yε is already proved. Hence, we
are just left with proving that Uε is a “local minimizer”, that is, in view of the scaling, that uε is also
one. Therefore, we assume that there exist R > 0 and v ∈ H 1

loc(T × R
2,C) such that

v = uε outside CR, p(v) = 2π2L2 = p(uε) and Eε(v, CR) < Eε(uε, CR).

We recall that since v = uε outside T×DR, p(v) is well-defined. Taking R larger if necessary, we may
assume

|v| = |uε| ≥
1

2
outside CR.

If we had v = eiθ+iϕ0 outside T×DR where ϕ0 is a real constant, for n ≥ R, the restriction of e−iϕ0v
to Ωn would be a map in Xn having momentum p(v) = 2π2L2 (since in that case, (iv, ∂1v) = 0 outside
CR) and energy strictly less than the one of the minimizer uε,n, which is a contradiction. For the
general case, as in [BOS], we construct such a map.

Outside CR, since v = uε, we may write

v = uε = ρ exp(iϕ + iθ).

We then define the functions (using cylindrical coordinates),

σ(x) :=
2R − r

R
, τ(x) :=

3R− r

R
and µR :=

1

|{2R ≤ r ≤ 3R}|

∫

2R≤r≤3R
ϕ

and then
ρR(x) := σ(x)ρ(x) + (1 − σ(x)), ϕR(x) := τ(x)ϕ(x) + (1 − τ(x))µR.

We then set

vR(x) :=















v(x) if r ≤ R,
ρR(x) exp(iϕ(x) + iθ) if R ≤ r ≤ 2R,
exp(iϕR(x) + iθ) if 2R ≤ r ≤ 3R,
exp(iµR + iθ) if r ≥ 3R.

We claim that, for a constant C independent of ε, n ≥ 3R and R

|p(vR) − p(uε)| ≤ Cε

∫

r≥R
|∂1uε|2 +

1

2ε2
(1 − |uε|2)2 (113)

and
∣

∣Eε(uε,Ωn \ CR) −Eε(vR,Ωn \ CR)
∣

∣ ≤ CL
Rλ

+ CLσn(ε). (114)

Proof of the claim. We first note that, in the definition of p given in (77), we may let χ tend to the
characteristic function of CR (for R ≥ R0) to obtain

p(uε) =

∫

CR

(iu, ∂1u) +

∫

T×R2\CR

(ρ2 − 1)∂1ϕ.

Therefore,

|p(vR) − p(uε)| ≤
∣

∣

∣

∫

R≤r≤2R
(ρ− ρR)∂1ϕ

∣

∣

∣
+

∣

∣

∣

∫

2R≤r≤3R
(τ − ρ2)∂1ϕ

∣

∣

∣
+

∣

∣

∣

∫

r≥3R
(ρ2 − 1)∂1ϕ

∣

∣

∣
. (115)
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For the first term, by Cauchy-Schwarz, since ρ ≥ 1/2,

∣

∣

∣

∫

R≤r≤2R
(ρ− ρR)∂1ϕ

∣

∣

∣
≤

∫

R≤r≤2R
|1 − σ| · |1 − ρ| · |∂1ϕ| ≤

ε

2

∫

R≤r≤2R

(1 − ρ2)2

ε2
+ |∂1ϕ|2

≤ Cε

∫

R≤r≤2R
|∂1u|2 +

1

2ε2
(1 − |u|2)2. (116)

For the second term, note that since ϕ is periodic in the variable x1 and ∂1τ = 0,

∫

2R≤r≤3R
(τ − ρ2)∂1ϕ = −

∫

2R≤r≤3R
ρ2∂1ϕ =

∫

2R≤r≤3R
(1 − ρ2)∂1ϕ,

thus

∣

∣

∣

∫

2R≤r≤3R
(τ − ρ2)∂1ϕ

∣

∣

∣ ≤ Cε

∫

2R≤r≤3R
|∂1u|2 +

1

2ε2
(1 − |u|2)2. (117)

Concerning the last term, write also

∣

∣

∣

∫

r≥3R
(ρ2 − 1)∂1ϕ

∣

∣

∣
≤ Cε

∫

r≥3R
|∂1u|2 +

1

2ε2
(1 − |u|2)2. (118)

Inserting (116), (117) and (118) into (115) yields (113).

Concerning the energy, we have similarly

|Eε(uε,Ωn\CR) −Eε(vR,Ωn \ CR)| ≤
∫

R≤r≤2R
|ρ2 − ρ2

R| ·
∣

∣∇ϕ+
~eθ
r

∣

∣

2
+

∣

∣

∣

(1 − ρ2)2

2ε2
− (1 − ρ2

R)2

2ε2

∣

∣

∣

+
∣

∣

∣

∫

2R≤r≤3R
ρ2

∣

∣∇ϕ+
~eθ
r

∣

∣

2 −
∣

∣∇ϕR +
~eθ
r

∣

∣

2
∣

∣

∣
+

∣

∣

∣

∫

3R≤r≤n

∣

∣

~eθ
r

∣

∣

2 − eε(uε)
∣

∣

∣
, (119)

and we estimate each term in (119). First, notice that |1 − ρR| = |(1 − σR)(1 − ρ)| ≤ |1 − ρ|, so

(1 − ρ2
R)2 ≤ CL(1 − ρR)2 ≤ CL(1 − ρ)2 ≤ CL(1 − ρ2)2,

and then, by the decay result (12) in Proposition 1,

∫

R≤r≤2R

∣

∣

∣

(1 − ρ2)2

2ε2
− (1 − ρ2

R)2

2ε2

∣

∣

∣ ≤ CL

∫

R≤r≤2R

(1 − ρ2)2

2ε2
≤ CL
Rλ

+ CLσn(ε).

Next, since
∣

∣∇ϕ+ r−1~eθ
∣

∣ ≤ CL and using Proposition 1 once again

∫

R≤r≤2R
|ρ2 − ρ2

R| ·
∣

∣∇ϕ+
~eθ
r

∣

∣

2 ≤ CLε

∫

R≤r≤2R

|ρ2 − 1|
ε

(|∇ϕ|+ 1

r2
) ≤ CL

∫

R≤r≤2R
fε ≤

CL
Rλ

+CLσn(ε),

since r−2 ∈ L2({r ≥ 1}). We then infer the estimate for the first term in (119)

∫

R≤r≤2R
|ρ2 − ρ2

R| ·
∣

∣∇ϕ+
~eθ
r

∣

∣

2
+

∣

∣

∣

(1 − ρ2)2

2ε2
− (1 − ρ2

R)2

2ε2

∣

∣

∣ ≤ CL
Rλ

+ CLσn(ε). (120)

For the second term, since ∂θϕR = ∂θϕ, expansion yields

∣

∣∇ϕ+
~eθ
r

∣

∣

2 −
∣

∣∇ϕR +
~eθ
r

∣

∣

2
= |∇ϕ|2 − |∇ϕR|2,
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thus,
∣

∣

∣

∫

2R≤r≤3R
ρ2

∣

∣∇ϕ+
~eθ
r

∣

∣

2 −
∣

∣∇ϕR +
~eθ
r

∣

∣

2
∣

∣

∣ ≤
∣

∣

∣

∫

2R≤r≤3R
(ρ2 − 1) · (|∇ϕ|2 − |∇ϕR|2)

∣

∣

∣ (121)

+
1

R

∫

2R≤r≤3R
|ρ2 − 1| · |∇ϕ| +

∫

2R≤r≤3R

|ρ2 − 1|
r2

.

In (121), we estimate the second term by Cauchy-Schwarz, with the decay result (12), and the third
one by Cauchy-Schwarz also, since r−2 ∈ L2({r ≥ R0}), to obtain

1

R

∫

2R≤r≤3R
|ρ2 − 1| · |∇ϕ| +

∫

2R≤r≤3R

|ρ2 − 1|
r2

≤ CL
Rλ

+CLσn(ε). (122)

For the first term in (121), using |∇ϕR| + |∇ϕ| ≤ CL, ∇ϕ − ∇ϕR = (τ − 1)∇ϕ + (ϕ − µR)∇τ and
|∇τ | = R−1, then Poincaré-Wirtinger inequality and finally the decay result (12), we deduce

∣

∣

∣

∫

2R≤r≤3R
(ρ2 − 1) · (|∇ϕ|2 − |∇ϕR|2)

∣

∣

∣ ≤
∣

∣

∣

∫

2R≤r≤3R
(ρ2 − 1) · (∇ϕ+ ∇ϕR,∇ϕ−∇ϕR)

∣

∣

∣

≤ CL

∫

2R≤r≤3R
|ρ2 − 1|

[

|τ − 1| · |∇ϕ| + |ϕ− µR|
R

]

≤ CLε

∫

2R≤r≤3R
|∇ϕ|2 +

(ρ2 − 1)2

ε2

≤ CL
Rλ

+ CLσn(ε). (123)

Inserting (122) and (123) into (121) yields

∣

∣

∣

∫

2R≤r≤3R
ρ2

∣

∣∇ϕ+
~eθ
r

∣

∣

2 −
∣

∣∇ϕR +
~eθ
r

∣

∣

2
∣

∣

∣ ≤ CL
Rλ

+ CLσn(ε). (124)

From Proposition 1, we know that the last term verifies
∣

∣

∣

∫

3R≤r≤n

∣

∣

~eθ
r

∣

∣

2 − eε(uε)
∣

∣

∣ =
∣

∣

∣

∫

3R≤r≤n
eε(uε) − 2π2 log

( n

3R

)∣

∣

∣ ≤ CL
Rλ

+ σn(ε). (125)

Inserting (120), (124) and (125) into (119) yields (114) and concludes the proof of the claim. �

Hence, if R→ +∞, we have vR = eiµR outside T ×D3R and

p(vR) → p(v) = 2π2L2.

We may then define for R sufficiently large

v̂R(x) := vR(x1, λRx2, λRx3),

where λR → 1 is uniquely defined by the equality

p(v̂R) = 2π2L2.

Furthermore, we recall that v = uε for r ≥ R, and in view of the claim (114), we have

|Eε(uε,Ωn \ CR) −Eε(v̂R,Ωn \ CR)| ≤ CL
Rλ

+ CLσn(ε)

thus for fixed (but large) R, we have for n sufficiently large

Eε(v̂R,Ωn) < Eε(uε,Ωn),

with v̂R = eiθ+iµR on ∂Ωn, where µR is a constant. We are led to the desired contradiction. �
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4 Proof of Proposition 2

The proof of the existence of a minimizer is standard and relies on the weak lower semicontinuity of the
energy Eε on Xn and on the fact that the momentum is, by Rellich compactness, weakly sequentially
continuous on H1, that is if uk ⇀ u weakly in H1 as k → +∞, then uk → u strongly in L2 by
compactness of Ω̄n, hence

2π2L2 = p(uk) =

∫

T×Dn

(iuk, ∂1uk) →
∫

T×Dn

(iu, ∂1u) = p(u).

The Lagrange multiplier is written
cε,n

2 |log ε| ∈ R and we expect the speed cε,n to be bounded. We
give the proof of Proposition 2, providing a bound for the energy of uε,n and a bound in |log ε| for

∫

Ωn

|∂1uε,n|2 +
∣

∣∇2,3|uε,n|
∣

∣

2
+

(1 − |uε,n|2)2
2ε2

.

