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We prove the existence of travelling vortex helices to the Gross-Pitaevskii equation in R 3 . These solutions have an infinite energy, are periodic in the direction of the axis of the helix and have a degree one at infinity in the orthogonal direction.

Résumé : Nous prouvons l'existence d'ondes progressives à vorticité sur une hélice pour l'équation de Gross-Pitaevskii dans R 3 . Ces solutions sont d'énergie infinie, périodiques dans la direction de l'axe de l'hélice et ont un degré un dans la direction orthogonale.

Introduction

Statement of the result

In this paper, we are interested in the existence of travelling waves solutions to the Gross-Pitaevskii equation in space dimension 3

i ∂ψ ∂t + ∆ψ + (1 -|ψ| 2 )ψ = 0, (1) 
where ψ : R 3 × R → C. This equation is used as a model for Bose-Einstein condensates, nonlinear optics and superfluidity. On a formal level, it possesses two important quantities constant in time

• the energy

E(ψ) = 1 2 R 3 |∇ψ(., t)| 2 + 1 2 (1 -|ψ(., t)| 2 ) 2 dx,
• the momentum

P (ψ) = Im R 3 ψ • ∇ψ dx = R 3
(iψ, ∇ψ) dx, where (., .) is the scalar product in R 2 C. The first component of P is denoted P (ψ) = R 3 (iψ, ∂ 1 ψ) dx.

Travelling waves solutions to (1) are solutions of the form (up to a rotation) ψ(x, t) = U (x 1 -Ct, x 2 , x 3 ).

1

The equation on ψ reads now on

U iC ∂U ∂x 1 = ∆U + (1 -|U | 2 )U. ( 2 
)
The question of the existence of such travelling waves for small speeds has been studied in [BS] in dimension 2 and in [BOS] and [C1] in dimension larger than 2. We refer to these papers for details and references about the Gross-Pitaevskii equation. In [BS], travelling waves with a structure of two vortices of degrees 1 and -1 are exhibited, and in [BOS] and [C1] the travelling wave is a vortex ring (like a "smoke ring").

We consider a function U * L defined in the following way. We use cylindrical coordinates (x 1 , r, θ), where (r, θ) ∈ R + × (R/2πZ) are the polar coordinates in the (x 2 , x 3 )-plane. We set T := R/2πZ (we do not identify T with S 1 to be able to define ∂ x 1 for example). We fix L ≥ 0 and define in cylindrical coordinates

H L := {x ∈ T × R 2 , r = L, x 1 = θ}.
This is an helix of axis x 1 , of pitch L, and length M(H L ) = 2π √ 1 + L 2 , that we denote H L when endowed with the orientation given by the natural parametrization T θ → γ(θ) := (θ, L cos θ, L sin θ).

If L = 0, then H 0 = T × {0} is the x 1 axis. We may then see 2π H L as a prescribed vorticity and consider a map

U * L ∈ C ∞ (T × R 2 \ H L , S 1
), which will be precisely defined at the end of the subsection, such that its vorticity concentrates on the helix H L in the sense that

curl(U * L × ∇U * L ) = 2π H L and div(U * L × ∇U * L ) = 0, (3) 
that is the vector field U * L × ∇U * L , representing the gradient of the phase of U * L , is given in the figure below. The map U * L is therefore smooth outside H L , is S 1 -valued and has a degree one around H L and at infinity (in the (x 2 , x 3 )-plane). Our main result states the existence, after rescaling, of solutions to (2) close to U * L . Due to the degree one at infinity, they are of infinite energy. Moreover, these solutions are periodic in the x 1 variable of the axis of the helix.

Theorem 1. For every L > 0, there exists ε 0 (L) > 0 such that, for every 0 < ε < ε 0 (L), there exists a solution U ε to (2), 2π ε -periodic in the x 1 variable, with

C = C(ε) verifying, if ε → 0, C(ε) ε|log ε| → 1 √ 1 + L 2 and P (U ε ) = 2 π L ε 2 . (4)
Moreover,

|U ε (x)| → 1 as |(x 2 , x 3 )| → +∞ (5)
and, for every k ∈ N,

U ε x ε → U * L in C k loc (T × R 2 \ H L ). ( 6 
)
Remark 1. In the limiting case L = 0, we can find solutions of (2) independent of x 1 , that is U (x) = V (x 2 , x 3 ), with V solution of infinite energy (in R 2 ) and with a degree one at infinity of

∆V + V (1 -|V | 2 ) = 0 in R 2 . ( 7 
)
These solutions have been studied in [BMR] and also [Sha], [START_REF] Sandier | Locally minimizing solutions of -∆u = u(1 -|u| 2 ) in R 2[END_REF] and [Mi]. The associated functions U clearly have a vanishing momentum and are solutions of (2) for any speed C ∈ R. There exists a particular radially symmetric solution of (7) of degree one at infinity of the form

V 0 (z) = ρ(|z|) z |z| ,
where ρ(r) increases from 0 to 1 as r goes from 0 to +∞.

Remark 2. It is important to note that the solution is 2π ε -periodic in the x 1 variable, and its singular set is an helix of pitch L ε . Therefore, we will work with functions U which are defined on T ε × R 2 , with T ε := R/( 2π ε Z). Remark 3. We finally emphasize that the momentum in (4) is not exactly the one already introduced. Indeed, since the solution U ε is periodic in the x 1 variable, the integral which defines the momentum is clearly not convergent in R 3 . We will instead consider a momentum defined only on a period, that is T ε × R 2 . Even in this case, we clarify just below the definition.

We clarify the notion of momentum for our problem, and adapt to the situation with a degree one at infinity the definition given in [BOS]. Note that neither the definition of P , since (iU, ∂ 1 U ) may not be in L 1 at infinity, nor an energy space is clear, since the degree one at infinity makes the energies to diverge. We denote D R (R > 0) the disk in R 2 of radius R centered at 0. We consider the class of functions

Y ε := {U ∈ H 1 loc ∩ L ∞ (T ε × R 2 , C), Tε×R 2 |∂ 1 U | 2 + 1 2 (1 -|U | 2 ) 2 < ∞, ∃R > 0 s.t.
for r ≥ R, |U (x)| ≥ 1/2 and U has degree one outside T ε × D R }.

Note that if U ∈ Y ε and |U (x)| ≥ 1/2 for r ≥ R, the degree of U outside T ε × D R is well-defined. Indeed, from [BLMN], we know that, for every R > R, since

U |U | ∈ H 1 (T ε × (D R \ DR ), S 1 ),
then its degree on almost every slice {x 1 } × (D R \ DR ) is well-defined and is independent of x 1 and R > R : we will call this integer the degree of U outside T ε × D R . For U ∈ Y ε , we may then write U (x) = ρ(x) exp(iϕ(x) + iθ),

for r ≥ R, where ρ(x) = |U (x)| ≥ 1/2 and ϕ ∈ H 1 loc (T ε × (R 2 \ D R ), R) is well-defined modulo a multiple of 2π (note that imposing ∂ 1 U ∈ L 2 (T ε × R 2 ) prevents U from having a degree in the x 1 variable). We define then

P (U ) := Tε×R 2 (iU, ∂ 1 U )χ + Tε×R 2 (1 -χ)(ρ 2 -1)∂ 1 ϕ + Tε×R 2 ϕ∂ 1 (1 -χ), (8) 
where χ is a smooth function compactly supported, such that 0 ≤ χ ≤ 1 and χ = 1 on T ε × D R . It is easy to verify that this definition of P (U ) does not depend on the exact choice of χ and ϕ.

For our problem, it is convenient to perform the rescaling

u ε (x) := U ε x ε , c ε := C(ε) ε|log ε| .
The function u ε is then defined in T × R 2 and equation ( 2) reads now on u ε

ic ε |log ε| ∂u ε ∂x 1 = ∆u ε + 1 ε 2 u ε (1 -|u ε | 2 ). ( 9 
)
The expressions of the (diverging) energy and momentum are now

E ε (u ε ) = εE(U ε ) = 1 2 T×R 2 |∇u ε | 2 + 1 2ε 2 (1 -|u ε | 2 ) 2 dx = T×R 2 e ε (u ε ) dx and p(u ε ) = ε 2 P (U ε ) = T×R 2 (iu ε , ∂ 1 u ε ) dx.
Finally, we would like to mention why we have been interested in these solutions. In [BOS] (see Theorem 4), the study of the asymptotic of a general Ginzburg-Landau equation including (9) in a domain Ω ⊂ R N , N ≥ 3 under assumption sup ε |c ε | < ∞ for solutions u ε satisfying the natural energy bound E ε (u ε ) ≤ M 0 |log ε| leads to the mean curvature equation for the concentration set

H(x) = c e 1 ∧ dJ * dµ * ,
where (all these limits are for a subsequence ε n → 0) c = lim ε→0 c ε , is Hodge duality, J * is a limiting measure of the jacobian, µ * a limiting measure of eε(uε)dx |log ε| , dJ * dµ * is the Radon-Nikodym derivative and H is the generalized mean curvature of the varifold V (Σ µ * , Θ * ) (Θ * is the 1-dimensional density of µ * and Σ µ * = {Θ * > 0} its geometrical support). If N = 3 and d J * dµ * = 1, the singular set is a smooth curve γ and this equation rewrites

κ = c e 1 × τ , ( 10 
)
where τ is the unit tangent and κ := d τ ds is the curvature vector of γ. The solutions in R 3 are the circles a + {0} × ∂D(0, c -1 ) (a ∈ R 3 ), the straight lines a + R e 1 (a ∈ R 3 ), and helices of axis parallel to e 1 . The case of a singular circle comes from Theorem 1 in [BOS] (for N = 3). A straight line singular set comes from a two dimensional solution (independent of x 1 ) of the classical Ginzburg-Landau equation in two dimensions, having a singularity of degree 1 in (x 2 , x 3 ) = (0, 0), as the map V 0 (see Remark 1), having radial symmetry. We have constructed the last type of solution.

Definition of the map U * L . In order to define precisely the map U * L , we note that the natural vector field v verifying (3) is given by Biot-Savart law

v(x) := 1 4π R 3 (x -y) × (2π H L (y)) ||x -y|| 3 dy = 1 2 +∞ -∞ (x -γ(θ)) × γ (θ) ||x -γ(θ)|| 3 dθ. (11)
Note that the integral is convergent since γ 2 = 1 + L 2 and γ(θ) ∼ |θ| for |θ| → +∞. By construction, the vector field v is smooth outside H L , satisfies div v = 0 and its vorticity curl v = 2π H L is concentrated on H L . Moreover, v has a circulation 2π around H L . We remark that we could have reversed the orientation of the helix, which would have led to the vector fieldv. Another natural helix, turning in the other sense, is

HL := {x ∈ T × R 2 , r = L, x 1 = -θ},
which may be seen as the image of H L by the symmetry x → (-x 1 , x 2 , x 3 ), and will be denoted HL when endowed with the orientation T θ → γ(θ) := (-θ, L cos θ, L sin θ). The oriented helices H L and HL are "right-hand" for the natural orientation of T×R 2 . The reference vortex helix U * L is defined to be the only map

U * L ∈ C ∞ (T × R 2 \ H L , S 1 ) such that U * L × ∇U * L = v, where, if a, b ∈ C R 2 , a × b = a 1 b 2 -a 2 b 1
denotes the exterior product. The map U * L is unique up to a phase change (since T × R 2 \ H L is connected and U * L × ∇U * L is the gradient of the phase of U * L ). The map U * L has therefore a degree one around H L and at infinity (in the (x 2 , x 3 )-plane). Changing the orientation of the helix is only complex conjugation for the solution (up to a phase change). Furthermore, changing the helix H L for HL changes v for ṽ(x) := (-v 1 , v 2 , v 3 )(-x 1 , x 2 , x 3 ), still of circulation 2π around HL , and changes U * L for Ũ * L (x) := U * L (-x 1 , x 2 , x 3 ), still of degree one at infinity. In the degenerate case where L = 0, H 0 is just the axis T × {0} and U * 0 is then the 2-dimensional map (in the (x 2 , x 3 )-plane) U * 0 (x) = (x 2 ,x 3 ) |(x 2 ,x 3 )| with a singularity of degree one at 0.

Remark 4. Denoting (U ε , C, P ) as in Theorem 1 and Ũε (x) := U ε (-x 1 , x 2 , x 3 ), we remark that Ūε is solution for (-C, -P ) and the oriented helix H L with reverse orientation; Ũε (resp. Ūε ) is solution for (-C, P ) (resp. (C, -P )) with the helix HL (resp. with the other orientation).

Stability of the solution

Concerning the stability of this solution, U ε must be seen as a minimizer on the whole T ε × R 2 , with the constraints of degree one at infinity and P = 2π 2 ( L ε ) 2 but in view of the infinite energy, we can only allow local perturbations, which will preserve the condition of degree one at infinity. Theorem 2. For all 0 < ε < ε 0 (L), U ε ∈ Y ε and is a constrained minimizer in the following sense. For all R > 0, for all

V ∈ H 1 loc ∩ L ∞ (T ε × R 2 , C) such that V = U ε outside T ε × D R
(then V ∈ Y ε and P (V ) is well-defined) and such that

P (V ) = 2 π L ε 2 , then E(V, T ε × D R ) ≥ E(U ε , T ε × D R ).
The proof of Theorem 2 is based on a decay result for the energy at infinity (keep in mind that the solution has a degree one at infinity in the variables (x 2 , x 3 )).