4.1 Definition of the comparison map

For the proof of the upper bound for Inε , we have to construct a comparison map, behaving like an
helicoidal vortex. To that aim, we first prove the following lemma, stating that the projection of the
nearest point from T×R

2 onto HL is well-defined on the L-neighborhood of HL, but first, notice that
the Frenet basis for ~HL at the point (α,L cos α,L sinα) ∈ HL is given by











~τ(α) = 1√
1+L2

(1,−L sinα, L cosα),

~β(α) = (0, − cosα, − sinα),
~ν(α) = 1√

1+L2
(L, sinα, − cosα).

We then define the following map (note that it is defined for α ∈ R and not for α ∈ T)

ΦL : R × R
2 → R × R

2

(α, u, v) 7→ (α,L cosα,L sinα) + u~β(α) + v~ν(α).

Lemma 4.1. The map ΦL is injective on R × D̄L and, if L ≤ 1/2, on T × D̄1/2; it induces a map,
still denoted ΦL, from T × R

2 into T × R
2. Moreover,

det Jac(ΦL) =
1 + L(L− u)√

1 + L2
.

Proof of Lemma 4.1. In view of the expression of the Frenet basis, for (α, u, v) ∈ R × D̄L and
x ∈ R × R

2, ΦL(α, u, v) = x if and only if










α+ Lv√
1+L2

= x1,

L cosα− u cosα+ v√
1+L2

sinα = x2,

L sinα− u sinα− v√
1+L2

cosα = x3.

(126)

For (u, v) ∈ D̄L, we have L− u ≥ 0, thus we may write
(

L− u,
v√

1 + L2

)

= ρ(cosϕ, sinϕ) (127)

for a ρ ≥ 0 and a phase ϕ ∈ [−π
2 ,

π
2 ], since L − u ≥ 0, well-defined except for (u, v) = (L, 0). Using

cylindrical coordinates (x1, r, θ) with θ ∈ R for x, the two last equations in (126) become
{

ρ cos(α − ϕ) = x2 = r cos θ
ρ sin(α− ϕ) = x3 = r sin θ,

(128)
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which yields

r = ρ and α− ϕ = θ mod 2π. (129)

Substituting (129) in the first equation in (126) yields

x1 = α+ Lr sinϕ = α+ Lr sin(α− θ). (130)

We conclude noticing that, for fixed (r, θ), the map

ψ 7→ ψ + Lr sin(ψ − θ) (131)

is smoothly increasing on the set ∪k∈Z[θ− π
2 +2kπ, θ+ π

2 +2kπ] (since sin is increasing on [− π
2 ,

π
2 ]), thus

relations (129) and (130) define at most one couple (k, ϕ) ∈ Z× [− π
2 ,

π
2 ] such that, if α = θ+ϕ+2kπ,

then
α+ Lr sinϕ = x1,

which proves that ΦL is injective and concludes the proof in the first case.
For the second case, we may also write (L− u, v√

1+L2
) = ρ(cosϕ, sinϕ), but for (u, v) ∈ D̄1/2 now,

we do not know that ϕ ∈ [−π
2 ,

π
2 ]. However, we may use the fact that Lr ≤

√
5/4 < 1. Indeed, if

(u, v) ∈ D̄1/2 and L ≤ 1/2, we deduce from (127) and the equality r = ρ that

r2 = ρ2 = (L− u)2 +
v2

1 + L2
≤ 1 +

1

4
=

5

4
,

thus r ≤
√

5
2 , which implies 0 ≤ Lr ≤

√
5

4 < 1. Therefore, the map (131) writes Identity plus a
perturbation whose lipschitz constant is < 1. Hence, it is a smooth increasing diffeomorphism from R

onto R.
For the computation of the jacobian, it suffices to write

Jac(ΦL) =







1 0 L√
1+L2

−(L− u) sinα+ v√
1+L2

cosα − cosα sinα√
1+L2

(L− u) cosα+ v√
1+L2

sinα − sinα − cosα√
1+L2






,

and the computation of the determinant follows. �

From its definition, it is then clear that ΦL is a diffeomorphism from T × D̄L onto the closed
L-neighborhood (or 1/2-neighborhood if L ≤ 1/2) of HL in T × R

2. For x in this neighborhood, the
closest point of x on HL is the point (α,L cosα,L sinα) ∈ HL and ‖(u, v)‖ = dist(x,HL). In parti-
cular, the projection of the nearest point onto HL is always well-defined in the 1/2-neighborhood of HL.

We then come back to the definition of the comparison map. For R > 0 and 0 < ε ≤ 1/4, we

define wε,R in the 1/2-neighborhood of HR, denoted H1/2
R , by setting, with

Φ−1
R (x) = (α, u, v),

wε,R(x) :=

{

ε−1(u+ iv) if ‖(u, v)‖ ≤ ε,
u+iv
|u+iv| if ε ≤ ‖(u, v)‖ ≤ 1/2,

which is the usual test function constructed with the projection on the orthogonal plane to the curve

HR. The function wε,R has therefore a degree one around ~HR, and is of modulus one in H1/2
R \ Hε

R.
We also define wε,R outside T ×DL+2 by

wε,R(x) := eiθ if L+ 2 ≤ r ≤ n.

We are then just left with defining wε,R on T ×DL+2 \ H1/2
R , which is done in the following lemma.
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Lemma 4.2. For 0 ≤ R ≤ L + 1 and 0 < ε ≤ 1/4, the map wε,R, defined on T × ∂DL+2 ∪ H1/2
R ,

admits an (helicoidally symmetric) extension to T × DL+2 \ H1/2
R , still denoted wε,R, S

1-valued and

having an energy ≤ CL on T ×DL+2 \ H1/2
R .

Proof of Lemma 4.2. The proof of Lemma 4.2 follows the one of Theorem I.3 in chapter I of [BBH2],
therefore, we only sketch the proof. The energy of the extension is related to the energy of the solution

of the elliptic problem for the (closed) 2-form Ψε, where h denotes the restriction of wε,R to ∂H1/2
R

(i.e. h = u+iv
|u+iv|),



















−∆Ψε = 0 in T ×DL+2 \ H̄1/2
R ,

(d∗Ψε)> = h× dh on ∂H1/2
R ,

(d∗Ψε)> = (dθ)> on T × ∂DL+2,

(Ψε)> = 0 on T × ∂DL+2 ∪ ∂H1/2
R .

Since (dθ)> and h× dh are uniformly bounded, we infer ‖∇Ψε‖L2(T×DL+2\H̄1/2

R )
≤ CL. The conclusion

then follows as in [BBH2], since the capacity of H1/2
R in T ×DL+2 is ≤ CL for R ≤ L+ 1. �

The following lemma summarizes the estimates concerning the energy and momentum of wε,R.

Lemma 4.3. For 0 < ε ≤ 1/4, n ∈ N and 0 < ε ≤ R ≤ L+ 1 < L+ 2 ≤ n, the following inequalities
hold for a constant CL depending only on L and a function ρ such that |ρ(s)| ≤ CLs for all 0 ≤ s ≤ 1.

(i) 1
4ε2

∫

Ωn
(1 − |wε,R|2)2 ≤ CL,

(ii) 1
2

∫

Ωn
|∇wε,R|2 ≤ 2π2 log n+ 2π2

√
1 +R2|log ε| + CL,

(iii)
∫

Ωn
(iwε,R, ∂1wε,R) = 2π2R2

(

1 + ρ( εR )
)

.

To prove the upper bound (19), note that in view of (iii), since L > 0, there exists for ε sufficiently
small (ε < L) R = R(ε) such that

p(wε,R) = 2π2L2 and |R(ε) − L| ≤ CLε.

Hence, this wε,R(ε) satisfies, by (i) and (ii),

Eε(wε,R(ε)) ≤ 2π2 log n+ 2π2
√

1 +R(ε)2|log ε| + CL + CLR(ε) ≤ 2π2 log n+ 2π2
√

1 + L2|log ε| + CL,

which proves (19). We turn now to the proof of Lemma 4.3.

4.2 Estimates for the comparison map

Here, we prove the estimates of Lemma 4.3 for the energy and the momentum of the map wε,R.

Proof of (i) (the potential term). By construction, wε,R is of modulus 1 outside Hε
R, and ≤ 1 in

Hε
R which is of measure ≤ CLε

2. Therefore,

∫

Ωn

(1 − |wε,R|2)2
4ε2

=

∫

Hε
R

(1 − |wε,R|2)2
4ε2

≤ CL,

which is (i). �

41



We will use during the proof the estimate

|∇wε,R| ≤
CL
ε
,

valid in H1/4
R . This estimate is due to the definition of wε,R there, namely wε,R = ε−1(u + iv), and

the fact that ΦR is uniformly lipschitz for 0 ≤ R ≤ L+ 1. Indeed, from the computations of Lemma
4.1, the first column of Jac(ΦR) has a norm 1 + (R − u)2 + v2/(1 +R2) = 1 + r2 ≤ CL, the two last
columns have a norm 1 and (either R− u ≥ 0 and R ≤ L+ 1, either R ≤ ε ≤ 1/4 and |R− u| ≤ 1/2)

det Jac(ΦR) =
1 +R(R− u)√

1 +R2
≥ C−1

L .

Proof of (ii) (the gradient term). First, since wε,R = eiθ if r ≥ L + 2, we have |∇wε,R|2 = r−2

for r ≥ L+ 2, thus

1

2

∫

L+2≤r≤n
|∇wε,R|2 = 2π2

∫ n

L+2

dr

r
= 2π2 log

( n

L+ 2

)

≤ 2π2 log n. (132)

In order to estimate the gradient on Hε
R, we just write |∇wε,R| ≤ CL

ε , hence integrating on Hε
R which

is of measure ≤ CLε
2, we have

∫

Hε
R

|∇wε,R|2 ≤ CL. (133)

Furthermore, by definition, we have |∇wε,R|2 = 1
‖(u,v)‖2 on H1/2

R \Hε
R thus, integrating, using the change

of variables x = ΦR(α, u, v) (for which Jac(ΦR) = 1+R(R−u)√
1+R2

≥ 0) and passing to polar coordinates

(u, v) ' (ρ, ϕ) yields

1

2

∫

H1/2

R \Hε
R

|∇wε,R|2 =
π√

1 +R2

∫ 1/2

ε

∫ 2π

0
(1 +R(R− ρ cosϕ))dϕ

dρ

ρ

= 2π2
√

1 +R2

∫ 1/2

ε

dρ

ρ
≤ 2π2

√

1 +R2|log ε|. (134)

We conclude the proof of (i) combining Lemma 4.2, (132), (133) and (134). �

Proof of (iii) (the momentum). For the momentum, we integrate by parts, to obtain

p(wε,R) =

∫

Ωn

〈Jwε,R, ξ〉 =

∫

Hε
R

〈Jwε,R, ξ〉,

since, outside Hε
R, wε,R is lipschitz and of modulus 1 (if 1 ≤ i < j ≤ 3, the two partial derivatives

∂xiwε,R and ∂xjwε,R are both tangent to S
1 ⊂ C at the point wε,R ∈ S

1 thus are colinear and then
Jwε,R = 0). We then write

ξ = x2dx1 ∧ dx2 + x3dx1 ∧ dx3 = rdx1 ∧ dr,

so that 〈Jwε,R, ξ〉 = r∂1wε,R × ∂rwε,R. From (127) and (129), we have

u = R− r cosϕ and v =
√

1 +R2r sinϕ, (135)

which yields

∂u

∂x1
= r sinϕ

∂ϕ

∂x1
,

∂v

∂x1
=

√

1 +R2r cosϕ
∂ϕ

∂x1
, (136)
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∂u

∂r
= − cosϕ+ r sinϕ

∂ϕ

∂r
,

∂v

∂r
=

√

1 +R2r cosϕ
∂ϕ

∂r
+

√

1 +R2 sinϕ. (137)

In view of (129), we have

∂ϕ

∂x1
=

∂α

∂x1
and

∂ϕ

∂r
=
∂α

∂r
. (138)

Moreover, from (130), we obtain

∂α

∂x1
+Rr cosϕ

∂ϕ

∂x1
= 1 and

∂α

∂r
+R sinϕ+Rr cosϕ

∂ϕ

∂r
= 0. (139)

Combining relations (136), (137), (138) and (139), we deduce, by (135) and recalling R− u ≥ 0,

∂ϕ

∂x1
= (1 +R(R− u))−1 and

∂ϕ

∂r
= −(R sinϕ)(1 +R(R− u))−1

and therefore

∂u

∂x1
= v(1 +R2)−1/2(1 +R(R− u))−1,

∂v

∂x1
=

√

1 +R2(R− u)(1 +R(R− u))−1,

r
∂u

∂r
= −(R− u) − Rv2

1 +R2
(1 +R(R− u))−1, r

∂v

∂r
= v(1 +R(R− u))−1.

We thus infer that, since wε,R = ε−1(u+ iv) in Hε
R,

〈Jwε,R, ξ〉 = r∂1wε,R × ∂rwε,R = ε−2
( ∂u

∂x1
r
∂v

∂r
− ∂v

∂x1
r
∂u

∂r

)

= ε−2(1 +R2)−1/2(1 +R(R− u))−2
[

v2 + (R − u)
(

Rv2 + (1 +R2)(R − u)(1 +R(R− u))
)]

.

Next, we integrate and successively use the change of variables x = ΦR(α, u, v) (we have computed
its jacobian det Jac(ΦR) = (1 + R2)−1/2(1 + R(R − u)) in Lemma 4.1) and use polar coordinates
(u, v) ' (ερ, ψ) to obtain, with δ := ε/R,

p(wε,R) =
2π

1 +R2

∫ 2π

0

∫ 1

0
(1 +R2(1 − ρδ cosψ))−1

[

R2δ2ρ2 sin2 ψ+R(1−δρ cosψ)
(

R3δ2ρ2 sin2 ψ+R(1+R2)(1−δρ cos ψ)(1+R2(1−δρ cosψ))
)]

ρ dρdψ.

To conclude the proof of (iii), we notice that the integrand is a smooth function in the variables
(δ,R, ρ, ψ) in [0, 1] × [0, L + 1] × [0, 1] × [0, 2π] since there 1 + R2(1 − ρδ cosψ) ≥ 1, and the integral
has value for δ = 0

2π

1 +R2

∫ 2π

0

∫ 1

0
(1 +R2)−1(R2(1 +R2)2)ρ dρdψ = 2π2R2.

Hence there exists ρ : [0, 1] → R, such that |ρ(s)| ≤ CLs for s ∈ [0, 1], and for 0 < ε ≤ R ≤ L+ 1

p(wε,R) = 2π2R2
(

1 + ρ(
ε

R
)
)

which is (iii). �
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4.3 A preliminary result

In this subsection, we present a preliminary result concerning a lower bound for the Ginzburg-Landau
functional taking into account the degree at infinity. These lower bounds, as in [San2] (see also [J2]),
will provide directly the desired result (compare with Theorem 3 in [San2]). Comparing with [J2], it
has the advantage of separating the energies of the modulus and of the phase globally in Ωn, which is
crucial for our problem. We consider a lipschitz map

w : T ×Dn → C

satisfying w = g = eiθ on T× ∂Dn. We follow very closely the lines of [San2]. We will need to extend
w on a larger domain. In view of the boundary condition, it is natural to extend w by setting

w := eiθ in T × (D3n \Dn).

The energy of the new w is then the old one plus π log 3n
n = π log 3. We recall the definition of the

radius from [San2] (in our context). Let K ⊂ R
2 be compact. We define the radius |K| of K by

|K| := inf

{ n
∑

i=1

ri, n ∈ N, ai ∈ R
2,K ⊂ ∪ni=1D(ai, ri)

}

.

We will make use of the following Proposition taken from [San2].

Proposition 4.1. Assume Ω ⊂ R
2 is a bounded open set and ω ⊂ Ω is compact at distance greater

than 2ρ > 0 from ∂Ω. Then, for any v : Ω \ ω → S
1 ⊂ C having degree d ∈ Z on ∂Ω,

1

2

∫

Ω\ω
|∇v|2 ≥ π|d| log

( ρ

|ω|
)

.

For the extended map w, we will have Ω = D3n, ρ = n and d = 1, and we deduce the following
corollary.

Corollary 4.1. Let ω ⊂ D̄n be compact and v : Dn \ ω → S
1 ⊂ C such that v(z) = z/|z| = eiθ on

∂Dn, then
1

2

∫

Dn\ω
|∇v|2 ≥ π log

( n

|ω|
)

− π log 3.

We deduce from Corollary 4.1 the main lower bound for a map having a degree one at infinity.

Lemma 4.4. Let H ⊂ D̄n be compact and w : T ×Dn → C be a lipschitz map such that w = eiθ on
T × ∂Dn. Then, there exists C, independent of 0 < ε ≤ 1/2, n ∈ N

∗ and H, such that

1

2

∫

T×(Dn\H)
|∇2,3w|2 +

(1 − |w|2)2
2ε2

≥ 2π2 log n+ 2π2(1 − t2∗)|log ε| − 2π2t2∗ log(|H|) − C,

with

t∗ :=

√

1 +
( πε

2
√

2|H|
)2

− πε

2
√

2|H|
∈ [0, 1]

and the convention that t∗ = t2∗ log(|H|) = 0 if |H| = 0.

Notations: We will use the following notations. For t ≥ 0 and a ∈ T, set

Ωa
t := {y ∈ Dn \H, |w(a, y)| > t}, ωat := {y ∈ Dn \H, |w(a, y)| ≤ t}, wa := w(a, .),
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γat := ∂Ωa
t \ ∂Dn = ∂ωat and Ea

ε (w) :=
1

2

∫

{a}×(Dn\H)
|∇2,3w

a|2 +
(1 − |wa|2)2

2ε2
.

For a ∈ T and t ≥ 0, consider the functions

Θa(t) :=
1

2

∫

Ωa
t

∣

∣

∣
∇

( wa

|wa|
)∣

∣

∣

2
dy and νa(t) :=

∫

γa
t

∣

∣∇|wa|
∣

∣dH1.

Proof of Lemma 4.4. First, we fix a ∈ T. Since wa is lipschitz, the coarea formula gives

Eaε (w) =
1

2

∫ +∞

0

[

∫

γa
t

∣

∣∇|wa|
∣

∣ +
(1 − t2)2

2ε2
∣

∣∇|wa|
∣

∣

dH1
]

− 2t2(Θa)′(t) dt.

By Cauchy-Schwarz inequality,
∫

γa
t

1
∣

∣∇|wa|
∣

∣

dH1 ≥ H1(γat )
2

νa(t)

and from the definition of the radius,

H1(γat ) ≥ 2diam(γat ) ≥ 4|ωat |,

since if u, v ∈ γat are such that diam(γat ) = |u − v|, then ωat ⊂ D((u + v)/2, |u − v|/2) and therefore
|ωat | ≤ |u− v|/2 = diam(γat )/2. It follows from the inequality (a2 + b2)/2 ≥ ab that

Eaε (w) ≥ 1

2

∫ +∞

0
νa(t) +

8(1 − t2)2|ωat |2
ε2νa(t)

dt−
∫ +∞

0
t2(Θa)′(t) dt

≥
∫ +∞

0

2
√

2

ε
|1 − t2| · |ωat | dt−

∫ +∞

0
t2(Θa)′(t) dt.

We integrate by parts the last term. Since w is lipschitz, Θa has compact support in R+ and is locally
lipschitz on R

∗
+ (note that Θa(0) = +∞). Since Θa ≥ 0 and −(Θa)′ ≥ 0, we have by monotone

convergence

−
∫ +∞

0
t2(Θa)′(t) dt = lim

η→0
−

∫ +∞

η
t2(Θa)′(t) dt = lim

η→0

(

2

∫ +∞

η
tΘa(t) dt+ η2Θa(η)

)

≥ lim
η→0

2

∫ 1

η
tΘa(t) dt = 2

∫ 1

0
tΘa(t) dt.

From Corollary 4.1, we know that

Θa(t) ≥ −π log
( |ωat ∪H|

n

)

− π log 3, (140)

hence, since |ωat ∪H| ≤ |ωat | + |H|,

Eaε (w) ≥
∫ 1

0

2
√

2

ε
(1 − t2)|ωat | − 2tπ log

( |ωat | + |H|
n

)

dt− C.

Next, we notice that, for fixed ε > 0, t ∈ (0, 1), the function f(r) := 2
√

2ε−1(1− t2)r−2tπ log
(

r+|H|
n

)

,

defined for r > −|H| has a minimum for r = r∗ := 2−1/2πεt(1 − t2)−1 − |H| (note that r∗ > −|H|),
but it can occur that r∗ < 0. If r∗ ≥ 0, then

2
√

2

ε
(1 − t2)|ωat | − 2tπ log

( |ωat | + |H|
n

)

= f(|ωat |) ≥ f(r∗) ≥ −2tπ log
( πtε

n
√

2(1 − t2)

)

,
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and if r∗ < 0, f is increasing on R+ and then

2
√

2

ε
(1 − t2)|ωat | − 2tπ log

( |ωat | + |H|
n

)

= f(|ωat |) ≥ f(0) = −2tπ log
( |H|
n

)

.

Moreover, we have r∗ ≥ 0 if and only if t ≥ t∗, thus

Eaε (w) ≥
(

∫ t∗

0
+

∫ 1

t∗

)2
√

2

ε
(1 − t2)|ωat | − 2tπ log

( |ωat | + |H|
n

)

dt− C

≥
∫ t∗

0
−2tπ log

( |H|
n

)

dt−
∫ 1

t∗

2tπ log
( πtε

n
√

2(1 − t2)

)

dt− C

≥ πt2∗ log
( n

|H|
)

+ π(1 − t2∗) log
(n

ε

)

− C

since t 7→ t log
(

t(1 − t2)−1
)

∈ L1(0, 1). The conclusion follows integrating in a ∈ T. �

4.4 Proof of Proposition 2 completed

We are now in position to complete the proof of Proposition 2. We are just left with the (important)
inequality (20). We will follow closely the lines of the proof of Theorem 3 in [San2]. We also denote,
for the lipschitz map u = uε,n : T ×Dn → C having boundary condition u = eiθ on T × ∂Dn and for
a ∈ T,

T a := −
∫ +∞

0
t2(Θa)′(t) dt, Na :=

1

2

∫

Dn

∣

∣∇2,3|ua|
∣

∣

2
+

(1 − |ua|2)2
2ε2

dx2dx3,

T̃ a :=

∫ 1

0
2tΘa(t) dt, Ia :=

∫ 1

0

2
√

2

ε
|ωat |(1 − t2) dt and Ja :=

∫ 1

0
2tπ log

( n

|ωat |
)

dt− C.