Proposition 1. There exist smooth maps ϕ, ρ : T × (R 2 \ D L+1 ) → R such that for ε|(x 2 , x 3 )| ≥ L + 1, U ε (x) = ρ(εx)e iϕ(εx)+iθ = u ε (εx), and ρ ≥ 1/2. There exists C L > 0 and λ = λ(L) ∈ (0, 1] such that, for r ≥ L + 1, T×(R 2 \Dr)

|∇ρ| 2 + ρ 2 |∇ϕ| 2 + (1 -ρ 2 ) 2 2ε 2 ≤ C L r λ , (12) 
that is, for

L + 1 ≤ r ≤ R, E ε (u ε , T × (D R \ D r )) -2π 2 log R r ≤ C L r λ .
Furthermore, the asymptotic of the energy near the helix as ε → 0 is

ε π|log ε| E(U ε , T ε × D (L+1)/ε ) = E ε (u ε , T × D L+1 ) π|log ε| → 2π 1 + L 2 . ( 13 
)
Remark 5. The solution U (x) = V 0 (x 2 , x 3 ) with a straight line vortex satisfies a stronger stability result. Indeed, from [BMR], [Sha], [START_REF] Sandier | Lower bounds for the energy of unit vector fields and applications[END_REF] and [Mi], we know that V 0 is a local (in space) minimizer of the Ginzburg-Landau energy E on R 2 , and the only local (in space) minimizers are only, up to a translation and multiplication by a complex of modulus 1, V 0 and V0 . Therefore, U is also a local (in space) minimizer of E without the constraint on the momentum.

Remark 6. Note that we first fix a (large) period 2π/ε for U ε , and then the result is that "local" (in space) minimizers of the energy with the constraint on the momentum have vorticity on an helix with the same period. Therefore, the solution U ε is not locally (in space) minimizing for perturbations on m ∈ N periods, m ≥ 2 (with the appropriate constraint on the momentun which is for m periods P = 2m(π L ε ) 2 ), since the vorticity of this other minimization problem is an helix of period 2πm/ε (and not 2π/ε). This last minimizer is the one obtained by changing ε for ε/m and L for L/ √ m.

Remark 7. Note finally that there exist maps of finite energy, if we drop the condition of degree one at infinity. Replacing Y ε by the space X ε of maps in

L ∞ ∩ H 1 loc (T ε × R 2 , C
) of modulus greater than 1/2 in a neighborhood of infinity, in which we can define the momentum, the problem of minimizing E in X ε with the constraint P = 2(π L ε ) 2 has solutions and the corresponding minimizers of E are, as in Theorem 1 in [BOS], vortex rings ( 2π ε -periodic in the x 1 variable) of radius L.

As in [BOS], we will not tackle the problem of the stability of the solution U ε for the Cauchy problem associated to (1). The situation is here even more involved since the solution is of infinite energy. The adapted context should be on a bounded domain (see subsection 1.4). Finally, we would like to mention that vortex helices have been observed numerically in [ABK] for the general Ginzburg-Landau type equation, with real constants c and b,

∂ t A = A -(1 + ic)|A| 2 A + (1 + ib)∆A.
For c, b → +∞ (and a suitable renormalization), we recover the standard nonlinear Schrödinger equation (1). In section V of [ABK], in the case b = 1/ε 1, a stable travelling vortex helix is numerically obtained. The boundary conditions are of periodic type as well as the homogeneous Neumann condition. Even for small values of c and b (see [RCK] and [GGNO] for phase twisted initial data), there is convergence to an helical vortex.

Discussing symmetries

In 3-dimensional space, the existence of travelling vortex rings is proved in [BOS]. This vortex is the circle {0} × ∂D 1 (0) and has the cylindrical symmetry. Therefore, it is natural to consider for this problem cylindrically symmetric solutions, that is solutions of the type

U (x) = Û (x 1 , r).
For our problem, even though we work on a (periodic) cylinder and the condition at infinity is

U (x) (x 2 , x 3 ) |(x 2 , x 3 )| = e iθ ,
thus cylindrically symmetric, we emphasize that the solution does not have the cylindrical symmetry (except for L = 0). The more appropriate symmetry is "helicoidal symmetry", that is

U (x) = e -iεx 1 Û (εx 1 -θ, r) or U (x) = e -iεx 1 Û (εx 1 + θ, r), (14) 
for a Û :

T × R + → C. A straightforward computation shows that U (x) = e -iεx 1 Û (εx 1 -θ, r) (resp. U (x) = e -iεx 1 Û (εx 1 + θ, r
)) precisely means that the vector field U × ∇U satisfies the property that its components in the cylindrical basis ( e 1 , e r , e θ ) are constant on each helix (α, 0, 0) + H R (resp. (α, 0, 0) + HR ), R ≥ 0 and α ∈ T. We may impose the first symmetry, for instance, for the solutions without changing the main ideas of the proofs.

Theorem 3. For every L > 0, there exists ε 0 (L) > 0 such that, for every 0 < ε < ε 0 (L), there exists a solution U ε to (2), 2π ε -periodic in the x 1 variable, with C = C(ε) verifying (4), ( 5) and (6) as ε → 0, and such that U ε is helicoidally symmetric in the sense that

U ε (x) = e -iεx 1 Ûε (εx 1 -θ, r).
For the proof, it suffices to work on the subspace of maps with the helicoidal symmetry (14). One may also work with the variables εx 1θ and r, changing (2) for a 2-dimensional equation with a degenerate elliptic operator.

Remark 8. We have not been able to prove that the solutions provided by Theorem 1 are helicoidally symmetric. The solutions U ε and U ε are presumably the same up to a rotation, translation and multiplication by a complex number of modulus one. For the helicoidally symmetric solution U ε , we can prove a stability result analogous to Theorem 2. We have however to restrict ourselves to perturbations which are also helicoidally symmetric.

Remark 9. One may obtain the other vortex helix Ũ * L imposing the other helicoidal symmetry

U (x) = e -iεx 1 Û (εx 1 + θ, r).

Link with Euler equation

Let us perform on ψ the Madelung transform

ψ = √ ρ exp(iϕ),
which has clear meaning if |ψ| = 0. We may then rewrite equation (1) in the variables (ρ, v := 2∇ϕ) :

∂ρ ∂t + div(ρ v) = 0, ∂ v ∂t + v • ∇ v + ∇(2ρ) = -∇ |∇ρ| 2 2ρ 2 -∆ρ ρ .
Neglecting the last term in the right-hand side, often called "quantum pressure", this system reduces to the Euler equations for compressible ideal fluids, with speed v and pressure ρ 2 . Concerning the existence of vortex helices solutions for the incompressible Euler equation, that is div v = 0 and

∂ v ∂t + v • ∇ v = -∇p, (15) 
we may mention the work of [Du], where the question of global in time solutions with helicoidal symmetry to the incompressible Euler equation is investigated. In this context, helicoidal symmetry means vector fields v such that the components in the cylindrical basis ( e 1 , e r , e θ ) are constant on each helix (α, 0, 0) + H R , R ≥ 0, α ∈ T (this is the condition we impose in Theorem 3) and such that the vector field v is orthogonal to every helices (α, 0, 0) + H R for R ≥ 0 and α ∈ T (that is v • ( e 1 + r e θ ) = 0 for every x (x 1 , r, θ)). We can not impose this last condition to U ε in Theorem 3 since U * L × ∇U * L does not satisfy it (we will see that U * L × ∇U * L e θ r as r → +∞). Notice also that we did not require the first condition for the solution U ε , though the limiting vector field U * L × ∇U * L satisfies this constraint. Note that in dimension 3, the solutions to Euler equation may become singular in finite time. The main point is that imposing the helicoidal symmetry reduces the problem to a two-dimensional problem, for which global in time existence results for the incompressible Euler equation are known. The result of [Du] implies for instance that, given R > 0 and an initial vector field v 0 which has helicoidal symmetry, is divergence free and tangent to the boundary of the cylinder R × D R , then there exists a unique solution v, global in time and divergence free, to (15) with initial datum v 0 . Moreover, v(t, .) has helicoidal symmetry for all t ≥ 0. However, it is stated neither that we may choose v 0 such that the vorticity concentrates on an helix, nor that the solution may be a travelling wave, and a fortiori its propagation speed is not computed. In any cases, the vector field v = U * L × ∇U * L is not orthogonal to the helices (α, 0, 0) + H R , α ∈ T, R ≥ 0, that is the second hypothesis in [Du] is not satisfied.

Concerning the dynamics of vortex filaments described by a map X = X(s, t), where t is time and s is arclength, the equation governing the motion of X in a perfect inviscid fluid, known as LIE (or LIA) (Localized Induction Equation (or Approximation)), has been derived first by L.S. da Rios (see [dR] and also [R]), and then rediscovered by F.R. Hama ([H]), and reads

∂ t X = ∂ s X × ∂ 2 s X (16) 
(see also [KM] for the case where the filament may be self-stretched). Assuming the map X smooth, this equation writes, in the Frenet basis ( τ , β, ν),

∂ t X = ( H • ν) β, (17) 
where H := d τ ds is the (mean) curvature vector, β being called the binormal. In the case X is a travelling wave with constant speed c e 1 , i.e. X(s, t) = Y (s) + ct e 1 , we clearly recover equation (10). A motion verifying equation ( 17) is known as a (smooth) binormal curvature flow. The paper [GV] studies self-similar solutions to ( 17) and shows that this equation is ill-posed and can develop singularities. We mention the work of R.L Jerrard [J1], where the convergence in dimension N ≥ 3 as ε → 0 to a (weak) binormal curvature flow is proved for the scaled Gross-Pitaevskii equation ( 1)

i|log ε|∂ t u + ∆u + 1 ε 2 u(1 -|u| 2 ) = 0, if the initial datum is in 1 + H 1 (R N
) and has a jacobian concentrated on some round (N -2)dimensional sphere. In the 2-dimensional case, the situation is different and involves the renormalized energy W introduced in [START_REF] Bethuel | Ginzburg-Landau vortices[END_REF]. In [LX] (Theorem 1) (see also [CJ]), it is proved that if u ε solves

i∂ t u ε + ∆u ε + 1 ε 2 u ε (1 -|u ε | 2 ) = 0, u t=0 ε = u 0 ε ,
(either in a bounded domain with a boundary condition of degree n, either in R 2 with n = 0 and u 0 ε tends to 1 at infinity sufficiently fast), then the linear momentum ρ v converges to a solution to Euler equation, provided the vortices of the initial datum are of degree ±1. We note the different time scalings for N = 2 and N ≥ 3. Moreover (Theorem 2 in [LX]), if the datum u 0 ε is almost minimizing, that is E ε (u 0 ε ) = πn|log ε| + πW (a(0)) + o(1) as ε → 0, the vortices a j (t), 1 ≤ j ≤ n, obey the so called Kirchhoff law for fluid point vortices

da j dt (t) = ∂W ∂a 2 j , - ∂W ∂a 1 j , i.e. i da j dt (t) = 2 ∂W ∂a j ,
where W is seen as a function of the n complex variables (a 1 , . . . , a n ). From ( 16), R. Betchov establishes in [B] the intrinsic equations on the curvature K and torsion T of the curve, namely

∂ t K = -2∂ s (KT ), ∂ t T + 2T ∂ s T = 1 2 ∂ s K + ∂ 3 s K K + (∂sK) 3 K 3 -2 (∂sK)(∂ 2 s K) K 2
, and the helicoidal solution (among others) is exhibited as a solution for T and K constant. However, the corresponding linearized equations are shown to be unstable. These equations have then been solved for vortex filaments without change of form in [K] and here again the helix is shown to be unstable. On the other hand, vortex helices (and other vortex filaments) in an axial flow have been experimentally observed by T. Maxworthy, E.J. Hopfinger and L.G. Redekopp in [MHR]. Later, Y. Fukumoto and T. Miyazaki in [FM] have studied the stability of vortex filaments in axial flows, which changes LIE for a more complex equation, and have shown that vortex helices are stable under some conditions on the axial flow and the torsion of the helix, corroborating the observations of [MHR]. It would be interesting, by analogy with the the study of [FM], to investigate the stability of the solution U ε in the context of rotating superfluids. In this case, the energy in the rotating frame, taking into account the Coriolis force, denoting ω = ω e 1 the rotation vector and ω the angular velocity around the axis

x 1 , is 1 2 Ω |∇u + iu ω × x| 2 + (1 -|u| 2 ) 2 2ε 2 ,
where Ω ⊂ R 3 is, for instance, a cylinder of axis x 1 . In this context, a homogeneous Neumann condition should be prescribed, at least on the lateral boundary of the cylinder.