From the proof of Lemma 4.4 with H = ∅ (so t2∗ log(|H|) = 0 and r∗ ≥ 0), we know that for any a ∈ T,

Ja ≤ T̃ a ≤ T a, Ia ≤ Na and

∫

T

(Ia + T̃ a) da ≥
∫

T

(Ia + Ja) da ≥ 2π2 log
(n

ε

)

− C. (141)

Moreover, we have by the upper bound (19)

Eε(u) =

∫

T

(T a +Na) da+
1

2

∫

Ωn

|∂1u|2 ≤ 2π2 log n+ 2π2
√

1 + L2|log ε| + CL. (142)

Writing 1 =
∫ 1
0 2t dt, we deduce from (141) that for a ∈ T

T a − π log
(n

ε

)

≥ Ja − π log
(n

ε

)

∫ 1

0
2t dt =

∫ 1

0
2tπ log

( ε

|ωat |
)

dt− C,

and since t 7→ log(1 − t2) ∈ L1(0, 1),

T a − π log
(n

ε

)

≥ −π
∫ 1

0
2t log

(2
√

2

ε
|ωat |(1 − t2)

)

dt− C.

By Jensen inequality applied with the concave function log and the interval [0, 1] with measure 2t dt
(hence the total mass of [0, 1] is 1),

∫ 1

0
2t log

(2
√

2

ε
|ωat |(1− t2)

)

dt ≤ log
(

∫ 1

0
4t

√
2

ε
|ωat |(1− t2) dt

)

≤ log
(

∫ 1

0

2
√

2

ε
|ωat |(1− t2) dt

)

+ log 2.
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We therefore deduce

T a − π log
(n

ε

)

≥ −π log
(

∫ 1

0

2
√

2

ε
|ωat |(1 − t2) dt

)

− C = −π log Ia − C.

Adding Na, with (141), integrating for a ∈ T and using (142), we infer

2π2 log n+ 2π2
√

1 + L2|log ε| + CL ≥ 1

2

∫

Ωn

|∂1u|2 +

∫

T

(T a +Na) da

≥ 1

2

∫

Ωn

|∂1u|2 dx+ 2π2 log
(n

ε

)

+

∫

T

(Na − π logNa) da− C,

and thus
1

2

∫

Ωn

|∂1u|2 +

∫

T

(Na − π logNa) da ≤ CL|log ε| + CL.

We then use Jensen inequality with log again but on T with measure da/(2π) to obtain

∫

T

logNa da = 2π

∫

T

logNa da

2π
≤ 2π log

(

∫

T

Na da

2π

)

= 2π log
(

∫

T

Na da
)

+ C,

which implies
1

2

∫

Ωn

|∂1u|2 +

∫

T

Na da− 2π2 log
(

∫

T

Na da
)

≤ CL|log ε| + CL,

from which we easily deduce

1

2

∫

Ωn

|∂1u|2 +

∫

T

Na da ≤ CL|log ε|. (143)

Estimate (20) comes from (143) and (141). �

5 Proofs of Lemmas 2 and 3

5.1 Proof of Lemma 2

We recall that Lemma 2 states that the two expressions integrated in the momentum of uε,n and vε,n
are close (nearly in L1(Ωn)). From (19) and Lemma 2.1, we know that

Eε(vε,n) +

∫

Ωn

|ũ− vε,n|2
2ε

≤ Inε ≤ 2π2 log n+ 2π2
√

1 + L2|log ε| + CL. (144)

Since vε,n is lipschitz and has value g = eiθ on T × ∂Dn we may apply the arguments of subsection
4.4 to vε,n and obtain first the following lemma.

Lemma 5.1. The map vε,n satisfies, ωat being defined for vε,n,

∫

Ωn

|∂1vε,n|2 +
1

2ε2
(1 − |vε,n|2)2 +

|vε,n − ũ|2
ε

≤ CL|log ε|, (145)

∫

T

∫ 1

0
ε−1|ωat |(1 − t2) dtda ≤ CL|log ε|. (146)

The proof is the same as for Lemma 4.4, just replace (142) by (144). Estimate (146) is then
deduced as (143) and will be used in the proof of Corollary 1. We can therefore prove Lemma 2.
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Proof of Lemma 2. Let B ⊂ Dn be a measurable set. In view of the periodicity in the x1 variable,
integration by parts yields

∫

T×B
(ivε,n, ∂1vε,n) −

∫

T×B
(iũ, ∂1ũ) =

∫

T×B
(i(vε,n − ũ), ∂1(vε,n + ũ)).

Thus, by Cauchy-Schwarz and (145),

∣

∣

∣

∫

T×B
(ivε,n, ∂1vε,n) −

∫

T×B
(iũ, ∂1ũ)

∣

∣

∣ ≤
∫

T×B
|ũ− vε,n|(|∂1ũ| + |∂1vε,n|)

≤
√

2
(

∫

T×B
|ũ− vε,n|2

)
1

2
(

∫

T×B
|∂1ũ|2 + |∂1vε,n|2

)
1

2

≤ CL
√
ε|log ε|. (147)

We estimate similarly, since |∂1ũ| ≤ |∂1uε,n| and using (20),

∣

∣

∣

∫

T×B
(iũ, ∂1ũ) −

∫

T×B
(iuε,n, ∂1uε,n)

∣

∣

∣
≤

∫

T×B
|uε,n − ũ|(|∂1ũ| + |∂1uε,n|)

≤ 2
(

∫

T×B
|ũ− uε,n|2

) 1

2
(

∫

T×B
|∂1uε,n|2

) 1

2

= 2
(

∫

(T×B)∩{|u|>1}
(1 − |u|2)2

) 1

2
(

∫

T×B
|∂1uε,n|2

) 1

2

≤ CLε|log ε|. (148)

Combining estimates (147) and (148) yields the result. �

5.2 Proof of Lemma 3 : rough localization of the singular set

In this subsection, we prove Lemma 3 concerning the rough location of the singular set of vε,n, defined
by S := {|vε,n| ≤ 1/2}. We will make use of the following trivial observation.

Lemma 5.2. Let (Di)i∈I be a finite collection of closed disks in R
2 of radii ri. Then, there exists a

finite collection of pairwise disjoint closed disks (D̃j)j∈J in R
2 of radii r̃j such that

∪i∈IDi ⊂ ∪j∈JD̃j ,

the sets ({i ∈ I, Di ⊂ D̃j})j∈J induce a partition of I,

∑

j∈J
r̃j ≤

∑

i∈I
ri

and ]J ≤ ]I with strict inequality unless (Di)i∈I is pairwise disjoint.

Proof of Lemma 5.2. If Di ∩Dj 6= ∅ for i, j ∈ I, i 6= j, then we replace them by a disk D̃ of radius
r such that Di ∪ Dj ⊂ D̃ and r ≤ ri + rj, and then delete the disks Dk ⊂ D̃ (k ∈ I, k 6= i, j); we
repeat this until the collection is pairwise disjoint, which occurs in a finite number of steps since I is
finite. �

Proof of Lemma 3. In order to locate the singular set S := {|vε,n| ≤ 1/2} of vε,n, we consider the
covering of S by the balls B(x, 5ε/(4C0)), x ∈ S (where C0 is the constant in Lemma 2.1). By the
Vitali´s covering theorem, there exists an at most countable family (ai)i∈I in S such that

S ⊂ ∪i∈IB(ai, 5ε/(4C0))
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and
B(ai, ε/(4C0)) ∩B(aj , ε/(4C0)) = ∅ if i 6= j.

The question is then to determine a bound for ]I. To that aim, from (146) in Lemma 5.1

∫

T

∫ 1

0
ε−1|ωat |(1 − t2) dtda ≤ CL|log ε|,

there exists, by the mean-value formula, τ∗ ∈ [3/4, 1] such that
∫

T

|ωaτ∗ | da ≤ CLε|log ε|. (149)

For each i ∈ I, we have |vε,n(ai)| ≤ 1/2, so, since |∇vε,n| ≤ C0/ε,

B(ai, ε/(4C0)) ⊂ {|vε,n| ≤ 3/4}.

Hence, if |a− a1
i | ≤ ε/(4C0) (where ai = (a1

i , a
2
i , a

3
i ) and |.| denotes the distance in R/(2πZ)),

D
(

(a2
i , a

3
i ),

√

(ε/(4C0))2 − |a− a1
i |2

)

⊂ {|vε,n(a, .)| ≤ 3/4} ⊂ ωaτ∗

and since the balls B(ai, ε/(4C0)) are pairwise disjoint, we deduce

|ωaτ∗ | ≥
∑

i∈I
χ{|a−a1i |≤ε/(4C0)}

√

(ε/(4C0))2 − |a− a1
i |2,

where χ stands for the characteristic function. Integrating for a ∈ T yields
∫

T

|ωaτ∗ | da ≥
∑

i∈I

∫

T

χ{|a−a1i |≤ε/(4C0)}

√

(ε/(4C0))2 − |a− a1
i |2 da.

By periodicity, all the integrals are equal and have value (for ε/(4C0) < π)

∫ ε/(4C0)

−ε/(4C0)

√

(ε/(4C0))2 − t2 dt = (ε/(4C0))
2

∫ 1

−1

√

1 − t2 dt =
ε2

C ′
0

,

thus
∫

T

|ωaτ∗ | da ≥ ]Iε2

C ′
0

.

Comparing with (149), we obtain the upper bound

]I ≤ CL
|log ε|
ε

. (150)

Applying Lemma 5.2 to the family of closed disks (D̄(ai, 5ε/(4C0)))i∈I , there exists a family of closed
pairwise disjoint disks (D̄(bj , rj))j∈J such that

]J ≤ ]I ≤ CL
|log ε|
ε

, ∪i∈I D̄(ai, 5ε/(4C0)) ⊂ ∪j∈JD̄(bj , rj)

and, by (150),
∑

j∈J
rj ≤

∑

i∈I
5ε/(4C0) = ]I × 5ε/(4C0) ≤ CL|log ε|. (151)

By construction, we have therefore localized S in disjoint closed cylinders :

S = {|vε,n| ≤ 1/2} ⊂ ◦∪j∈J C̄(bj , rj), (152)

which concludes the proof of Lemma 3. �
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6 Proofs of Proposition 3, Corollary 1 and Lemma 5

6.1 Proof of Proposition 3 : the speed is bounded

We give here the proof of Proposition 3 : the speed cε,n is bounded for 0 < ε < ε0(L) and n ≥ CL|log ε|2.
We first recall the Besicovitch Covering Theorem.

Theorem 5. Let E be a subset of R
N and let r : E → R be a positive bounded function defined on E.

Then one can choose an at most countable family of points (xi)i∈I in E such that

(i) E ⊂ ∪i∈IB̄(xi, r(xi)),

(ii) the balls B̄(xi,
1
3r(xi)) are mutually disjoint,

(iii) the balls B̄(xi, r(xi))i∈I can be distributed in at most ζ(N) families of disjoint closed balls,
with ζ(N) depending only on N .

Strategy of the proof of Proposition 3. The proof is based on Pohozaev identity (Step 1). The
question is then to find a cylinder (or more) such that the momentum is large enough on this cylinder
(Step 2) and

∫

Č(a,R)〈Juε,n, ξ〉 is close to the momentum on this cylinder. This introduces boundary

terms when integrating by parts, that we will have to control (Step 4). We have also to bound the
right-hand side of the Pohozaev identity. We can not use a too large cylinder (or too many) since the
energy diverges as n→ +∞. We will then have to bound the energy in some “small” cylinders (Step
5) : the lower bound given in Lemma 4.4 will be useful here. The estimates for the boundary terms
will be established through an averaging argument, thus we will need to dilate a little the cylinder(s),
and then to choose a suitable radius (Step 6). To conclude, note that one cylinder will not be enough
and thus we will be compelled to work with many of them. In order to control the overlapping of
these cylinders, we will make use of the Besicovitch Theorem.