For superfluids like Helium II, an equation analoguous to LIA can be derived (see for instance [Do] or [Sam]). This equation, called the Schwarz's equation, writes

∂ t X = v i + v ap + α∂ s X × ( v n -v ap -v i ) -α ∂ s X × ∂ s X × ( v n -v ap -v i ) ,
where v ap is the applied flow, v n is the velocity of the normal fluid, and v i is the velocity induced by the filament. This term is given by the Biot-Savart law, and is approached in the Localized Induction Approximation by (up to a physical constant factor) ∂ s X × ∂ 2 s X. The constants α and α are friction coefficients between the normal fluid and the superfluid. If there is no friction, α = α = 0. The LIA is not always a good approximation, especially when parts of the filaments get close one another or self-intersect. However, for our helicoidal vortex, (16) remains a good approximation.

Acknowledgement : I would like to thank Fabrice Bethuel for suggesting me this problem.

Strategy of the proof

In this Section, we give the scheme of the proof of Theorems 1 and 2. The idea is to approximate the problem on cylinders of growing diameter. We will point out the problems related to the fact that the solution is of infinite energy. We will give the precise proofs in Sections 4 to 8. In the sequel, C L will denote a constant depending on L only.

Setting

We will denote ( e 1 , e r , e θ ) the usual cylindrical basis. The next Lemma states that v behaves like e θ r = "∇θ" at infinity, that is U * L is expected to be close to e iθ as r → +∞. Lemma 1. We have T×{r≥L+1} v -e θ r 2 < +∞.

Since both energy and momentum are not easily defined, we approximate the problem on cylinders

Ω n := T × D n ,
for n ∈ N * . In view of Lemma 1 above, we expect that the behavior of the solution U ε is

U ε (x) (x 2 ,x 3 ) |(x 2 ,x 3 )| as |(x 2 , x 3 )| → +∞,
thus we naturally impose a boundary condition on

∂Ω n = T × ∂D n g : x → e iθ = (x 2 , x 3 ) |(x 2 , x 3 )| .
The function g is well-defined and smooth on T × (R 2 \ {0}), and will impose a degree one on the boundary (in the (x 2 , x 3 )-plane). We work on the affine space

X n := H 1 g (Ω n , C) (note that H 1 (Ω n ) embeds compactly in L 4 (Ω n )).
Since Ω n is bounded, we can define the momentum

p(u) := Ωn (iu, ∂ 1 u) dx.
We will work in the (clearly non void) set

Γ n := {u ∈ X n , p(u) = 2π 2 L 2 },
where the momentum 2π 2 L 2 has to be understood as 2π × (πL 2 ), that is 2π times the area of a disk of radius L. We then consider the minimization problem

(P n ε ) I n ε := inf u∈Γn E ε (u).
The existence of a minimizer for the problem (P n ε ) is straightforward.

Proposition 2. There exist a minimizer u ε,n ∈ Γ n for the problem (P n ε ) and a constant c ε,n ∈ R such that u ε,n satisfies (9), that is

ic ε,n |log ε|∂ 1 u ε,n = ∆u ε,n + 1 ε 2 u ε,n (1 -|u ε,n | 2 ) in Ω n . ( 18 
)
Moreover, the following upper bounds hold for n ≥ L + 2

I n ε = E ε (u ε,n ) ≤ 2π 2 log n + 2π 2 1 + L 2 |log ε| + C L (19)
and

1 2 T×Dn |∂ 1 u ε,n | 2 + ∇ 2,3 |u ε,n | 2 + 1 2ε 2 (1 -|u ε,n | 2 ) 2 dx ≤ C L |log ε|. ( 20 
)
Remark 2.1. The constant cε,n 18) is the Lagrange multiplier, due to the constraint on the momentum. In (19), the term 2π 2 log n is the diverging term due to the degree one at infinity. The term 2π 2 √ 1 + L 2 |log ε| is the one that will bound the length of the singular set. The upper bound (20) is deduced from a lower bound taking into account this degree at infinity.

2 |log ε| ∈ R in (
An important remark has to be made concerning the momentum. We recall the definition of the jacobian for u ∈ H 1 (Ω, C)

Ju := 1 2 d(u × du) = i<j (∂ i u × ∂ j u) dx i ∧ dx j ,
and define ξ as the 2-form

ξ := x 2 dx 1 ∧ dx 2 + x 3 dx 1 ∧ dx 3 = rdx 1 ∧ dr,
which appears when we integrate by parts the momentum, since d * ξ = 2dx 1 . Indeed, in view of the boundary condition, we have

(u ε,n × du ε,n ) = (g × dg) = dθ = 1 n 2 ξ on T × ∂D n , thus integration by parts yields p(u ε,n ) = Ωn Ju ε,n , ξ .
Our first aim is to bound the speed c ε,n to be able to use the equation. However, this bound does not rely directly, as in [BOS], on Pohozaev identity, since the left hand side of ( 9) is of the order of log n. A strategy could be to try to localize the energy, or the momentum, but this can not be done with the use of the equation, which requires precisely a bound on c ε,n . To break this vicious circle, our approach will be to use a regularization technique.

The regularized problem

We consider the following parabolic regularization problem. First, define

ũ(x) := u ε,n (x) if |u ε,n (x)| ≤ 1, uε,n(x) |uε,n(x)| if not. It is clear that |ũ| ∞ ≤ 1 and E ε (ũ) ≤ E ε (u ε,n ) = I n ε .
We then consider the minimization problem

(R n ε ) inf v∈Xn E ε (v) + Ωn |ũ -v| 2 2ε ,
for which the existence of a minimizer v ε,n is straightforward. Its first properties are given in the following lemma.

Lemma 2.1. The map v ε,n satisfies for n ≥ L + 2 and 0 < ε < 1/4

E ε (v ε,n ) + Ωn |ũ -v ε,n | 2 2ε ≤ I n ε ≤ 2π 2 log n + 2π 2 1 + L 2 |log ε| + C L . ( 21 
)
It satisfies also the equation

∆v ε,n + 1 ε 2 v ε,n (1 -|v ε,n | 2 ) = 1 ε (v ε,n -ũ) on Ω n (22)
and for a constant C 0 independent of ε, n and L,

|v ε,n | ∞ ≤ 1, |∇v ε,n | ∞ ≤ C 0 ε . ( 23 
)
Proof of Lemma 2.1. To obtain (21), just take ũ as a comparison map, and ( 22) is the Euler equation for (R n ε ). Consider the orthogonal projection of v ε,n on the disk D1 ṽ

(x) := v ε,n (x) if |v ε,n (x)| ≤ 1, vε,n(x) |vε,n(x)| if not.
By convexity of D1 , we have |∇ṽ| ≤ |∇v ε,n |, |ṽ -ũ| ≤ |v ε,n -ũ| and

Ωn (1 -|ṽ| 2 ) 2 = {|vε,n|≤1} (1 -|v ε,n | 2 ) 2 ≤ Ωn (1 -|v ε,n | 2 ) 2 ,
with strict inequality unless |v ε,n | ≤ 1 a.e. in Ω n . Therefore,

E ε (ṽ) + Ωn |ũ -ṽ| 2 2ε ≤ E ε (v ε,n ) + Ωn |ũ -v ε,n | 2 2ε with strict inequality unless |v ε,n | ∞ ≤ 1. Since v ε,n is minimizing and ṽ = g on ∂Ω n , |v ε,n | ∞ ≤ 1.
For the estimate on the gradient, consider the scaled map v(x) := v ε,n (εx), which satisfies

∆v + v(1 -|v| 2 ) = ε(v -ũ(εx)),
and the estimate on the gradient comes from classical estimates for elliptic equations since

v = g = e iθ on T × ∂D n/ε , |v| ∞ ≤ 1 and |ũ(ε.)| ∞ ≤ 1.
The advantage of working with v ε,n instead of u ε,n is that it is close enough to u ε,n and satisfies the bound (23) for the gradient, whereas u ε,n does not since c ε,n is not bounded yet. The next lemma states that the two expressions integrated for the calculus of the momentum of v ε,n and u ε,n are close (say roughly in L 1 (Ω n )), hence it suffices to localize the first one to localize the second one.

Lemma 2. For a constant C L independent of 0 < ε < 1/4 and n ≥ L + 2 and for every (measurable) set B ⊂ D n , we have

T×B (iv ε,n , ∂ 1 v ε,n ) - T×B (iu ε,n , ∂ 1 u ε,n ) ≤ C L √ ε|log ε|. ( 24 
)
One of the main advantage of working with v ε,n is that we will be able to localize sufficiently the singular set of v ε,n in order to bound the speed c ε,n . This will use a result of [START_REF] Sandier | Lower bounds for the energy of unit vector fields and applications[END_REF] (see also [J2]) concerning lower bounds for the Ginzburg-Landau energy. We denote

C(a, R) := T × D R (a) and Č(a, R) := Ω n ∩ C(a, R),
and prove that the singular set {|v ε,n | ≤ 1/2} of v ε,n is included in some not too large cylinders.

Lemma 3. For 0 < ε < 1/4 and n ≥ C L |log ε|, there exists a finite family of cylinders (C(a j , r j )) j∈J , depending on ε and n, such that

{|v ε,n | ≤ 1/2} ⊂ ∪ j∈J Č(a j , r j ) and j∈J r j ≤ C L |log ε|.
Since now the singular set of v ε,n is localized, thus the momentum of u ε,n , we are now in position to control the Lagrange multiplier, using carefuly a Pohozaev-type identity.

Proposition 3. We have, for a constant K(L) depending on L but independent of 0 < ε < ε 0 (L) and

n ≥ C L |log ε| 2 , |c ε,n | ≤ K(L).
(25)

First estimates

Since now, c ε,n is bounded, we can make use of equation ( 9) and derive the first estimates for u ε,n .

Lemma 4. The function u ε,n satisfies the L ∞ bounds

|u ε,n | 2 L ∞ (Ωn) ≤ 1 + ( c ε,n 2 ε|log ε|) 2 ≤ C L and |∇u ε,n | L ∞ (Ωn) ≤ C L ε . ( 26 
)
Proof of Lemma 4. We argue as in Lemma 3 in [BOS]. Note u ε,n = u for simplicity. From (9), we deduce

∆|u| 2 = 2(u, ∆u) + 2|∇u| 2 = -2ε -2 |u| 2 (1 -|u| 2 ) + 2c ε,n |log ε|(u, i∂ 1 u) + 2|∇u| 2 ≥ - 2 ε 2 |u| 2 (1 -|u| 2 ) -2|c ε,n | • |log ε| • |u| • |∇u| + 2|∇u| 2 = - 2 ε 2 |u| 2 (1 -|u| 2 ) + √ 2|∇u| - |c ε,n | √ 2 |u| • |log ε| 2 - |c ε,n | 2 2 |u| 2 • |log ε| 2 ≥ - 2 ε 2 |u| 2 1 -|u| 2 + ( c ε,n 2 ε|log ε|) 2 . Since |u| = 1 on T × ∂D n , the function w = 1 -|u| 2 + ( cε,n 2 ε|log ε|) 2 satisfies -∆w + 2 ε 2 |u| 2 w ≥ 0 in Ω n , w ≥ 0 on ∂Ω n ,
and by the maximum principle, we deduce w ≥ 0 in Ω n , which is the first estimate. Concerning the second one, we consider the scaled map û(x) := u(εx), which satisfies

∆û + û(1 -|û| 2 ) = ic ε,n ε|log ε|∂ 1 û in T × D n/ε , û = e iθ on T × ∂D n/ε .
By standard elliptic estimates (see [GT]),

|∇û| L ∞ ≤ C L
and we conclude by scaling back.

We will also use the following Clearing-Out (or η-ellipticity) result.

Theorem 4. Let σ > 0 be given. Then, there exist η > 0 and ε 0 > 0, depending only on σ and L, such that, for

x 0 ∈ Ωn , 0 < ε ≤ ε 0 and ε µ ≤ r ≤ 1 (with n ≥ C L |log ε| 2 and µ ∈ (0, 1) absolute), if r -1 E ε (u ε,n , B r (x 0 )) ≤ η|log ε|, then |u ε,n (x 0 )| ≥ 1 -σ.
This result is an easy consequence of Theorem 2 in [BOS] inside the domain Ω n and Theorem 2 in [C2] near the boundary, since the boundary condition g(x) = e iθ is uniformly smooth for n ≥ 1 and of modulus 1, and the constants in [C2] involving the curvature of the boundary ∂Ω n = T × ∂D n are uniformly bounded in n.

We infer from Theorem 4 the finer localization of the singular set of u ε,n defined by

S n ε := {|u ε,n | ≤ 1/2}.
Corollary 1. Let 0 < ε < ε 0 (L) and n ≥ C L |log ε| 2 . There exist R 0 > 0 and l ∈ N * , depending on L only, and q cylinders C(a i , R 0 ) (1 ≤ i ≤ q), with q ≤ l, such that the cylinders

C(a i , 8R 0 ) (1 ≤ i ≤ q) are mutually disjoint, S n ε ⊂ ∪ q i=1 C(a i , R 0 ), ∪ q i=1 Č(a i ,R 0 ) e ε (u ε,n ) ≤ 2π 2 1 + L 2 |log ε| + C L . (27) 
Moreover, for every a ∈ R 2 , we have

Č(a,8R 0 ) e ε (u ε,n ) ≤ C L |log ε|. ( 28 
)
We then define a rectifiable 1-dimensional integral current by the mean of the Γ-convergence results of [JS] and [ABO]. This is possible thanks to the localization given in Corollary 1. Nevertheless, we will be compelled to work with ũε,n (x

) := 2u ε,n (x) if |u ε,n (x)| ≤ 1 2 , uε,n(x) |uε,n(x)| if not.
It is clear that J ũε,n is supported in ∪ q i=1 C(a i , R 0 ), since outside this set, ũε,n is smooth and of modulus 1, thus two partial derivatives of ũε,n are both tangent to S 1 at ũε,n , hence are colinear. Notice that, comparing with Lemma 3.1 in [BOS], we do not know yet that J ũε,n and Ju ε,n are close globally in Ω n , since the energy diverges as n → +∞. We define (2π times) the flux of e 1 through a 1-dimensional current T with compact support, by F(T ) := π T, ξ .

The name flux becomes clear when T = ∂R is a boundary, since then integration by parts yields

F(T ) = π ∂R, ξ = π R, d * ξ = 2π R, dx 1 .
It has been noticed in [BS] and [BOS] that the momentum p may be interpreted as the flux F(T ). In our context, since T is x 1 -periodic, the projection R of T on the (x 2 , x 3 )-plane is a closed "curve" R and F(T ) is interpreted as the flux of e 1 through the surface enclosed by R.

Lemma 5. For n ≥ C L |log ε| 2 and 0 < ε < ε 0 (L), there exists a 1-dimensional integral current T ε,n without boundary, supported in the cylinders

C(a i , R 0 ), 1 ≤ i ≤ q, such that i) J ũε,n -πT ε,n [C 0,1 c (Ωn)] * ≤ r(ε), ii) |p(u ε,n ) -F(T ε,n )| ≤ r(ε), iii) M(T ε,n ) ≤ Eε(uε,n,∪ q i=1 C(a i ,8R 0 )) π|log ε| + r(ε), where r(ε) is a function which tends to 0 if ε → 0 uniformly for n ≥ C L |log ε| 2 . Moreover, for every a ∈ R 2 , ||J ũε,n -Ju ε,n || [C 0,1 c ( Č(a,8R 0 ))] * ≤ C L ε|log ε|. ( 29 
)

An isoperimetric problem

As in [BOS], we characterize the limiting singular set with the help of the equality case in an isoperimetric type inequality. We define the projection on the x 1 -axis of T P r 1 (T ) := T, dx 2 ∧ dx 3 ∈ R.

For their purpose, in [BOS], it is made use of the standard isoperimetric inequality. We will make use of the isoperimetric type problem given in the next lemma.

Lemma 6. Let L ≥ 0 and T be a 1-dimensional integral current in T × R 2 compactly supported and without boundary such that

P r 1 (T ) = 2π and F(T ) = 2π 2 L 2 .
Then,

M(T ) ≥ 2π 1 + L 2 .
If, moreover, we assume M(T

) ≤ 2π √ 1 + L 2 , then there exists a translation τ in T × R 2 such that τ (T ) = H L .
Remark 2.2. We emphasize that this is the exact values of the flux F(T ) and P r 1 (T ) that fix the orientations and thus the exact helix. Indeed, one could have thought about the helix H L with reverse orientation, but this would have changed the sign of P r 1 (T ) or choose the helix HL (with an orientation to be chosen) already mentionned, but this time, F(T ) would have changed sign since P r 1 (T ) > 0 imposes the orientation of HL to be the one of the parametrization The "curve" T is periodic in the x 1 variable, thus the projection R of T on the (x 2 , x 3 )-plane is a closed curve enclosing an algebraic surface S. The constraint on the flux imposes S to have an area at least πL 2 . By the isoperimetric inequality in R 2 , R has a length at least 2πL. Moreover, T has a length at least 2π in the x 1 variable, hence T has length at least 2π √ 1 + L 2 . The equality case imposes equality in the isoperimetric inequality, and then R is a circle of radius L. We then conclude that T is the helix H L . This result combined with Corollary 1 enables us to give a precise location of the singular set of u ε,n , included in a single cylinder, which concentrates the |log ε| term of the energy. The diverging term log n is non-local and entirely outside the cylinder. We can also give the asymptotics for the energy around and outside the cylinder containing the helix.

T θ → (θ, L cos θ, -L sin θ)). ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¢ ¡¢
Proposition 4. There exist ε 0 > 0 and R 0 > 0 such that, for all n ≥ C L |log ε| 2 and 0 < ε < ε 0 , there

exists b = b(ε, n) ∈ D n such that S n ε ⊂ T × D R 0 (b) = C R 0 (b), (30) 
E ε (u ε,n , ČR 0 (b)) = 2π 2 1 + L 2 |log ε| + r(ε)|log ε|, (31) 
E ε (u ε,n , Ω n \ ČR 0 (b)) ≤ 2π 2 log n + r(ε)|log ε|. (32) 
Moreover,

c ε,n = 1 √ 1 + L 2 + r(ε), (33) 
and up to a translation in the x 1 variable, denoting τ -b the translation of vector

(0, -b) ∈ T × R 2 , ||τ -b T ε,n -H L || [C 0,1 c ] * ≤ r(ε). (34) 
Statement ( 34) in Proposition 4 will imply that u ε,n is close to the solution U * L we want. In the next Section, we complete the proofs of Theorems 1 and 2 and of Proposition 1 letting n → +∞. In Section 4, we give the proof of Proposition 2. Lemmas 2 and 3 are proved in Section 5, Proposition 3, Corollary 1 and Lemma 5 in Section 6. The proof of Proposition 4 is given in Section 7. Finally, the proofs of the auxiliary Lemmas 1 and 6 are given in Section 8.

Proofs of Theorems 1 and 2 completed

Limits of growing cylinders

Before going further, we prove that b is not too close from the boundary.

Lemma 3.1. There exists 0 < γ < 1 such that, for n ≥ e 1/ε and 0 < ε < ε 0 (L) sufficiently small, b(ε, n) ≤ γn.

Remark 3.1. Though it might be, we do not prove that the helix T ε,n is centered around the x 1 -axis, that is b = r(ε), or even b ≤ C L . However, in Lemma 3.6 below, we will prove that

lim n→+∞ b n = 0.
Proof of Lemma 3.1. From ( 19) and ( 20), we deduce by averaging that there exists a

x 1 ∈ T such that 1 2 Dn |∇ 2,3 u ε,n (x 1 , .)| 2 + (1 -|u ε,n (x 1 , .)| 2 ) 2 2ε 2 ≤ π log n + C L |log ε|.
Consider the scaled map û :

D 1 → C defined by û(y) := u ε,n (x 1 , ny).
Then û = e iθ on ∂D 1 and, denoting δ := ε/n, we have by scaling

1 2 D 1 |∇û| 2 + (1 -|û| 2 ) 2 2δ 2 ≤ π|log δ| + C L |log ε| ≤ π|log δ|(1 + o(1))
since by hypothesis, n ≥ e 1/ε . Therefore, we may apply the results of [J2] or [START_REF] Sandier | Lower bounds for the energy of unit vector fields and applications[END_REF] stating that û has only one "bad disk", the center of which is clearly b n + O(δ). Adapting the arguments of chapter I and Lemma VI.1 in chapter VI in [START_REF] Bethuel | Ginzburg-Landau vortices[END_REF], we infer that the vortex can not be on the boundary, for otherwise the energy would be ≥ 2π|log δ|(1 + o(1)). Therefore, b n ≤ γ < 1 for ε small enough and n ≥ e 1/ε . From now on, we translate the problem so that the helix is centered around the x 1 axis, that is we consider u

ε,n • τ -b : Ω n (b) := T × D n (b) → C instead of u ε,n .
In particular, (x 1 , r, θ) will now refer to cylindrical coordinates centered around the singular helix. From Lemma 3.1, we have b ≤ γn, and therefore dist(0, ∂Ω n (b)) ≥ (1γ)n → +∞ as n → +∞.

We let now n → +∞ with fixed (small) ε to obtain a solution u ε on T × R 2 . To extract a subsequence as n → +∞, we use the local boundness for u ε,n in H 1 loc given in (28) in Corollary 1. As a consequence, up to a subsequence, we may assume, as n → +∞,

u ε,n u ε in H 1 loc (T × R 2 , C) and u ε,n → u ε in L 4 loc (T × R 2 , C) and a.e.
and for every a ∈ R 2

E ε (u ε , C R 0 (a)) ≤ C L |log ε|. (35) 
Moreover, by ellipticity of equation ( 9),

u ε,n → u ε in H 1 loc (T × R 2 , C) as n → +∞.
Note also that (u ε,n ) n is bounded in L ∞ , so is u ε , and since c ε,n is bounded independently of ε and n, we may assume also the existence of the limit

c ε = lim n→+∞ c ε,n ∈ R.
We may then pass to the limit in equation ( 9) to obtain that u ε satisfies (9) in T × R 2 with speed c ε . Note that, in view of (33) in Proposition 4, the assertion (4) concerning the speed in Theorem 1 is proved.

Bounds in

W 1,p loc (T × R 2 ) and in C k loc away from H L .
The first step is to establish bounds for

u ε in W 1,p loc (T × R 2 ). Lemma 3.2. Let 1 ≤ p < 3 2 . We have, for every a ∈ R 2 , ČR 0 (a) |∇u ε,n | p ≤ C L (p).
Proof of Lemma 3.2. The proof of Lemma 3.2 follows exactly the lines of Step 3 of Appendix C in [BOS]. This uses the confinement property of the jacobian J ũ in the cylinder C R 0 and the bound for the energy of the Dirichlet datum (of modulus 1) ∂Ωn |∇g| 2 = 4π 2 /n ≤ 4π 2 . The only difference is that the Hodge-de Rham decomposition (see

(C.19) there) of u ε,n × du ε,n on Ω n (b) now writes, since T is not simply connected, u ε,n × du ε,n = dϕ + d * ψ + αdx 1 , (36) 
for a constant α ∈ R. This constant is easily controlled since α = L 2 n 2 . Indeed, from (36), we infer

2π 2 n 2 α = |Ω n (b)|α = Ωn(b) u ε,n × du ε,n , dx 1 = Ωn(b) (iu ε,n , ∂ 1 u ε,n ) = p(u ε,n ) = 2π 2 L 2 ,
and the conclusion follows.

We then establish uniform bounds in C k loc for u ε,n away from H L . We follow closely the lines of [BOS] (Steps 6 and 7 in Section 4). These bounds are a direct consequence of the concentration of the density energy (see the proof of Proposition 4) on H L as ε → 0 and n ≥ C L |log ε| 2 and the bounds W 1,p loc just established. Lemma 3.3. Let B ⊂ T × R 2 \ H L be a closed ball and k ∈ N. Then, for constants C(k, B, L) and ε(k, B, L) > 0 depending only on k, L and a lower bound for the distance from B to H L , we have, for every 0 < ε < ε(k, B, L), |u ε,n | ≥ 1/2 on B, thus we may write, for a smooth ψ, u ε,n = ρe iψ on B and

i) ∇ψ C k ( B) ≤ C(k, B, L), ii) 2(1-ρ) ε 2 + c ε |log ε|∂ 1 ψ C k ( B) ≤ C(k, B, L).
In particular,

||∇ψ|| L ∞ (Ωn(b)\C R 0 ) ≤ C L and ||1 -ρ 2 || L ∞ (Ωn(b)\C R 0 ) ≤ C L ε 2 |log ε|. ( 37 
)
Proof of Lemma 3.3. We proceed as in Steps 6 and 7 in Section 4 of [BOS]. First, by (32) and Step 4 of the proof of Proposition 4 in Section 7,

Σ µ * = H L and E ε (u ε,n , Ω n (b) \ C R 0 ) ≤ 2π 2 log n + r(ε)|log ε|.
We apply Lemma 4.4 in subsection 4.3 with

H = D R 0 (a) \ D R 0 for an a ∈ R 2 \ D R 0
and n sufficiently large (the radius |H| is defined at the beginning of subsection 4.3)

1 2 T×(Dn(b)\H) |∇ 2,3 u ε,n | 2 + (1 -|u ε,n | 2 ) 2 2ε 2 ≥ 2π 2 log n + 2π 2 (1 -t 2 * )|log ε| -2π 2 t 2 * log(|H|) -C,
where C is a constant independent of ε, n and H and

t * := 1 + πε 2 √ 2|H| 2 - πε 2 √ 2|H| .
Here, |H| ≤ R 0 , and since t * ∈ [0, 1],

E ε (u ε,n , Ω n (b) \ (C R (a) ∩ C R 0 )) ≥ 2π 2 log n -C L .
As a consequence of (32), we infer

E ε (u ε,n , C R 0 (a) ∩ C R 0 ) ≤ r(ε)|log ε|. (38) 
Thus, for any closed ball B ⊂ T × R 2 \ H L , in view of the Clearing-Out result given in Theorem 4 (Theorem 2 of [BOS]), we have for ε sufficiently small (depending on B) and n sufficiently large,

|u ε,n | ≥ 1 2 in B.
Writing in B u ε,n = ρe iψ , and using Lemma 3.2, we obtain, as in Step 7 in Section 4 of [BOS], for all k ∈ N, statements i) and ii) by exactly the same proof.