Step 1: Pohozaev type identity. The following Pohozaev type identity holds for the solution uε,n
of (9). Let C(a,R) be a cylinder, with a ∈ Dn and R > 0, then

∫

Č(a,R)
|∂1uε,n|2 +

(1 − |uε,n|2)2
2ε2

dx− cε,n
2

|log ε|
∫

Č(a,R)
〈Juε,n, ξ〉

=
1

2

∫

T×∂(D(a,R)∩Dn)
((x2, x3) − a) · ν

[

|∇>uε,n|2 −
∣

∣

∣

∂uε,n
∂ν

∣

∣

∣

2
+

(1 − |uε,n|2)2
2ε2

]

. (153)

For the proof, multiply, as for Pohozaev identity, the equation by x2∂2uε,n+x3∂3uε,n and integrate
by parts over Č(a,R) (note that we do not need an identification R/(2πZ) ' [0, 2π) since the Pohozaev
multiplier is 2π-periodic in the x1 variable).

Step 2: Localizing the momentum of vε,n. We now estimate the contribution outside the
cylinders (C̄(bj , rj))j∈J given by Lemma 3 for the integral for the momentum of vε,n. We claim that,

for any measurable set ω ⊂ G := Dn \
◦∪j∈JD̄(bj , rj), we have

∣

∣

∣

∫

ω
(ivε,n, ∂1vε,n) dx

∣

∣

∣
≤ CLε|log ε|,

for n ≥ CL|log ε|, with CL depending only on L.

First, notice that since the closed disks (D̄(bj , rj))j∈J are pairwise disjoint, for 0 < ε < ε0(L) and
n ≥ (CL + 1)|log ε| (CL being the one in (151)),

G = Dn \
◦∪j∈JD̄(bj , rj)
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is connected. Hence, since |vε,n| ≥ 1/2 outside Ωn \
◦∪j∈J C̄(bj , rj), for every y ∈ G,

vε,n(., y)

|vε,n(., y)|
: T → S

1

has a degree 0. Indeed, there exists at least one point, denoted y∗, in ∂Dn \ ◦∪j∈JD̄(bj , rj), for
otherwise, since the disks are pairwise disjoint, rj ≥ n for at least one j ∈ J , which contradicts (151)
if n ≥ (CL+1)|log ε|. Consider y ∈ G. One can connect y to y∗, which gives rise to an homotopy from

vε,n(., y)

|vε,n(., y)|
: T → S

1 to
vε,n(., y∗)

|vε,n(., y∗)|
: T → S

1,

which is constant (of value y∗
|y∗|) in view of the boundary condition, and then has degree 0. Therefore,

one may write for y ∈ G

vε,n(., y) = ρ(., y) exp(iϕ(., y)) on T, (154)

where ρ(., y) ≥ 1/2 and ϕ(., y) ∈ R are lipschitz maps defined on T (the periodicity of ϕ comes from

the fact that it has degree 0). We can not write (154) in the whole Ωn \ ◦∪j∈JC̄(bj , rj) since vε,n is
expected to have a non-zero degree around (at least) one cylinder (in the (x2, x3) variables). Let

ω ⊂ G = Dn \
◦∪j∈JD̄(bj , rj) be measurable. Since (ivε,n(., y), ∂1vε,n(., y)) = ρ(., y)2∂1ϕ(., y) for y ∈ ω,

it follows that
∫

T×ω
(ivε,n, ∂1vε,n) dx =

∫

ω

∫

T

ρ(., y)2∂1ϕ(., y) dx1dy =

∫

ω

∫

T

(

ρ(., y)2 − 1
)

∂1ϕ(., y) dx1dy

(since ϕ(., y) is well-defined on the torus, i.e. 2π-periodic). Hence, by Cauchy-Schwarz and (145)

∣

∣

∣

∫

T×ω
(ivε,n, ∂1vε,n) dx

∣

∣

∣
≤ 8ε

(

∫

T×ω

(1 − |vε,n|2)2
4ε2

)1/2(
∫

T×ω
|∂1vε,n|2

)1/2
≤ CLε|log ε|,

which concludes the proof of the claim. �

Step 3: Going back to the Pohozaev identity. We infer from the Pohozaev identity of Step 1

|cε,n| ·
∣

∣

∣

q
∑

l=1

∫

ωl
λ

〈Juε,n, ξ〉
∣

∣

∣
≤ CL +

2ζ

|log ε|
d

dλ

∑

j∈J

∫

Č(bj ,λrj)
eε(uε,n) + CL

∫

∂Ωn

eε(uε,n). (155)

We apply the Besicovitch Covering Theorem to the family (D̄(bj , 3rj))j∈J . It provides us a partition
(Jl)1≤l≤q of J̃ ⊂ J , with q ≤ ζ (ζ being an absolute integer), such that

∪j∈JD̄(bj, 3rj) ⊂ ∪j∈J̃D̄(bj , 3rj) (156)

and for 1 ≤ l ≤ q, the disks D̄(bj , 3rj), j ∈ Jl, are pairwise disjoint. Next, for every 1 ≤ λ ≤ 3, we
apply Step 1 on each C(bj , λrj) and deduce by summing over j ∈ Jl (since the disks D̄(bj , λrj), j ∈ Jl,
are pairwise disjoint for 1 ≤ λ ≤ 3 and 1 ≤ l ≤ q) that, denoting ω lλ := ∪j∈Jl

D(bj, λrj),

cε,n|log ε|
q

∑

l=1

∫

ωl
λ

〈Juε,n, ξ〉 = 2

q
∑

l=1

∫

ωl
λ

|∂1uε,n|2 +
(1 − |uε,n|2)2

2ε2
dx

−
q

∑

l=1

∑

j∈Jl

∫

∂Č(bj ,λrj)
((x2, x3) − bj) · ν

[

|∇>uε,n|2 −
∣

∣

∣

∂uε,n
∂ν

∣

∣

∣

2
+

(1 − |uε,n|2)2
2ε2

]

. (157)
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Since q ≤ ζ, we deduce from (20) that the first sum in the right-hand side of (157) satisfies

2

q
∑

l=1

∫

ωl
λ

|∂1uε,n|2 +
(1 − |uε,n|2)2

2ε2
dx ≤ 2q

∫

∪j∈JD(bj ,3rj)
|∂1uε,n|2 +

(1 − |uε,n|2)2
2ε2

dx

≤ 2ζCL|log ε|. (158)

Concerning the last sum in (157), we note that, there, |((x2, x3) − bj) · ν| ≤ rj and

∣

∣

∣
|∇>uε,n|2 −

∣

∣

∣

∂uε,n
∂ν

∣

∣

∣

2
+

(1 − |uε,n|2)2
2ε2

∣

∣

∣
≤ 2eε(uε,n),

thus, since the disks D(bj , λrj), j ∈ Jl, are pairwise disjoint for 1 ≤ l ≤ q and 1 ≤ λ ≤ 3,

∣

∣

∣

q
∑

l=1

∑

j∈Jl

∫

∂Č(bj ,λrj)
((x2, x3) − bj) · ν

[

|∇>uε,n|2 −
∣

∣

∣

∂uε,n
∂ν

∣

∣

∣

2
+

(1 − |uε,n|2)2
2ε2

]∣

∣

∣

≤ 2ζ
∑

j∈J
rj

∫

∂Č(bj ,λrj)
eε(uε,n)

≤ 2ζ
d

dλ

∑

j∈J

∫

Č(bj ,λrj)
eε(uε,n) + 2ζ

∑

j∈J
rj

∫

∂Ωn∩C(bj ,λrj)
eε(uε,n)

≤ 2ζ
d

dλ

∑

j∈J

∫

Č(bj ,λrj)
eε(uε,n) + CL|log ε|

∫

∂Ωn

eε(uε,n) (159)

by (151). Combining (158) and (159) with (157), we are led to (155). �

Step 4: Control for the momentum and the boundary terms. We prove that

∣

∣

∣

q
∑

l=1

∫

ωl
λ

〈Juε,n, ξ〉
∣

∣

∣
≥

∣

∣

∣

q
∑

l=1

∫

ωl
λ\G

(iuε,n, ∂1uε,n)
∣

∣

∣
−CLε|log ε| − 4

√
ε
d

dλ

∑

j∈J

∫

Č(bj ,λrj)
fε (160)

and

n

∫

T×∂Dn

eε(uε,n) ≤ CL|log ε| + CL|cε,n| · |log ε|. (161)

First, note that integration by parts yields
∫

Č(bj ,λrj)
〈Juε,n, ξ〉 =

∫

Č(bj ,λrj)
(iuε,n, ∂1uε,n) −

1

2

∫

T×∂(D(bj ,λrj)∩Dn)
((x2, x3) − bj) · ν(iuε,n, ∂1uε,n),

and therefore (the disks D(bj , λrj), j ∈ Jl, are pairwise disjoint for 1 ≤ λ ≤ 3 and 1 ≤ l ≤ q)

∣

∣

∣

q
∑

l=1

∫

ωl
λ

〈Juε,n, ξ〉
∣

∣

∣ ≥
∣

∣

∣

q
∑

l=1

∫

ωl
λ

(iuε,n, ∂1uε,n)
∣

∣

∣

− 1

2

∣

∣

∣

q
∑

l=1

∑

j∈Jl

∫

∂Č(bj ,λrj)
((x2, x3) − bj) · ν(iuε,n, ∂1uε,n)

∣

∣

∣
. (162)

As in the proof of Lemma 2, we have
∣

∣

∣

∫

∂Č(bj ,λrj)
((x2, x3) − bj) · ν (iuε,n, ∂1uε,n) −

∫

∂Č(bj ,λrj)
((x2, x3) − bj) · ν (iũ, ∂1ũ)

∣

∣

∣
(163)

=
∣

∣

∣

∫

∂Č(bj ,λrj)
((x2, x3) − bj) · ν(i(uε,n − ũ), ∂1(uε,n + ũ))

∣

∣

∣
≤ εrj

∫

∂Č(bj ,λrj)
fε = ε

d

dλ

∫

Č(bj ,λrj)
fε,
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where

fε := |∂1uε,n|2 + |∂1vε,n|2 +
(1 − |uε,n|2)2

2ε2
+

(1 − |vε,n|2)2
2ε2

+
|vε,n − ũ|2

ε
,

since by definition of g, fε = 0 on ∂Ωn, and similarly

∣

∣

∣

∫

∂Č(bj ,λrj)
((x2, x3) − bj) · ν(iũ, ∂1ũ) −

∫

∂Č(bj ,λrj)
((x2, x3) − bj) · ν(ivε,n, ∂1vε,n)

∣

∣

∣

≤ √
εrj

∫

∂Č(bj ,λrj)
fε =

√
ε
d

dλ

∫

Č(bj ,λrj)
fε. (164)

Moreover, we also have (since |vε,n| ≥ 1/2 on ∂Č(bj , λrj), we may write vε,n(., y) = ρ(., y)eiϕ(.,y) on T

for y ∈ ∂Ď(bj , λrj) and for a lipschitz ϕ, x1-periodic), as in Step 2, by Cauchy-Schwarz and (145)

∣

∣

∣

∫

∂Č(bj ,λrj)
((x2, x3) − bj) · ν (ivε,n, ∂1vε,n)

∣

∣

∣ =
∣

∣

∣

∫

∂(D(bj ,λrj)∩Dn)