We will finally use the following lemma concerning the behavior of the phase at infinity. It is close to statement ii) of Theorem 4 in [BOS], but has to be adapted to our problem with a degree one at infinity. We state it only for our solution and not (as in [BOS]) for every solution (on the torus (R/(2nπZ)) N , N ≥ 3).

Lemma 3.4. The map u ε,n writes, for r ≥ R 0 , u ε,n = ρe iϕ+iθ for a smooth ϕ x 1 -periodic and

Ωn(b)\C R 0 |∇ϕ| 2 ≤ C L . ( 39 
)
Proof of Lemma 3.4. We write, for r ≥ R 0 , u ε,n = ρe iϕ+iθ and denote

v := e -iθ u ε,n = ρe iϕ , which satisfies the equation on Ω n (b) \ C R 0 ∆v - v r 2 + 2i ∂ θ v r 2 + 1 ε 2 v(1 -|v| 2 ) = ic ε,n |log ε|∂ 1 v. ( 40 
)
We perform a Hodge-de Rham decomposition for v × dv in

U n := Ω n (b) \ C R 0 v × dv = dφ + d * ψ + αdx 1 , ( 41 
)
where φ is a smooth function such that φ = 0 in ∂U n , α ∈ R is a constant and ψ is a 2-form such that dψ = 0 and ψ = 0 on ∂U n . Applying the operators d and d * to (41) and using (40), we deduce the equations in

U n -∆φ = - c ε,n 2 |log ε|∂ 1 (ρ 2 -1) - ∂ θ (ρ 2 -1) r 2 , ( 42 
) -∆ψ = 2Jv. ( 43 
)
We now turn to estimates for φ, ψ and α.

Estimate for α. We claim that

|α| ≤ r(ε) |U n | ≤ r(ε) n 2 . ( 44 
)
We have, since v = ρe iϕ for r ≥ R 0 , with ϕ periodic in the x 1 variable,

|U n |α = Un v × dv, dx 1 = Un ρ 2 ∂ 1 ϕ = Un (ρ 2 -1)∂ 1 ϕ,
thus, by Cauchy-Schwarz and using (20) and ρ ≥ 1/2 for r ≥ R 0 ,

|U n | • |α| ≤ ε 2 Un (ρ 2 -1) 2 ε 2 + |∂ 1 ϕ| 2 ≤ C L ε|log ε|
and the conclusion follows.

Estimate for φ. We claim that

Un |∇φ| 2 ≤ C L ε 2 (1 + K(L)|log ε|) 2 |log ε| ≤ C L . (45) 
Indeed, multiplying (42) by φ and integrating yields (φ = 0 on ∂U n )

Un

|∇φ| 2 = - c ε,n 2 |log ε| Un ∂ 1 (ρ 2 -1)φ - Un ∂ θ (ρ 2 -1) r 2 φ = c ε,n 2 ε|log ε| Un ρ 2 -1 ε ∂ 1 φ -ε Un ∂ θ φ r 2 ρ 2 -1 ε ≤ (K(L)ε|log ε| + ε) Un (ρ 2 -1) 2 ε 2 1/2 Un |∇φ| 2 1/2 ≤ ε(K(L)|log ε| + 1)C L |log ε| 1/2 Un |∇φ| 2 1/2 (46)
by ( 20), which yields the conclusion.

Estimate for ψ. We claim that

Un |∇ψ| 2 = Un |d * ψ| 2 ≤ C L + r(ε) Un |v × dv| 2 . ( 47 
)
Note that from (41), we have (

d * ψ) = (v × dv) -αdx 1 on ∂U n . Therefore, ψ is solution of    -∆ψ = 2Jv in U n , ψ = 0 on ∂U n , (d * ψ) = (v × dv) -αdx 1 on ∂U n . Recalling |v| = |u ε,n | ≥ 1/2 in U n , we define ṽ := v
|v| and consider the solutions ψ 0 and ψ 1 of

   -∆ψ 0 = 2J ṽ in U n , (ψ 0 ) = 0 on ∂U n , (d * ψ 0 ) = (v × dv) -αdx 1 on ∂U n and    -∆ψ 1 = 2(Jv -J ṽ) in U n , (ψ 1 ) = 0 on ∂U n , (d * ψ 1 ) = 0 on ∂U n .
The existence of ψ 0 and ψ 1 are given by Proposition A.1 in the Appendix of [BBO] and we have ψ = ψ 0 + ψ 1 . Note also that J ṽ = 0 in U n . Thus, multiplying by ψ 0 and integrating by parts gives

Un |∇ψ 0 | 2 = - ∂Ωn(b) ((v × dv) -αdx 1 ) ∧ ( ψ 0 ) - ∂C R 0 ((v × dv) -αdx 1 ) ∧ ( ψ 0 ) .
Moreover, since the norm of the trace operator from

H 1 (D R ), with the norm u H 1 = ∇u L 2 (D R ) (which is equivalent to u H 1 ), into L 2 (∂D R ) is by scaling ≤ KR 1/2 for an absolute K, we have Un |∇ψ 0 | 2 ≤ K n (v × dv) -αdx 1 2 L 2 (∂Ωn(b)) + R 0 (v × dv) -αdx 1 2 L 2 (∂C R 0 ) . (48) 
From ( 44), we have

n αdx 1 2 L 2 (∂Ωn(b)) + R 0 αdx 1 2 L 2 (∂C R 0 ) ≤ Kα 2 (n 2 + R 2 0 ) ≤ C L r(ε) n 2 = r(ε), from (37) in Lemma 3.3 (v × dv) 2 L 2 (∂C R 0 ) ≤ C L and finally, in view of the boundary condition, with z = x 2 + ix 3 , v = e -iθ z -b |z -b| , we have, since r ≥ (1 -γ)n on ∂Ω n (b) by Lemma 3.1 (v × dv) 2 L 2 (∂Ωn(b)) ≤ Kn 1 n 2 + 1 ((1 -γ)n) 2 ≤ C L n ,
from which we infer

Un |∇ψ 0 | 2 = Un |d * ψ 0 | 2 ≤ r(ε) + C L ≤ C L . (49) 
Moreover, for an absolute (by scaling) constant

K Un |∇ψ 1 | 2 1/2 = Un |d * ψ 1 | 2 1/2 ≤ K sup Un Jv -J ṽ, h , h ∈ C ∞ 0 (U n ), Un |∇h| 2 = 1 . Since ṽ × dṽ = ρ -2 v × dv on U n , for all h ∈ C ∞ 0 (U n ) such that Un |∇h| 2 = 1, we have Un Jv -J ṽ, h = 1 2 Un v × dv -ṽ × dṽ, d * h ≤ 1 8 1 -ρ 2 L ∞ (Un) Un |v × dv| 2 1/2 Un |∇h| 2 1/2 ≤ r(ε) Un |v × dv| 2 1/2
in view of (37). As a consequence,

Un |∇ψ 1 | 2 = Un |d * ψ 1 | 2 ≤ r(ε) Un |v × dv| 2 . ( 50 
)
We deduce ( 47) from ( 49) and (50).

Combining ( 44), ( 45) and ( 47) with (41) yields

Un |v × dv| 2 ≤ C L + r(ε) Un |v × dv| 2
and (39) follows.

Convergence of u

ε to U * L Convergence in W 1,p loc (T × R 2 , C).
Up to a subsequence, we may assume, in view of Lemma 3.2 (and

|u ε | ∞ ≤ C L ), that, for 1 ≤ p < 3/2, u ε u * in W 1,p loc (T × R 2 , C
) and a.e. as ε → 0.

Note also that outside C R 0 , since |u ε,n | ≥ 1/2 and u ε,n converges a.e. to u ε , we have

|u ε | ≥ 1/2 there, thus |u * (x)| ≥ 1/2 for r ≥ R 0 .
We will show that u * = U * L . Since u ε satisfies (9), taking the exterior product of (9) with u ε yields

d * (u ε × du ε ) = cε 2 |log ε|∂ 1 (1 -|u ε | 2 ), d(u ε × du ε ) = 2Ju ε .
(51)

Passing to the weak limit in H 1 loc as n → +∞, we deduce from (20) that

T×R 2 |∂ 1 u ε | 2 + (1 -|u ε | 2 ) 2 2ε 2 ≤ C L |log ε|. Thus U ε ∈ Y ε and, if ε → 0, |log ε|(1 -|u ε | 2 ) → 0 in L 2 (T × R 2 ), so |u * | = 1 a.e. and since |c ε | ≤ K(L), as ε → 0, c ε |log ε|∂ 1 (1 -|u ε | 2 ) → 0 in H -1 (T × R 2 ). ( 52 
)
Concerning the second equation, we use (34) in Proposition 4 and the local jacobian estimate (29) to see that, in the distributional sense, as ε → 0, up to a translation in the x 1 variable,

Ju ε → 2π H L .
Passing to the limit in (51), we obtain

div (u * × ∇u * ) = 0, curl(u * × ∇u * ) = 2π H L . (53) 
In order to identify u * , we note that u * × ∇u * is x 1 -periodic and in L p loc (1 ≤ p < 3/2) since |u * | = 1, and ∇u * ∈ L p loc . Therefore, the vector fields u * × ∇u * and v (defined in the introduction) both satisfy (53), except that u * × ∇u * is, for the moment, only a L p loc map (for 1 ≤ p < 3/2). Moreover, u * × ∇u * satisfies

u * × ∇u * - e θ r ∈ L 2 (T × {r ≥ R 0 })
by passing to the limit in (39), and by Lemma 1,

v - e θ r ∈ L 2 (T × {r ≥ R 0 }). Furthermore, it is easily seen that v ∈ L p loc (T × R 2 ) for 1 ≤ p < 3/2. As a consequence, χ denoting a smooth function with support in C R 0 +1 such that χ = 1 in C R 0 , we may write u * × ∇u * -v = χ(u * × ∇u * -v) + (1 -χ)(u * × ∇u * -v) ∈ (L p c + L 2 )(T × R 2 ) (54) for 1 ≤ p < 3/2 and satisfies div (u * × ∇u * -v) = 0 and curl(u * × ∇u * -v) = 0, ( 55 
)
from which we infer u * × ∇u *v ≡ 0, that is u * × ∇u * = v and thus u * = U * L (up to a constant phase). Indeed, by (54), one may perform a Hodge-de Rham decomposition :

u * × ∇u * -v = dϕ + d * ψ + α dx 1 = ∇ϕ + curl ψ + α e 1 in T × R 2 ,
with α ∈ R, dψ = div ψ = 0, and ϕ (resp. ψ) writes φ + φ (resp. ψ + ψ) with φ, ψ ∈ H 1 and φ, ψ ∈ W 1,p such that φ, ψ are O(r -2 ) as r → +∞. By (55), we deduce that ϕ and ψ are harmonic and thus vanish in view of their behavior at infinity. Therefore, u * × ∇u *v = α dx 1 . Moreover, from the proof of Lemma 1, we know that, as r → +∞, v • e 1 = O(r -2 ). Finally, passing to the limit in Lemmas 3.3 and 3.4, we deduce that u * = exp(iθ + iϕ * ) for a smooth and x 1 -periodic ϕ * , thus

2πα = T u * × ∂ 1 u * -v • e 1 dx 1 = T ∂ 1 ϕ * + O(r -2 ) = O(r -2 ) → 0 as r → +∞,
that is α = 0. In view of the uniqueness of the possible weak limit, we have in

W 1,p loc , u ε j U * L as j → +∞
for any sequence ε j → 0. We turn now to strong convergence outside

H L . Convergence in C k loc (T × R 2 \ H L ). The weak W 1,p loc (1 ≤ p < 3/2) convergence implies in particular (up to a phase for u ε ) u ε → U * L in L 1 loc as ε → 0. Moreover, by Lemma 3.3, u ε is bounded in C k loc (T × R 2 \ H L ), thus, as ε → 0, u ε → U * L in C k loc (T × R 2 \ H L ) for all k ∈ N, which is (6) in Theorem 1. Assertion (5) (|u ε (x)| → 1 as r → +∞) in Theorem 1 is easily deduced from the fact that u ε is lipschitz (for instance, |∇u ε | ∞ ≤ C L /ε) and T×R 2 (1-|u ε | 2 ) 2 < ∞.
We complete the proof of Theorem 1 with the following decay result.

Proposition 5. We may write, for r ≥ R 0 , ε sufficiently small and n ≥ exp(1/ε), u ε,n (x) := ρe iϕ(x)+iθ , for ϕ a smooth real-valued function unique up to a multiple of 2π and ρ ≥ 1/2. There exists constants

C L > 0 and λ = λ(L), independent of n ≥ exp(1/ε), such that, for R 0 ≤ R < (1 -γ)n, Ωn(b)\C R |∇ρ| 2 + ρ 2 |∇ϕ| 2 + (1 -ρ 2 ) 2 2ε 2 ≤ C L R λ + σ n (ε), ( 56 
)
where γ ∈ (0, 1) is the one of lemma 3.1, and for

R 0 ≤ R 1 ≤ R 2 < (1 -γ)n, E ε (u ε,n , Ω n (b) ∩ (C R 2 \ C R 1 )) -2π 2 log R 2 R 1 ≤ C L R λ 1 + 2σ n (ε), ( 57 
)
where σ n (ε) depends only on n and ε and σ n (ε) → 0 as n → +∞. In particular,

lim n→+∞ p(u ε,n ) = p(u ε ) = 2π 2 L 2 . ( 58 
)
Note that ( 12) in Proposition 1 is deduced from (57) in Proposition 5 by passing to the limit as n → +∞ and (58) concludes the proof of (4) in Theorem 1. The asymptotic (13) of the energy on T × C L+1 stated in Proposition 1 is a direct consequence of (31) in Proposition 4 and the strong convergence (for L + 1 ≤ r ≤ R 0 if necessary) given in Lemma 3.3. Proposition 1 is thus a consequence of Proposition 5.

Proof of Proposition 5

The proof of Proposition 5 is based on the following decay lemma.

Lemma 3.5. There exists a constant C L > 0 such that, for every

R 0 ≤ R < (1 -γ)n, n ≥ exp(1/ε) and 0 < ε < ε 0 (L) sufficiently small, Ωn(b)\C R f ε ≤ C L R Ωn(b)∩∂C R f ε + C L ε R 2 + 1 2 σ n (ε),
where

f ε := 1 2 ρ 2 |∇ϕ| 2 + |∇ρ| 2 + (1 -ρ 2 ) 2
2ε 2 and σ n (ε) depends only on ε, n and L and, for fixed ε, σ n → 0 as n → +∞.

Proof of Lemma 3.5. We argue as in [BOS] (Lemma 5.1). Since |u ε,n | ≥ 1/2 for r ≥ R 0 and u ε,n has a degree one outside C R 0 , we may write, for r ≥ R 0 , 9) reads now for r ≥ R 0 (with e θ = (0,sin θ, cos θ)),

u ε,n = ρe iϕ+iθ , where ϕ is a smooth real-valued function on Ω n (b) \ C R 0 and 1/2 ≤ ρ ≤ C L . Equation (
-∆ρ + ρ ∇ϕ + e θ r 2 -c ε,n |log ε|ρ∂ 1 ϕ = 1 ε 2 ρ(1 -ρ 2 ). ( 59 
)
The estimate for the modulus is very close to the one in [BOS], whereas the estimate for the phase is slightly different because of the degree one at infinity.

Estimate for the modulus. Multiplying (59) by ρ 2 -1 and integrating over

Ω n (b) \ C R gives Ωn(b)\C R 2ρ|∇ρ| 2 + ρ (1 -ρ 2 ) 2 ε 2 = ∂(Ωn(b)\C R ) ∂ρ ∂ν (1 -ρ 2 ) + Ωn(b)\C R ρ(1 -ρ 2 ) ∇ϕ + e θ r 2 -c ε,n |log ε| Ωn(b)\C R ρ(1 -ρ 2 )∂ 1 ϕ. ( 60 
)
By Cauchy-Schwarz, since ρ = 1 on ∂Ω n (b),

∂(Ωn(b)\C R ) ∂ρ ∂ν (1 -ρ 2 ) = Ωn(b)∩∂C R ∂ρ ∂ν (1 -ρ 2 ) ≤ 2ε Ωn(b)∩∂C R f ε . (61) 
From Lemma 3.3, we know that |∇ϕ + e θ r | ≤ C L for r ≥ R 0 , thus |∇ϕ| ≤ C L and then

Ωn(b)\C R ρ(1 -ρ 2 ) ∇ϕ + e θ r 2 ≤ C L ε Ωn(b)\C R (1 -ρ 2 ) 2 2ε 2 + |∇ϕ| 2 + 1 r 4 ≤ C L ε Ωn(b)\C R f ε + C L ε R 2 , ( 62 
) since {T×R 2 \C R } r -4 ≤ CR -2 .
For the last term, Cauchy-Schwarz yields

|c ε,n | • |log ε| • Ωn(b)\C R ρ(1 -ρ 2 )∂ 1 ϕ ≤ K(L)ε|log ε| Ωn(b)\C R f ε . (63) 
Combining ( 61), ( 62) and ( 63) with (60), we deduce, since ρ ≥ 1/2,

Ωn(b)\C R |∇ρ| 2 + (1 -ρ 2 ) 2 2ε 2 ≤ C L R Ωn(b)∩∂C R f ε + r(ε) Ωn(b)\C R f ε + C L ε R 2 . ( 64 
)
Estimate for the phase. Concerning the phase, we will argue as for the proof of Lemma 3.4. Nevertheless, we need a more precise estimate for b , ensuring us that the helix is nearly centered around the x 1 axis, so that the phase ϕ is nearly 0 on ∂Ω n (b). The result is given in the following lemma, whose proof is postponed to subsection 3.5.

Lemma 3.6. We have, for fixed ε,

lim n→+∞ b n = 0.
For the proof of the estimate for the phase, we follow the lines of the proof of Lemma 3.4 and then consider, on

V n := Ω n (b) \ C R , for R 0 ≤ r ≤ R < (1 -γ)n, v = e -iθ u ε,n = ρe iϕ . We note that, by Lemma 3.1, for R < (1 -γ)n, CR ⊂ Ω n (b). We then perform a Hodge-de Rham decomposition of v × dv on V n v × dv = αdx 1 + dφ + d * ψ, ( 65 
)
where φ is a smooth function such that φ = 0 on ∂V n , α ∈ R is a constant and ψ is a 2-form such that dψ = 0 and ψ = 0 on ∂V n . Applying the operators d and d * to (65) and using the equation ( 40) for the phase, we deduce the equations in

V n -∆φ = - c ε,n 2 |log ε|∂ 1 (ρ 2 -1) - ∂ θ (ρ 2 -1) r 2 , ( 66 
) -∆ψ = 2Jv. ( 67 
)
We now turn to estimates for φ, ψ and α. For R ≤ (1γ)n, we still have

|V n | ≥ 2π(πn 2 -πR 2 ) ≥ 2π 2 (1 -(1 -γ) 2 )n 2 ≥ n 2 C L
and the estimate for α follows as for ( 44)

|α| ≤ r(ε) |V n | ≤ C L n 2 . ( 68 
)
To estimate φ, we have as for ( 46)

Vn |∇φ| 2 ≤ ε(K(L)|log ε| + 1) Vn (ρ 2 -1) 2 ε 2 1/2 Vn |∇φ| 2 1/2 ,
and therefore

Vn |∇φ| 2 ≤ r(ε) Vn (ρ 2 -1) 2 ε 2 ≤ r(ε) Ωn(b)\C R f ε . ( 69 
)
We finally estimate ψ. As for the estimate (47), we write ψ = ψ 0 + ψ 1 , where ṽ = v/|v|,

   -∆ψ 0 = 2J ṽ = 0 in V n , (ψ 0 ) = 0 on ∂V n , (d * ψ 0 ) = (v × dv) -αdx 1 on ∂V n and    -∆ψ 1 = 2(Jv -J ṽ) in V n , (ψ 1 ) = 0 on ∂V n , (d * ψ 1 ) = 0 on ∂V n .
The estimate for ψ 1 follows as for ( 50)

Vn |∇ψ 1 | 2 ≤ r(ε) Vn |v × dv| 2 ≤ r(ε) Vn f ε . (70) 
Concerning ψ 0 , we still have, as for (48),

Vn |∇ψ 0 | 2 ≤ K n (v × dv) -αdx 1 2 L 2 (∂Ωn(b)) + R (v × dv) -αdx 1 2 L 2 (∂C R ) .
Since R ≤ (1γ)n, we deduce from (68) that

n αdx 1 2 L 2 (∂Ωn(b)) + R αdx 1 2 L 2 (∂C R ) ≤ C L n 2 ,
and there holds

R (v × dv) 2 L 2 (∂C R ) ≤ C L R ∂C R f ε . It remains to estimate n (v × dv) 2 L 2 (∂Ωn(b)) .
To that aim, we note that on ∂Ω n (b),

v(x) = e -iθ z -β n |z -β n | = e -iθ (z -β n ),
with z = (x 2 + ix 3 )/n ∈ ∂D 1 (β n ) and β n := b/n. By scaling, we then have

n (v × dv) 2 L 2 (∂Ωn(b)) = ∂D 1 (βn) ∇ e -iθ (z -β n ) 2 dz.
We use Lemma 3.6 to deduce that this last integral tends to 0 as n → +∞. Indeed,

∇ e -iθ (z -β n ) 2 = 1 r 2 + 1 -2 cos(θ -ω) r , (71) 
where (1, ω) are the polar coordinates of zβ n (that is zβ n = e iω ). By Lemma 3.6, as n → +∞, β n → 0, so r → 1 and θω → 0 pointwise and the right-hand side of ( 71) is uniformly bounded (since r ≥ 1γ), thus by dominated convergence,

σn (ε) := n (v × dv) 2 L 2 (∂Ωn(b)) → 0 as n → +∞.
As a consequence, we have

Vn |∇ψ 0 | 2 ≤ K σn (ε) + C L R ∂C R f ε + C L n 2 . ( 72 
)
From ( 70) and ( 72), we infer

Vn |∇ψ| 2 ≤ C L R ∂C R f ε + r(ε) Vn f ε + K σn (ε) + C L n 2 . ( 73 
)
Finally, combining ( 68), ( 69) and ( 73), we obtain

Vn |ρ∇ϕ| 2 ≤ C L Vn |v × dv| 2 ≤ C L R ∂C R f ε + r(ε) Vn f ε + 1 2 σ n (ε), ( 74 
)
where σ n (ε) → 0 as n → +∞. From ( 64) and ( 74), we conclude, for

R 0 ≤ R < (1 -γ)n, Ωn(b)\C R f ε ≤ C L R ∂C R f ε + r(ε) Ωn(b)\C R f ε + C L ε R 2 + 1 2 σ n (ε).
Taking 0 < ε < ε 0 (L) sufficiently small (so that r(ε) ≤ 1/2), we are led to the conclusion.

Proof of Proposition 5. Consider the function, for

R 0 ≤ R < (1 -γ)n, g n (R) := Ωn(b)\C R f ε .
From Lemma 3.5, we deduce that g n satisfies

g n (R) ≤ C L R ∂C R f ε + C L ε R 2 + 1 2 σ n (ε) = -C L Rg n (R) + C L R 2 + 1 2 σ n (ε). ( 75 
)
Therefore, we have, with

λ := C -1 L > 0, d dR R λ g n (R) = λR λ-1 g n (R) + C L Rg n (R) ≤ λR λ-1 C L R 2 + 1 2 σ n (ε) .
Enlarging C L if necessary, we may assume C L ≥ 1, so λ ≤ 1. Integrating between R 0 and R yields

R λ g n (R) -R λ 0 g n (R 0 ) ≤ 1 2 σ n (ε)(R λ -R λ 0 ) + C L λ λ -2 R λ-2 -R λ-2 0 .
Moreover, we have by Lemma 3.3

g n (R 0 ) ≤ C L ,
thus applying (75) with R = R 0 , we obtain, for n sufficiently large, g n (R 0 ) ≤ C L , and therefore

g n (R) ≤ C L R λ + 1 2 σ n (ε),
which concludes the proof of (56). Concerning (57), it suffices to write

E ε (u ε,n , C R 2 \ C R 1 ) = R 1 ≤r≤R 2 f ε + 1 2 R 1 ≤r≤R 2 ρ 2 (|∇ϕ + e θ r | 2 -|∇ϕ| 2 ). Since C R 1 ⊂ CR 2 ⊂ Ω n (b) for R 1 < R 2 < (1 -γ)n, we have by smoothness of ϕ, R 1 ≤r≤R 2 ∂ θ ϕ r 2 = 0, thus E ε (u ε,n , C R 2 \ C R 1 ) -2π 2 log R 2 R 1 ≤ |g n (R 2 ) -g n (R 1 )| + 1 2 R 1 ≤r≤R 2 (ρ 2 -1) 1 r 2 + 2 ∂ θ ϕ r 2 ≤ |g n (R 2 )| + |g n (R 1 )| + 1 2 R 1 ≤r≤R 2 |ρ 2 -1| 1 r 2 + 2 |∂ θ ϕ| r 2 ≤ C L R λ 1 + 2σ n (ε) + Cε R 1 R 1 ≤r≤R 2 (ρ 2 -1) 2 2ε 2 + 1 r 3 + |∇ϕ| 2 ≤ C L R λ 1 + 2σ n (ε) + C L ε|log ε| R 1 ≤ C L R λ 1 + 2σ n (ε),
which is (57). We easily deduce from this decay that

p(u ε ) = 2π 2 L 2 . ( 76 
)
Indeed, let R ≥ R 0 and fix χ a smooth function compactly supported such that 0 ≤ χ ≤ 1, χ = 1 on C R (0), and χ = 0 outside C 2R (0). We can choose χ radial. Recalling the definition of the momentum (8), we have (we already know that

U ε ∈ Y ε ) p(u ε ) = T×R 2 (iu ε , ∂ 1 u ε )χ + T×R 2 (1 -χ)(ρ 2 ε -1)∂ 1 ϕ ε , (77) 
since the last term in (8) vanishes if χ is radial. On the other hand, for n ≥ exp(1/ε), since, as already seen, ϕ ε,n is periodic in the x 1 variable,

p(u ε,n ) = T×R 2 (iu ε,n , ∂ 1 u ε,n )χ + T×R 2 (1 -χ)(ρ 2 ε,n -1)∂ 1 ϕ ε,n . (78) 
By strong H 1 loc convergence as n → +∞, the first term in (78) converges to the first term in (77). For the second terms in (77) and ( 78), they both have the decay established in Propositions 1 and 5, thus, for any R 0 < R < (1γ)n and any n ≥ exp(1/ε),

Ωn(b) (1 -χ)(ρ 2 ε,n -1)∂ 1 ϕ ε,n + T×R 2 (1 -χ)(ρ 2 ε -1)∂ 1 ϕ ε ≤ C L R λ + σ n (ε). Next, let n → +∞ to deduce lim sup n→+∞ |p(u ε,n ) -p(u ε )| ≤ C L R λ ,
and then let R → +∞. This proves (76), which is the assertion (4) in Theorem 1 for the momentum, and thus completes the proof of Theorem 1.