∫

T

ρ2(., y)∂1ϕ(., y) dx1dy
∣

∣

∣

= ε
∣

∣

∣

∫

∂(D(bj ,λrj)∩Dn)

∫

T

(ρ2(., y) − 1)

ε
∂1ϕ(., y) dx1dy

∣

∣

∣

≤ 2ε
d

dλ

∫

Č(bj ,λrj)
fε. (165)

Combining inequalities (163), (164) and (165) with (162) implies

∣

∣

∣

q
∑

l=1

∫

ωl
λ

〈Juε,n, ξ〉
∣

∣

∣ ≥
∣

∣

∣

q
∑

l=1

∫

ωl
λ

(iuε,n, ∂1uε,n)
∣

∣

∣ − 4
√
ε
d

dλ

∑

j∈J

∫

Č(bj ,λrj)
fε. (166)

Next, notice that

∣

∣

∣

q
∑

l=1

∫

ωl
λ

(iuε,n, ∂1uε,n)
∣

∣

∣
≥

∣

∣

∣

q
∑

l=1

∫

ωl
λ\G

(iuε,n, ∂1uε,n)
∣

∣

∣
−

q
∑

l=1

∣

∣

∣

∫

ωl
λ∩G

(iuε,n, ∂1uε,n)
∣

∣

∣
, (167)

where, we recall, G = Dn\
◦∪j∈J D(bj, rj) is the set where the momentum is ' 0. From Step 2 with

ω := ωlλ \
(

∪j∈JD(bj , rj)
)

⊂ G

for 1 ≤ l ≤ q, we have
∣

∣

∣

∫

ωl
λ\G

(iuε,n, ∂1uε,n)
∣

∣

∣ ≤ CLε|log ε|,

thus summing these inequalities for 1 ≤ l ≤ q ≤ ζ yields

q
∑

l=1

∣

∣

∣

∫

ωl
λ\G

(iuε,n, ∂1uε,n)
∣

∣

∣ ≤ CLζε|log ε|. (168)

Combining (166), (167) and (168) gives (160).
Concerning the boundary energy, we know that uε,n = g = eiθ on ∂Ωn, so |∇>g|2 = n−2 and

2

∫

∂Ωn

eε(uε,n) =

∫

∂Ωn

1

n2
+

∣

∣

∣

∂uε,n
∂ν

∣

∣

∣

2
=

4π2

n
+

∫

∂Ωn

∣

∣

∣

∂uε,n
∂ν

∣

∣

∣

2
. (169)

Next, by the Pohozaev identity of Step 1 on Ωn = Cn(0) (recalling p(uε,n) =
∫

Ωn
〈Juε,n, ξ〉 = 2π2L2)

∫

Ωn

|∂1uε,n|2 +
(1 − |uε,n|2)2

2ε2
dx− π2L2cε,n|log ε| = 2π2 − n

2

∫

T×∂Dn

∣

∣

∣

∂uε,n
∂ν

∣

∣

∣

2
. (170)
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From (20), (169) and (170), we infer (161). �

Step 5: Upper bound for the energy on the cylinders. We claim that

Eε(uε,n,∪j∈JČ(bj , 3rj)) ≤ CL|log ε|. (171)

Applying Lemma 4.4 with H = D̄n ∩ ∪j∈JD̄(bj , 3rj) yields

1

2

∫

T×(Dn\H)
|∇2,3uε,n|2 +

(1 − |uε,n|2)2
2ε2

≥ 2π2 log n+ 2π2(1 − t2∗)|log ε| − 2π2t2∗ log(|H|) − C,

where C is independent of ε, n and H and t∗ :=

√

1 +
(

πε
2
√

2|H|

)2
− πε

2
√

2|H| ∈ [0, 1]. We then infer

Eε(uε,n,Ωn \ ∪j∈J ∪j∈J Č(bj , 3rj)) ≥ 2π2 log n− 2π2 log(|log ε|) − C,

since from (151), we have

|H| ≤ 3
∑

j∈J
rj ≤ CL|log ε|,

and (171) follows from (19).

Step 6: Choice of λ. Notice that, since G = Dn \ ∪j∈JD(bj , rj),

ωlλ \G = ∪j∈Jl
D(bj, rj).

Hence, the disks D̄(bj , rj) for j ∈ J being mutually disjoint,

q
∑

l=1

∫

T×ωl
λ\G

(iuε,n, ∂1uε,n) =

∫

∪j∈J̃ Č(bj ,rj)
(iuε,n, ∂1uε,n).

Moreover, in view of the constraint p(uε,n) = 2π2L2, Lemma 2 and Step 2 with ω = G, we have,
denoting J0 := J \ J̃ ,

∫

∪j∈J̃D(bj ,rj)
(iuε,n, ∂1uε,n) +

∫

∪j∈J0
D(bj ,rj)

(iuε,n, ∂1uε,n) =

∫

∪j∈JD(bj ,rj)
(iuε,n, ∂1uε,n)

≥ 2π2L2 − CLε|log ε| ≥ π2L2 > 0, (172)

for ε > 0 sufficiently small. Assume

∫

∪j∈J̃D(bj ,rj)
(iuε,n, ∂1uε,n) ≥

1

2
π2L2 > 0, (173)

then (160) rewrites

∣

∣

∣

q
∑

l=1

∫

ωl
λ

〈Juε,n, ξ〉
∣

∣

∣ ≥ 1

2
π2L2 − CLε|log ε| −

√
ε
d

dλ

∑

j∈J

∫

Č(bj ,λrj)
fε. (174)

Now, we choose λ ∈ [1, 3]. From (20) and (145), we know that

∫ 3

1

d

dλ

∑

j∈J

∫

Č(bj ,λrj)
fε dλ ≤ ζ

∫

∪j∈J Č(bj ,3rj)
fε ≤ ζCL|log ε|. (175)
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Moreover, by Step 5, we have

∫ 3

1

d

dλ

∑

j∈J

∫

Č(bj ,λrj)
eε(uε,n) dλ ≤ ζ

∫

∪j∈J Č(bj ,3rj)
eε(uε,n) ≤ CL|log ε|. (176)

Combining (175) and (176) and the mean-value formula, we deduce that there exists λ ∈ [1, 3] (de-
pending on ε, n and L) such that

d

dλ

∑

j∈J

∫

Č(bj ,λrj)
fε +

d

dλ

∑

j∈J

∫

Č(bj ,λrj)
eε(uε,n) ≤ CL|log ε|. (177)

In particular, for ε > 0 sufficiently small, (174) implies

∣

∣

∣

q
∑

l=1

∫

ωl
λ

〈Juε,n, ξ〉
∣

∣

∣
≥ 1

4
π2L2. (178)

Inserting (161), (174) and (178) into (155) yields

π2L2

4
|cε,n| ≤ |cε,n| ·

∣

∣

∣

q
∑

l=1

∫

ωl
λ

〈Juε,n, ξ〉
∣

∣

∣ ≤ CL + CL
|log ε|
n

(1 + |cε,n|). (179)

If n ≥ CL|log ε|2 and ε is small enough so that CL
|log ε|
n ≤ 1

8π
2L2, then

π2L2

4
|cε,n| ≤ CL +

1

8
π2L2|cε,n|,

which yields the desired estimate (for L > 0)

|cε,n| ≤ K(L)

in the case where (173) is satisfied. If it is not, from (172), we deduce that therefore

∫

∪j∈J0
D(bj ,rj)

(iuε,n, ∂1uε,n) ≥
1

2
π2L2 > 0, (180)

which means that the cylinders Č(bj , rj) for j ∈ J0 concentrate a “good part” of the momentum. We
may then “forget” the other cylinders and argue as previously (Steps 2, 3 and 4) with the new collection
of disks (D(bj , 3rj))j∈J0

instead of (D(bj , 3rj))j∈J . Indeed, when we have applied the Besicovitch
Theorem, we have obtained a partition (Jl), 1 ≤ l ≤ q, of J̃ such that

∪j∈JD̄(bj , 3rj) ⊂ ∪j∈J̃D̄(bj , 3rj).

Since
∪j∈JD̄(bj , rj) ⊂ ∪j∈JD̄(bj , 3rj) ⊂ ∪j∈J̃D̄(bj, 3rj),

this induces a partition of J0 in

J l0 := {j ∈ J0, D̄(bj , rj) ⊂ ∪j̃∈Jl
D̄(bj̃ , 3rj̃)}

for 1 ≤ l ≤ q ≤ ζ such that the disks D̄(bj , 3rj), j ∈ J l0, are mutually disjoint. We follow then Steps 2,
3 and 4 with this collection satisfying (180) and with controlled overlapping. The proof of Proposition
3 is then complete. �
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6.2 Proof of Corollary 1 : fine localization of the singular set

We now apply the arguments used in subsection 5.2 for the (rough) location of the singular set of vε,n
to uε,n. This enables us to exhibit a family of cylinders, for which the sum of the radii is not too large,
and that concentrate the |log ε| term of the energy.

First, we apply the results of the previous subsection 5.2 to uε,n. This is possible since it uses the
upper bounds (19) and (20), together with the estimate on the gradient (4)

|∇uε,n| ≤
CL
ε
.

The consequence is that there exists a family of disks (D(bj , rj))j∈J such that

]J ≤ CL
|log ε|
ε

,
∑

j∈J
rj ≤ CL|log ε|, (181)

Snε ⊂ ∪j∈JČ(bj , rj) and Eε(uε,n,∪j∈J Č(bj , rj)) ≤ CL|log ε|. (182)

We may therefore apply the Clearing-Out result of Theorem 4 to assert the existence of R0 > 0 and
η > 0 (independent of ε, n ≥ CL|log ε|2 and of the bj ’s and rj’s) such that for each x ∈ Snε ,

Eε(uε,n, B(x,R0) ∩ Ωn) ≥ η|log ε|. (183)

Applying Lemma 4.4 with H = ∪j∈JĎ(bj , rj +R0), we obtain

1

2

∫

T×(Dn\H)
|∇uε,n|2 +

(1 − |uε,n|2)2
2ε2

≥ 2π2 log n+ 2π2(1 − t2∗)|log ε| − 2π2t2∗ log(|H|) − C,

for C independent of ε, n and H and t∗ ∈ [0, 1]. By (181), |H| ≤ |log ε|
ε , thus, using (19),

Eε(uε,n,∪j∈J Č(bj , rj +R0)) ≤ CL|log ε|. (184)

Therefore, Snε being covered by the balls B(y, 5R0), y ∈ Snε , it follows from Vitali’s covering theorem
that there exists an at most countable family of points (yi)i∈I in Snε such that

Snε ⊂ ∪i∈IB(yi, 5R0)

and the balls B(yi, R0) are mutually disjoint. As a consequence, from (183) and (184), we deduce

]I ≤ CL
η

:= l. (185)

We then proceed as in Step 1 of the proof of Theorem 4 in [BOS] (Appendix C) to conclude to the
existence of cylinders C(ai, R0) (1 ≤ i ≤ q ≤ l) (with a different R0 than before) such that

Snε ⊂ ∪qi=1C(ai, R0)

and the cylinders C(ai, 8R0) are mutually disjoint. We are then left with (27). We apply Lemma 4.4
with H = D̄n ∩ ∪qi=1D̄(ai, R0), as for (184), to deduce

Eε(uε,n,T × (Dn \H)) ≥ 2π2 log n− CL,

since, by (185),
|H| ≤ qR0 ≤ lR0 ≤ CL.