Proof of Lemma 3.6

The proof of Lemma 3.6 relies on the reduction to a 2-dimensional problem, for which results about the location of the vortices can be proved, with the help of the renormalized energy (see [START_REF] Bethuel | Ginzburg-Landau vortices[END_REF]): the limiting vortices are critical points of the renormalized energy. We consider the map w n :

T × D 1 → C defined by w n (x) := u ε,n (x 1 , nx 2 , nx 3 )
with ε fixed and let n → +∞. By scaling from ( 19) and ( 20), we have, with δ := ε/n,

1 2 T×D 1 |∇ 2,3 w n | 2 + (1 -|w n | 2 ) 2 2δ 2 + n 2 2 T×D 1 |∂ 1 w n | 2 ≤ 2π 2 log n + C L |log ε|, (79) 
1 2 T×D 1 (1 -|w n | 2 ) 2 2δ 2 + n 2 2 T×D 1 |∂ 1 w n | 2 ≤ C L |log ε|, (80) 
w n = e iθ on T × ∂D 1 (81)
and, with ∆ 2,3

:= ∂ 2 2 + ∂ 2 3 , ∆ 2,3 w n + w n δ 2 (1 -|w n | 2 ) = ic ε,n |log ε|n 2 ∂ 1 w n -n 2 ∂ 2 1 w n . (82) 
Here, we adopt the point of view ε > 0 fixed and n → +∞, that is δ → 0. We expect that, as n → +∞, w n tends to a map independent of the variable x 1 , with only one vortex at β n := b/n (the bound ( 79) is then the natural one for w n to have only one vortex) and merely satisfies the 2-dimensional Ginzburg-Landau equation ( 82) (provided the right-hand side of ( 82) is small in some sense), so that we expect that the limiting vortex must be a critical point of the renormalized energy, which is 0. The proof is divided in several steps, and we prove all the ingredients needed in the proof of Theorem VII.4 in [START_REF] Bethuel | Ginzburg-Landau vortices[END_REF]. In the sequel, K will denote a constant independent of n, but depending only on ε and L.

Step 1: W 1,p bounds for w n . We prove that, for any 1 ≤ p < 3/2,

T×D 1 |∇w n | p ≤ K p . (83) 
We proceed as in the proof of Proposition C.2 in Appendix C in [BOS].

Estimate for the modulus. Since w n satisfies (82), then ρ

:= |w n | satisfies -∆ 2,3 ρ 2 -n 2 ∂ 1 ρ 2 + 2|∇ 2,3 w n | 2 + 2n 2 |∂ 1 w n | 2 = 2 ρ 2 δ 2 (1 -ρ 2 ) -c ε,n n 2 |log ε|(w n , i∂ 1 w n ). ( 84 
)
We consider ρ := max(ρ, 1-δ 1/2 ). Since ρ = 1 on T×∂D 1 , then ρ2 -1 = 0 on T×∂D 1 and multiplying (84) by ρ2 -1 and integrating yields

T×D 1 (∇ 2,3 ρ 2 ) • (∇ 2,3 ρ2 ) + n 2 (∂ 1 ρ)(∂ 1 ρ) + 2 δ 2 T×D 1 (1 -ρ 2 )(1 -ρ2 ) (85) = T×D 1 2(1 -ρ2 )(|∇ 2,3 w n | 2 + n 2 |∂ 1 w n | 2 ) + c ε,n n 2 |log ε| T×D 1 (1 -ρ2 )(iw n , ∂ 1 w n ).
We note that the integrand in the second integral of the left hand side is non-negative, since either ρ ≥ 1δ 1/2 and then ρ = ρ so (1

-ρ 2 )(1 -ρ2 ) = (1 -ρ 2 ) 2 ≥ 0; either 0 ≤ ρ ≤ 1 -δ 1/2 ≤ 1 and then ρ, ρ ∈ [0, 1] so (1 -ρ 2 ), (1 -ρ2 ) ≥ 0. Moreover, 0 ≤ 1 -ρ ≤ δ 1/2 by construction, so 0 ≤ 1 -ρ2 ≤ 2δ 1/2
and then, by (79),

T×D 1 2(1 -ρ2 )(|∇ 2,3 w n | 2 + n 2 |∂ 1 w n | 2 ) ≤ 4δ 1/2 (4π 2 log n + K) ≤ K, (86) 
since δ 1/2 ≤ Kn -1/2 . Finally, we carefully estimate the last term in (85). First, note that, by (80),

|{ρ < 1 -δ 1/2 }| ≤ Kδ.
As a consequence, by Cauchy-Schwarz and (80),

c ε,n n 2 |log ε| {ρ<1-δ 1/2 } (1 -ρ2 )(iw n , ∂ 1 w n ) ≤ K(L)δ 1/2 |log ε|n 2 {ρ<1-δ 1/2 } |∂ 1 w n | ≤ Kδ 1/2 n 2 K n 2 1/2 (Kδ) 1/2 ≤ K, since δ ≤ Kn -1 . Moreover, since ρ = ρ in {ρ ≥ 1 -δ 1/2 }, by (80), c ε,n n 2 |log ε| {ρ≥1-δ 1/2 } (1 -ρ2 )(iw n , ∂ 1 w n ) ≤ K(L)|log ε| T×D 1 (n|1 -ρ 2 |)(n|∂ 1 w n |) ≤ K T×D 1 (1 -ρ 2 ) 2 δ 2 + n 2 |∂ 1 w n | 2 ≤ K.
Therefore, the last term in (85) verifies

c ε,n n 2 |log ε| T×D 1 (1 -ρ2 )(iw n , ∂ 1 w n ) ≤ K. (87) 
Finally, ∇(ρ 2 ) = ∇(ρ 2 ) if ρ ≥ 1δ 1/2 and 0 otherwise, so, inserting ( 86) and ( 87) into (85) yields

{ρ≥1-δ 1/2 } |∇ρ 2 | 2 ≤ K and then, since ρ ≥ 1 -δ 1/2 ≥ 1/2 if δ ≤ 1/4, for 1 ≤ p ≤ 2, {ρ≥1-δ 1/2 } |∇ρ| p ≤ K p . (88) 
Since, as already seen, |{ρ < 1δ 1/2 }| ≤ Kδ, we infer by Hölder inequality that, for 1 ≤ p < 2,

{ρ<1-δ 1/2 } |∇ρ| p ≤ |{ρ < 1 -δ 1/2 }| 1-p/2 T×D 1 |∇ρ| 2 p/2 ≤ Kn p/2-1 (log n) p/2 ≤ K p . ( 89 
)
We deduce from ( 88) and ( 89) the estimate for the modulus, for 1 ≤ p < 2,

T×D 1 |∇ρ| p ≤ K p . ( 90 
)
Estimate for the pre Jacobian. We perform a Hodge-de Rham decomposition of w n × dw n :

w n × dw n = dϕ + d * ψ + αdx 1 , (91) 
where α ∈ R is a constant, ϕ is a function satisfying ϕ = 0 on T × ∂D 1 , and ψ is a 2-form such that ψ = 0 on T × ∂D 1 and dψ = 0. To estimate α, we write

2π 2 α = α|T × D 1 | = T×D 1 w n × dw n , dx 1 = 1 n 2 T×Dn (iu ε,n , ∂ 1 u ε,n ) = 2π 2 L 2 n 2
by scaling and in view of the constraint on the momentum, so

α = L 2 n 2 . ( 92 
)
Applying the d and the d * operators to (91) and using ( 81) and ( 82), we deduce the equations

   -∆ψ = 2Jw n in T × D 1 , ψ = 0 on T × ∂D 1 , (d * ψ) = dθ on T × ∂D 1 (93) 
and

-(∆ 2,3 + n 2 ∂ 2 1 )ϕ = - cε,n 2 |log ε|n 2 ∂ 1 (ρ 2 -1) in T × D 1 , ϕ = 0 on T × ∂D 1 . (94) 
From Proposition 3.1 in [BO] (since |dθ| ∞ = 1), we infer from (93) that, for 1 ≤ p < 3/2,

T×D 1 |∇ψ| p ≤ K p . (95) 
Multiplying ( 94) by ϕ and integrating by parts yields by Cauchy-Schwarz and ( 80)

T×D 1 |∇ 2,3 ϕ| 2 + n 2 |∂ 1 ϕ| 2 = c ε,n 2 |log ε| T×D 1 (n(ρ 2 -1))(n∂ 1 ϕ) ≤ K(L) T×D 1 (ρ 2 -1) 2 δ 2 + n 2 |∂ 1 ϕ| 2 ≤ K.
As a consequence, by Hölder inequality, for 1 ≤ p ≤ 2,

T×D 1 |∇ 2,3 ϕ| p + n p |∂ 1 ϕ| p ≤ K. (96) 
Therefore, combining ( 92), ( 95), ( 96) with (91), we obtain, for 1 ≤ p < 3/2,

T×D 1 |w n × dw n | p ≤ K p . ( 97 
)
To conclude, we use the identity

ρ 2 n |∇w n | 2 = ρ 2 n |∇ρ n | 2 + |w n × dw n | 2 ,
and the estimate |∇w n | ∞ ≤ Kn, which comes by scaling from (26), to deduce,

|∇w n | 2 = |∇ρ n | 2 + |w n × dw n | 2 + (1 -|w n | 2 )(|∇w n | 2 -|∇ρ n | 2 ) ≤ |∇ρ n | 2 + |w n × dw n | 2 + Kn 1 -|w n | 2 • |∇w n | ≤ |∇ρ n | 2 + |w n × dw n | 2 + 1 2 |∇w n | 2 + Kn 2 (1 -|w n | 2 ) 2 , thus |∇w n | 2 ≤ K |∇ρ n | 2 + |w n × dw n | 2 + n 2 (1 -|w n | 2 ) 2 ,
and then, for 1 ≤ p < 3/2,

T×D 1 |∇w n | p ≤ K T×D 1 |∇ρ n | p + |w n × dw n | p + K T×D 1 (1 -|w n | 2 ) 2 δ 2 p/2
. Estimate (83) follows then from ( 80), ( 90) and (97).

From

Step 1, we know that, up to a subsequence, w n weakly converges in W 1,p to a map w * in W 1,p (T × D 1 , S 1 ) for 1 ≤ p < 3/2, as n → +∞, satisfying w * = e iθ on T × ∂D 1 . Moreover, from (80),

T×D 1 |∂ 1 w n | 2 ≤ K n 2 → 0,
thus w * is independent of the variable x 1 . We will denote w * = w * (x 1 , .) for any x 1 ∈ T. We denote also β * = lim n→+∞ b/n ∈ D 1 (and not ∈ D1 , since we already know that b ≤ (1γ)n).

Step 2: The vector field w * × ∇ 2,3 w * is divergence free. R). We write the right-hand side of (82) as

Let ζ ∈ C 1 0 (D 1 ,
∂ 1 Υ n , where Υ n := ic ε,n n 2 |log ε|w n -n 2 ∂ 1 w n . Therefore, by (82), div 2,3 (w n × ∇ 2,3 w n ), ζ = w n × ∆ 2,3 w n , ζ = ∂ 1 Υ n , ζ = 0,
since ζ does not depend on x 1 and Υ n is x 1 -periodic. As a consequence, passing to the limit as n → +∞ (up to the subsequence), we obtain that the vector field w * × ∇ 2,3 w * is divergence free.