This implies (28) by (19). The proof of Corollary 1 is complete. �
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6.3 Proof of Lemma 5 : defining the limiting current

The proof follows the one of Lemma 5 in [BOS]. Arguing as in Lemma 3.3 of [BOS], we have the
following lemma.

Lemma 6.1. Let M0 > 0 and R > 0 and X := {u ∈ H1(C4R,C), |u| ≥ 1/2 in C4R \ CR}. Then, for
any δ > 0, there exists ε0 = ε0(M0, R, δ) > 0 such that for any 0 < ε < ε0 and any u ∈ X satisfying
Eε(u) ≤ M0|log ε|, there exists a 1-dimensional integral current T without boundary supported in CR
such that

‖Ju− πT‖
[C0,1

c (C4R)]∗
≤ δ and M(T ) ≤ Eε(u)

π|log ε| + δ.

Proof of Lemma 5. First, we extend ũε,n by eiθ outside Ωn. The energy of the extension on
C(ai, 8R0) \C(ai, R0) is less than or equal to 2π2 log(n+8R0

n ) ≤ CL. We then apply Lemma 6.1 to this
extension of ũε,n on each cylinder C(ai, 4R0). This provides us, for 0 < ε < ε0(L) sufficiently small a
1-dimensional integral current T without boundary supported in C(ai, R0) such that

‖Jũε,n − πTi‖[C0,1
c (C(ai ,4R0)]∗ ≤ r(ε) and M(Ti) ≤

Eε(uε,n, C(ai, 4R0))

π|log ε| + r(ε).

We let T :=
∑q

i=1 Ti. Then, we have

M(T ) ≤ Eε(uε,n,∪qi=1C(ai, 4R0))

π|log ε| + r(ε),

which is iii), and i) follows easily. We are then left with ii). For 1 ≤ i ≤ q, let ξi : C(ai, 2R0) → Λ2
R

3

be a smooth map compactly supported such that ξi ≡ (ai)2 dx1 ∧ dx2 + (ai)3 dx1 ∧ dx3 in C(ai, R0)
and ‖ξi‖L∞(C(ai ,2R0)) ≤ CL. Then, since Jũε,n and Tε,n are supported in ∪qi=1C(ai, R0), we infer from
the equality p(uε,n) =

∫

Ωn
〈Juε,n, ξ〉 that

∣

∣p(uε,n) −F(Tε,n)
∣

∣ ≤
∣

∣

∣

∫

Ωn

〈Juε,n − Jũε,n, ξ〉
∣

∣

∣ +

q
∑

i=1

∣

∣

∣

∫

C(ai,2R0)
〈Jũε,n − πTε,n, ξ〉

∣

∣

∣. (186)

For the second term, we write, by construction of ξi,

q
∑

i=1

∣

∣

∣

∫

C(ai,2R0)
〈Jũε,n − πTi, ξ〉

∣

∣

∣
≤

q
∑

i=1

∣

∣

∣

∫

C(ai ,2R0)
〈Jũε,n − πTi, ξ − ξi〉

∣

∣

∣
≤ qCLr(ε) = r(ε), (187)

since ‖ξ − ξi‖C0,1
c (C(ai,2R0)) ≤ CL (but ‖ξ‖C0,1

c (C(ai ,2R0)) → +∞ if ‖ai‖ → +∞ as n → +∞) and q ≤ l.

Concerning the first term, we integrate by parts (note that uε,n = ũε,n = g = eiθ on ∂Ωn) to obtain

∣

∣

∣

∫

Ωn

〈Juε,n − Jũε,n, ξ〉
∣

∣

∣
=

∣

∣

∣

∫

Ωn

(iuε,n, ∂1uε,n) − (iũε,n, ∂1ũε,n)
∣

∣

∣
. (188)

It suffices then to write that, by Cauchy-Schwarz,

∫

{|uε,n|≤1/2}

∣

∣(iuε,n, ∂1uε,n) − (iũε,n, ∂1ũε,n)
∣

∣ ≤ 3

∫

{|uε,n|≤1/2}

∣

∣(iuε,n, ∂1uε,n)
∣

∣

≤ CL|{|uε,n| ≤ 1/2}|1/2
(

∫

Ωn

|∂1uε,n|2
)1/2

(189)

≤ CLε
(

∫

Ωn

(1 − |uε,n|2)2
2ε2

)1/2(
∫

Ωn

|∂1uε,n|2
)1/2

= r(ε)
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by (20). Also, still by (20),

∫

{|uε,n|>1/2}

∣

∣(iuε,n, ∂1uε,n) − (iũε,n, ∂1ũε,n)
∣

∣ ≤ CL

∫

{|uε,n|>1/2}

∣

∣

∣1 − 1

|uε,n|2
∣

∣

∣ ·
∣

∣(iuε,n, ∂1uε,n)
∣

∣ (190)

≤ CLε
(

∫

Ωn

(1 − |uε,n|2)2
2ε2

)1/2(
∫

Ωn

|∂1uε,n|2
)1/2

= r(ε).

Combining (187), (188), (189), (190) with (186) gives ii). We emphasize however that i) is stated
with Jũε,n and not Juε,n, since we do not know yet that these two jacobians are close globally in Ωn

(compare with Lemma 3.1 in [BOS]) since we do not have a bound Eε(uε,n) ≤ M0|log ε|. However,
since uε,n satisfies the local bound (28), we deduce (29) from Lemma 3.1 in [BOS]. �

7 Proof of Proposition 4 : the current tends to the helix

The proof of Proposition 4, where we prove that the integral current Tε,n is supported in a single

cylinder and tends, up to a translation, to the helix ~HL, is divided in several steps.

Step 1: We prove that Tε,n is close to an helix.

Lemma 7.1. For every sequence εj and nj ≥ CL|log εj |2, there exists a subsequence, still denoted εj
and nj, and a translation τj in T × R

2 such that

τj(Tεj ,nj ) → ~HL in [C0,1
c (T × R

2)]∗ as j → +∞.

Proof of Lemma 7.1. We first note that, by Lemma 5, Tε,n is without boundary and satisfies

M(Tε,n) ≤ 2π
√

1 + L2 + r(ε) and |F(Tε,n) − 2π2L2| ≤ r(ε). (191)

Therefore, from [F] (Theorem 4.2.17), there exists, up to a possible subsequence, a translation τj in
T × R

2 and a 1-dimensional integral current T , without boundary, such that

τj(Tεj ,nj ) → T in [C0,1
c (T × R

2)]∗ as j → +∞.

Passing to the limit in (191) yields

M(T ) ≤ 2π
√

1 + L2 and F(T ) = 2π2L2.

Moreover, in view of the boundary condition, 〈Jũε,n, dx2 ∧ dx3〉 = 2π. Since Jũε,n is supported in the
cylinders Č(ai, R0) for 1 ≤ i ≤ q ≤ l (l being independent of ε and n) with the cylinders Č(ai, 8R0)
mutually disjoint, we can construct a 2-form ζ in T × R

2 (depending on the cylinders C(ai, R0),
1 ≤ i ≤ q) such that ζ is supported in the cylinders C(ai, 3R0), 1 ≤ i ≤ q, ζ = dx2 ∧ dx3 in the
cylinders C(ai, 2R0), 1 ≤ i ≤ q, and ‖ζ‖C0,1

c (T×R2) ≤ CL. Thus, by Lemma 5 i),

2π = 〈Jũε,n, dx2 ∧ dx3〉 = 〈Jũε,n, ζ〉 = 〈Tε,n, ζ〉 + r(ε) = 〈T, ζ〉 + r(ε),

since ζ is uniformly bounded in C0,1
c (T × R

2). Consequently,

Pr1(T ) = 2π.

We may now apply Lemma 6 to obtain the existence of a translation t in T×R
2 such that t(T ) = ~HL,

and the proof of Lemma 7.1 is complete by replacing τj by t ◦ τj. �
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From now on, we work for any sequence εj, nj ≥ CL|log εj |2. From Step 1, we have extracted a
subsequence, still denoted εj , nj.

Step 2: We then prove (30), that is

there exist R0 > 0, depending only on L, and a ∈ T × R
2, depending on εj and nj, such that

Supp(Tεj ,nj ) ⊂ C(a,R0).

We proceed as in the proof of Lemma 6 in [BOS], arguing by contradiction. By Step 1, (up to a
subsequence) we have

τj(Tεj ,nj ) → ~HL in [C0,1
c (T × R

2)]∗ as j → +∞.

Let a := τ−1
j (0). We may assume, relabelling the ai’s if necessary, that a ∈ C(a1, R0). If, for some

1 < i0 ≤ q, S
nj
εj ∩C(ai0 , 8R0) 6= ∅, then by Step 1, Theorem 4 with σ = 1/2 and Lemma 5 iii),

M(HL) ≤ lim inf
j→+∞

Eεj (uεj ,nj , C(a1, 8R0))

π|log εj |
and 0 < ησ=1/2 ≤ lim inf

j→+∞

Eεj (uεj ,nj , C(ai0 , 8R0))

π|log εj |
,

thus

M(HL) + η = 2π
√

1 + L2 + η ≤ lim inf
j→+∞

Eεj (uεj ,nj ,∪qi=1C(ai, 8R0))

π|log εj |
≤ 2π

√

1 + L2,

by (27) in Corollary 1. This is a contradiction. �

Up to a translation of vector ~e1a1, we may assume that a = a(εj , nj) = (0, b), b ∈ Dn, and, τ−b
denoting the translation of vector −a,

τ−bTεj ,nj → ~HL.

Step 3: We prove (31) and (32), that is

{

Eεj (uεj ,nj , Č(a,R0)) = 2π2
√

1 + L2|log εj | + r(εj)|log εj |,
Eεj (uεj ,nj ,Ωnj \ Č(a,R0)) = 2π2 log nj + r(εj)|log εj |.

We first note that from (27) in Corollary 1, the upper bound

Eεj (uεj ,nj , Č(a,R0)) ≤ 2π2
√

1 + L2|log εj | + CL

holds. The lower bound will be a consequence of the isoperimetric type inequality. Indeed, denoting
Rεj ,nj the orthogonal projection of Tεj ,nj on the plane (x2, x3) and T 1

εj ,nj
the projection on the x1-axis,

we have from claim (202)

M(Tεj ,nj ) ≥
√

M(Rεj ,nj )
2 + M(T 1

εj ,nj
)2.

Arguing as for Lemma 6 and using Lemma 5, we deduce

M(Tεj ,nj ) ≥ 2π
√

1 + L2 − r(εj).

Using iii) in Lemma 5, we have the lower bound

Eεj (uεj ,nj , Č(a,R0)) ≥ 2π2
√

1 + L2|log εj | − r(εj)|log εj |,

which finishes the proof of (31). We then infer (32) from (19). �
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Step 4: We prove that

d||J∗||
dµ∗

= 1 µ∗ − a.e., (192)

where J∗ and µ∗ are weak limits (up to another subsequence) of the (translated) jacobian τ−aJuεj ,nj

and the energy measure τ−aµεj = eεj (uεj ,nj )(a+ .) dx
|log εj | on CR0

∩Cn(−b).

In fact, we already know from [JS] and [ABO] that d‖J∗‖
dµ∗

≤ 1 µ∗ - a.e.. From Step 1,

τ−aJuεj ,nj → ~HL in [C0,1
c (T × R

2)]∗ as j → +∞,

thus, using Lemma 5 iii), we infer

‖J∗‖ = M(HL) = 2π
√

1 + L2.

Moreover, from Step 3, we have

‖µ∗‖ ≤ 2π
√

1 + L2.

Combining these two relations, we are led to the conclusion. �

Step 5: We prove

cεj ,nj =
1√

1 + L2
+ r(εj). (193)

This relies on the study of the limit equation for the curvature of the singular set given after
Theorem 3 in [BOS]. Indeed, applying Theorem 3 in [BOS] for the solution uεj ,nj (a+ .) on the domain
CR0

∩ Cn(−b), which satisfies the bound (27), we obtain that the varifold V = V (Σµ∗ ,Θ∗) satisfies
the equation

~H(x) = ?
(

c~e1 ∧ ?
dJ∗
dµ∗

)

,

where, we recall, ~H is the generalized mean curvature of V , ? refers to Hodge duality, c is a limit of
cεj ,nj (bounded sequence in view of (25)), J∗ is a weak limit of τ−aJuεj ,nj , µ∗ a weak limit of τ−aµεj ,nj

and dJ∗
dµ∗

is the Radon-Nikodym derivative. In fact, it is easy to see that, even though we have a domain
depending on j, the equation is valid in the limiting domain (which is the intersection of a cylinder

and a half-plane). From Step 4, we know that d‖J∗‖
dµ∗

= 1 µ∗-a.e. in Σµ∗ , thus (see Remark 5 in [BOS])
V is a smooth curve and the curvature equation rewrites

~κ = c~e1 × ~τ, (194)

where ~τ is the unit tangent vector and ~κ := d~τ
ds the curvature vector. From Step 1, the curve is the

helix ~HL, for which ~τ(θ) = (1 + L2)−1/2(1,−L sin θ, L cos θ) and ds =
√

1 + L2 dθ, thus

~κ =
d~τ

ds
=
dθ

ds

d~τ

dθ
= − L

1 + L2
(0, cos θ, sin θ).

Inserting this into (194) yields

− L

1 + L2
(0, cos θ, sin θ) = c~e1 × ~τ = − cL√

1 + L2
(0, cos θ, sin θ),

from which we deduce the result c = 1√
1+L2

. �

In view of the uniqueness of the possible limit, we have proved the assertions for all 0 < ε < ε0

sufficiently small and n ≥ CL|log ε|2.

60



8 Proofs of Lemmas 1 and 6

In this Section, we give the proofs of the auxiliary Lemma 1, stating that the vector field ~v behaves
like ~eθ

r at infinity, and Lemma 6, which exhibits the helix as the unique solution, up to a translation,
of an isoperimetric type problem.

8.1 Proof of Lemma 1 : behaviour of ~v at infinity

We recall that Lemma 1 states that ‖~v− ~eθ
r ‖ ∈ L2(T×{r ≥ L+1}). First, we consider the case L = 0,

for which we denote the vector field ~v0, that is the vortex is the straight line T×{0}. In this case, the
Biot-Savart law (11) gives

~v0 :=
1

2

∫ +∞

−∞

(x− ϕ~e1) × ~e1
||x− ϕ~e1||3

dϕ.

We will denote (x1, r, θ) the cylindrical coordinates for x and (~e1, ~er, ~eθ) the corresponding basis, and
(x1, ρ, ϕ) will be the cylindrical coordinates for γ(ϕ) and (~e1, ~eρ, ~eϕ) will be the corresponding basis.
Since x× ~e1 = r~eθ, we have (writing t = tanα, α ∈ (−π/2, π/2) for the last integral)

~v0 =
r~eθ
2

∫ +∞

−∞

dϕ

((x1 − ϕ)2 + r2)3/2
=
~eθ
2r

∫ +∞

−∞

dt

(1 + t2)3/2
=
~eθ
r
.

For the general case, recalling γ(ϕ) = (ϕ,L cosϕ,L sinϕ) = ϕ~e1 + L~eρ, we first compute

(x− γ(ϕ)) × γ ′(ϕ) = (x− ϕ~e1) × ~e1 + L(x− ϕ~e1) × ~eϕ − L~eρ × ~e1 − L2~eρ × ~eϕ

= (x− ϕ~e1) × ~e1 + Lr~er × ~eϕ − L(x1 − ϕ)~eρ + L~eϕ − L2~e1.

From the Biot-Savart law (11), we deduce

~v =
1

2

∫ +∞

−∞

(x− γ(ϕ)) × γ ′(ϕ)

||x− γ(ϕ)||3 dϕ

=
1

2

∫ +∞

−∞

(x− ϕ~e1) × ~e1
||x− γ(ϕ)||3 dϕ+

Lr

2

∫ +∞

−∞

~er × ~eϕ
||x− γ(ϕ)||3 dϕ− L

2

∫ +∞

−∞

(x1 − ϕ)~eρ
||x− γ(ϕ)||3 dϕ

+
L

2

∫ +∞

−∞

~eϕ
||x− γ(ϕ)||3 dϕ− L2~e1

2

∫ +∞

−∞

dϕ

||x− γ(ϕ)||3 . (195)

We then compute, for r ≥ L+ 1 and denoting λ := ((x1 − ϕ)2 + r2)1/2 = ||x− ϕ~e1||,

||x− γ(ϕ)||−3 = λ−3
(

1 + O(λ−1)
)

. (196)

Moreover, from the inequality

||x− γ(ϕ)||2 ≥ (x1 − ϕ)2 + r2

C
,

valid for r ≥ L+ 1 and C depending only on L, we deduce

∫ +∞

−∞

dϕ

||x− γ(ϕ)||3 ≤
∫ +∞

−∞

C dϕ

((x1 − ϕ)2 + r2)3/2
=
C

r2

∫ +∞

−∞

dt

(1 + t2)3/2
=

2C

r2
, (197)

so that the last two integrals in (195) are O(r−2) as r → +∞. Similarly,
∫ +∞
−∞ λ−4 dϕ ≤ Cr−3.

Inserting (196) and (197) into (195) yields for r → +∞

~v =
1

2

∫ +∞

−∞

(x− ϕ~e1) × ~e1
||x− ϕ~e1||3

dϕ+
Lr

2

∫ +∞

−∞

~er × ~eϕ
||x− ϕ~e1||3

dϕ− L

2

∫ +∞

−∞

(x1 − ϕ)~eρ
||x− ϕ~e1||3

dϕ+ O(r−2).
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The first term is ~v0 = ~eθ
r . For the first term, we set ϕ− x1 = rt and obtain

Lr

2

∫ +∞

−∞

~er × ~eϕ
||x− ϕ~e1||3

dϕ =
L~er
2r

×
∫ +∞

−∞

~eϕ(x1 + rt)

(1 + t2)3/2
dt.

We then note that ~eϕ(ϕ) = −d~eρ

dϕ , thus we may integrate by parts and obtain

Lr

2

∫ +∞

−∞

~er × ~eϕ
||x− ϕ~e1||3

dϕ = −3L~er
2r2

×
∫ +∞

−∞

t~eρ(x1 + rt)

(1 + t2)5/2
dt = O(r−2). (198)

The case of the other term is similar. We have therefore proved that, for r ≥ L+ 1,

~v = ~v0 + O(r−2) =
~eθ
r

+ O(r−2),

which concludes since r−2 ∈ L2(T × {r ≥ L+ 1}). �

8.2 Proof of Lemma 6 : the isoperimetric type problem

Lemma 6 is the isoperimetric type problem. To prove this Lemma, we proceed as in the proof of
Theorem 3.2.27 in [F]. We consider R the orthogonal projection of T on the plane (x2, x3) and T 1 on
the x1 axis. Since T has no boundary, neither has R. The current R is therefore compactly supported
(since T is), has finite mass (since T has), without boundary and is in R

2, thus, there exists a 2
dimensional integral current S such that

R = ∂S

(this was not true for T since T×R
2 has the homotopy type of the circle: for instance, T×{0} is not

a boundary in T × R
2). Choosing S such that (this is possible by [F], theorem 4.2.17)

M(S) = inf{M(S ′), ∂S′ = R},

the following isoperimetric inequality holds (see [A])

M(S) ≤ M(R)2

4π
. (199)

Moreover, by definition of R and integrating by parts,

F(T ) = π〈T, ?ξ〉 = π〈R, ?ξ〉 = 2π〈S, ?dx1〉 = 2π〈S, dx2 ∧ dx3〉,

that is F(T ) is 2π times the flux of ~e1 through S. Therefore, we have by (199)

|F(T )| ≤ 2πM(S) ≤ 1

2
M(R)2. (200)

Furthermore,

|Pr1(T )| = |〈T, ?dx1〉| ≤ M(T 1). (201)

On the other hand, we claim that

M(T ) ≥
√

M(R)2 + M(T 1)2. (202)

Proof of claim (202). We denote σ : Supp(T ) → N
∗ the multiplicity of T . Following the proof of

Theorem 3.2.27 in [F], we apply Lemma 3.2.25 in [F] to the rectifiable set T : it provides a H1 T -
measurable map ξ, with values in the simple 1-vectors of norm 1, such that, for H1 T -a.e. x ∈ T , the
subspace associated to ξ(x) is the tangent space to T at x. We decompose ξ ∈ Λ1R

3 ' R
3 as

ξ = ξ1 + ξ>,

62



where ξ1 ∈ R(1, 0, 0) and ξ> ∈ Span((0, 1, 0), (0, 0, 1)) = (1, 0, 0)⊥. Moreover, by 3.2.20 in [F],

∣

∣

∣

∫

T
σξ1 dH1

∣

∣

∣
= M(T 1) and

∫

T
σ‖ξ>‖ dH1 ≥ M(R).

Therefore, since ‖ξ‖ = 1 a.e., using Cauchy-Schwarz,

M(T )2 = M(T )

∫

T
σ‖ξ‖2 dH1 = M(T )

∫

T
σ|ξ1|2 dH1 + M(T )

∫

T
σ‖ξ>‖2 dH1

≥
∣

∣

∣

∫

T
σξ1 dH1

∣

∣

∣

2
+

(

∫

T
σ‖ξ>‖ dH1

)2
(203)

≥ M(T 1)2 + M(R)2

and the proof of the claim is complete. �

Combining (200), (201) with the values imposed F(T ) = 2π2L2 and Pr1(T ) = 2π, we obtain

M(R)2 ≥ (2πL)2 and M(T 1) ≥ 2π,

which implies, using (202),

2π
√

1 + L2 ≤
√

M(R)2 + M(T 1)2 ≤ M(T ),

which is the first assertion. If, moreover, we impose M(T ) ≤ 2π
√

1 + L2, then

2π
√

1 + L2 ≤
√

M(R)2 + M(T 1)2 ≤ M(T ) ≤ 2π
√

1 + L2.

Therefore, equality holds everywhere, in particular in (200), (201), (203) and also

M(R) = 2πL.

We then deduce, with the equality case in the isoperimetric inequality (199), that R is a circle of
radius L that is, there exists an a ∈ R

2 such that (with the natural orientation of R
2 since F(T ) > 0)

R = ∂D(a, L).

We then go back to the equality case in (203) to deduce that σ, ξ1 and ‖ξ>‖ are constant and, since
Pr1(T ) = 2π > 0, necessarily, σ ≡ 1, ξ1 = c(1, 0, 0) and ξ> = cL(cos(θ− θ0), sin(θ − θ0)), for a θ0 ∈ R

and c = (1 + L2)−1/2, thus, there exists a rotation r of axis x1 and angle θ0 such that

T = (0, a) + r( ~HL).

Denoting τ the translation of vector (θ0, a) ∈ T × R
2, then T = τ( ~HL), which ends the proof. �
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