We then apply Remark I.1 in chapter I of [START_REF] Bethuel | Ginzburg-Landau vortices[END_REF] to conclude from Steps 1 and 2 that w * = w 0 exp(iκ log |z -

β * |) exp(iχ), ( 98 
)
where z = x 2 + ix 3 , w 0 is the canonical harmonic map associated to the boundary map e iθ and the singularity β * , κ is a real constant and χ the solution of

-∆χ = 0 in D 1 , χ + κ log |z -β * | = 0 on ∂D 1 .
Step 3: Strong convergence outside T × {β * }. We prove that, a ball B R (a) in T × ( D1 \ {β * }) being given, for n sufficiently large (depending on the ball), we have

|w n | -1 ≤ K n 2 in B R (a), ∇ 2,3 w n L ∞ (B R (a)) + n 2 ∂ 1 w n L ∞ (B R (a)) + n 2 ∂ 2 1 w n L ∞ (B R ( 
a)) ≤ K. These estimates are similar to the bounds in C k loc (T × R 2 \ H L ) given in Lemma 3.3, and are also related to the result given in Theorem VI.1 in [START_REF] Bethuel | Ginzburg-Landau vortices[END_REF]. We define ŵn (x

) := (1 + c 2 ε,n 4 ε 2 |log ε| 2 ) -1/2 exp(-i c ε,n 2 |log ε|x 1 )w n (x) in T × D 1 , which verifies (∆ 2,3 + n 2 ∂ 2 1 ) ŵn + ŵn δ2 (1 -| ŵn | 2 ) = 0, ( 99 
)
where δ2 := (1 +

c 2 ε,n 4 ε 2 |log ε| 2 ) -1 δ 2 .
We will follow the lines of the proof of Theorem IV.1 in [BBO]. We do not prove Step 1 there. However, from Lemma 3.3, we know that ϕ n ∈ [0, 2π).

η := sup T×Dn\C R 0 |u ε,n | -1 ≤ C L ε 2 |log ε| ≤ 1/2 (100) for 0 < ε < ε 0 (L)
In the proof of [BBO], we replace each time the standard Laplace operator ∆ by ∆ 2,3 + n 2 ∂ 2 1 , so that the scaled energy now writes Fδ ( ŵn , a, r)

= 1 2r Br(a) |∇ 2,3 ŵn | 2 + n 2 |∂ 1 ŵn | 2 + (1 -| ŵn | 2 ) 2 2 δ2 .
We follow the lines of Step 2 of the proof of Theorem IV.1 in [BBO], which implies the existence of n 0 = n 0 (ε, L, R, a) ∈ N such that, for x ∈ B 7R/8 (a), n ≥ n 0 , µ ∈ (0, 1/2) and 0 < r < R/8, then Fδ (a, µr)

≤ K 0 (µ 2 + µ -1 (n -1 + η)) Fδ (a, r),
where K 0 is absolute. Note that we may here reach the boundary T × ∂D 1 , but since the boundary map e iθ is independent of n and smooth of modulus 1, this does not change the proof. In particular, for µ and ε < ε 0 sufficiently small (µ and ε 0 absolute) (note that η → 0 as ε → 0 uniformly in n by ( 100)), we have Fδ (x, µr) ≤ 1 2 Fδ (x, r).

Consequently, we infer from this decay and the W 1,p bound (83) as in Step 3 in [BBO] that

ŵn C 0,α (B 6R/8 (a)) ≤ K,
for an α ∈ (0, 1) depending on µ, and K depends only on L, ε, and B R (a). In particular,

ρ n C 0,α (B 6R/8 (a)) ≤ K.
The equation for the phase is then

div 2,3 (ρ 2 n ∇ 2,3 ϕ n ) + n 2 ∂ 1 (ρ 2 n ∂ 1 ϕ n ) = 0 in B 6R/8 (a),
from which we infer by Schauder estimates

ϕ n C 1,α (B 5R/8 (a)) ≤ K. ( 101 
)
We finally have the estimate for 1 -

ρ 2 n 0 ≤ 1 -ρ 2 n ≤ K n 2 in B R/2 (a). ( 102 
)
The lower bound is usual for the Ginzburg-Landau equation ( 99), and here is also a consequence of Lemma 4. The upper one is derived as in Step 5 in [BBO]. The equation for

h n := 1 -ρ 2 n is -(∆ 2,3 + n 2 ∂ 2 1 )h n + ρ n δ2 (1 + ρ n )h n = ρ n |∇ϕ n | 2 in B 7R/8 (a),
thus by ( 100) and (101),

-(∆ 2,3 + n 2 ∂ 2 1 )h n + 1 2 δ2 h n ≤ K in B 5R/8 (a),
and h n = 0 on T×∂D 1 . Therefore, as in Lemma 2 in [START_REF] Bethuel | Asymptotics for the minimization of a Ginzburg-Landau functional[END_REF], we obtain (102). A bootstrap argument, as in [START_REF] Bethuel | Asymptotics for the minimization of a Ginzburg-Landau functional[END_REF] and Step 6 in [BBO], shows that

n 2 ∂ 2 1 w n L ∞ (B R/2 (a)) + n 2 ∂ 1 w n L ∞ (B R/2 (a)) ≤ K (103) and then w * ∈ C ∞ (D 1 \ {β * }) ∩ C 0 ( D1 \ {β * }).
Step 4: Convergence for the potential term. Let

W n := (1 -|w n | 2 ) 2 4δ 2 .
Then (up to a subsequence), in the weak topology of C( D1 ),

T W n dx 1 W * = mδ {β * } , with m ∈ R + .
This step is the analogue of Lemma VII.1 in chapter VII of [START_REF] Bethuel | Ginzburg-Landau vortices[END_REF]. First, note that by (80),

T W n dx 1 is bounded in L 1 (D 1 ), thus we may assume T W n dx 1 W * in the weak topology of C( D1 ). It remains to establish the structure of the measure W * , which will follow from the strong convergence results of Step 3. Indeed, (102) implies that for B R (a) ⊂ T × (D 1 \ {β * }), we have

W n (B R/2 (a)) ≤ K n 2 → 0 as n → +∞, thus W * (B R/2 (a)) = 0.
The measure W * is then nonnegative and has a support included in {β * } : it is then of the form mδ {β * } , with m ∈ R + .

Step 5: An auxiliary problem. Let

q n := (∂ 2 w n , ∂ 1 Υ n ) -i(∂ 3 w n , ∂ 1 Υ n ),
that we extend by 0 outside T × D 1 . There exists λ = λ(ε) ∈ R such that, for all φ ∈ C 1 ( D1 , C), as n → +∞,

T×D 1 q n (x)φ(x 2 , x 3 ) dx = n 2 T×D 1 (c ε,n |log ε|(iw n , ∂ 1 w n ) -|∂ 1 w n | 2 ) ∂φ ∂ z → -λ ∂φ ∂ z (β * ), (104) 
where 2 ∂ ∂ z = (∂ 2 -i∂ 3 ). In other words, the distribution in R 2 S n : φ → T×D 1 q n (x)φ(x 2 , x 3 ) dx converges as a distribution to λ ∂ ∂ z δ β * . Moreover, the distribution in R 2

Λ n := 1 2π log |(x 2 , x 3 )| * S n
is bounded in L p (D 1 ), 1 ≤ p < 2 and converges in the sense of distributions to

Λ * := λ 2π ∂ ∂ z log |(x 2 , x 3 )| * δ β * .
Let us first derive the first identity in (104) by integration by parts (φ does not depend on x 1 )

T×D 1 (∂ 2 w n , ∂ 2 1 w n )φ(x 2 , x 3 ) dx = -(∂ 2 ∂ 1 w n , ∂ 1 w n )φ = - 1 2 ∂ 2 (|∂ 1 w n | 2 )φ = 1 2 |∂ 1 w n | 2 ∂ 2 φ,
where we have used that

∂ 1 w n = 0 on T × ∂D 1 . Similarly, since 2(∂ 2 w n , i∂ 1 w n ) = 2∂ 1 w n × ∂ 2 w n = ∂ 1 (w n × ∂ 2 w n ) -∂ 2 (w n × ∂ 1 w n ), T×D 1 (∂ 2 w n , i∂ 1 w n )φ(x 2 , x 3 ) dx = - 1 2 ∂ 2 (w n × ∂ 1 w n )φ = 1 2 (iw n , ∂ 1 w n )∂ 2 φ.
The case of the other term (with ∂ 3 w n ) is similar. To conclude, note that µ 1 n := n 2 T |∂ 1 w n | 2 dx 1 and µ 2 n := n 2 T (iw n , ∂ 1 w n ) dx 1 , extended by 0 outside D1 , are bounded in L 1 (R 2 ). Indeed, for the first one, this follows from (80), and for the second one, we write first

T×D R 0 /n (βn) n 2 (iw n , ∂ 1 w n ) ≤ nC L n 2 |∂ 1 w n | 2 1/2 K n 2 1/2 ≤ K,
by ( 80) and Cauchy-Schwarz, and then, since ρ n ≥ 1/2 outside C R 0 /n (β n ) and writing for a real-valued map ψ n , x 1 -periodic, w n = ρ n e iψn+iθ , we have

D 1 \D R 0 /n (βn) n 2 T (iw n , ∂ 1 w n ) dx 1 = D 1 \D R 0 /n (βn) n 2 T ρ 2 n ∂ 1 ψ n dx 1 = ε D 1 \D R 0 /n (βn) T ρ 2 n -1 δ (n∂ 1 ψ n ) dx 1 ≤ K T×D 1 (ρ 2 n -1) 2 δ 2 + n 2 |∂ 1 w n | 2 ≤ K.
Therefore, we may assume that µ 1 n and µ 2 n weakly converge as measures to µ 1 * and µ 2 * respectively. From the strong convergence result of Step 3 (as in Step 4), we deduce that the supports of µ 1 * and µ 2 * is in fact included in {β * }. As a consequence, there exists λ = λ(ε, L) ∈ R such that ( 104) is satisfied for any φ ∈ C 1 ( D1 ). The convergence in the distributional sense for Λ n then follows. Concerning the L p bound, we write by ( 104)

Λ n = ∂ ∂z 1 2π log |(x 2 , x 3 )| * (µ 2 n -µ 1 n ) ,
and since

µ 1 n -µ 2 n is bounded in L 1 (R 2
) and with compact support in D1 , we deduce that

1 2π log |(x 2 , x 3 )| * (µ 2 n -µ 1 n ) is bounded in W 1,p loc (R 2 ), for 1 ≤ p < 2,
and thus Λ n is bounded L p (D 1 ) for 1 ≤ p < 2. The proof of Step 5 is complete.

Step 6: We prove that κ = 0 and β * = 0. We follow chapter VII of [START_REF] Bethuel | Ginzburg-Landau vortices[END_REF] (the proofs of Theorem VII.1, Step 1, and Theorem VII.2). We introduce the Hopf differential defined in T × D 1

ω n := ∂ 2 w n 2 -∂ 3 w n 2 -2i(∂ 2 w n , ∂ 3 w n ),
where, we recall, (., .) is the scalar product in R 2 C. A straightforward computation shows that since w n satisfies (82), then

∂ω n ∂ z = ∂ ∂z (2W n ) + 2(∂ 2 w n , ∂ 1 Υ n ) -2i(∂ 3 w n , ∂ 1 Υ n ) = ∂ ∂z (2W n ) + 2q n (x), (105) 
where 2 ∂ ∂z = (∂ 2 +i∂ 3 ). Identity (105) has to be compared with (5) in Step 1 of [START_REF] Bethuel | Ginzburg-Landau vortices[END_REF]. We define also

W n = W n in T × D 1 extended by 0 outside T × D 1 in T × R 2
, and define the distribution T := ∂ ∂z ( 1 πz ). We consider α n := T * T W n dx 1 in the sense of distributions. Furthermore, by definition of Λ n , we have

T q n dx 1 = -∆Λ n = -4 ∂ ∂ z ∂ ∂z Λ n .
Therefore, by (105), we have in D 1 ,

∂ ∂ z T ω n dx 1 -2α n = 2 T q n (x) dx 1 = -8 ∂ ∂ z ∂ ∂z Λ n . (106) 
Let us denote

f n := T ω n dx 1 -2α n +8 ∂ ∂z Λ n . By Step 5, ∂ ∂z Λ n is bounded in L p (D 1 ), 1 ≤ p < 2. From Step 3, T ω n dx 1 is bounded in L ∞ loc (D 1 \ {β * }), thus in L p loc (D 1 \ {β * }), 1 ≤ p < 2. Moreover, as for the claim in [BBH2], α n is bounded in L ∞ loc (D 1 \ {β * }). Consequently, f n is, by (106), a holomorphic function in D 1 bounded in L p loc (D 1 \ {β * }), 1 ≤ p < 2 thus bounded in C k loc (D 1
) for any k ∈ N (by the Cauchy formula and an averaging argument), and we may then assume, up to another subsequence, that

f n → f * in C k loc (D 1 ) ∀k ∈ N. (107) 
Since, by Step 3, T W n dx 1 converges as measure (up to a subsequence) to mδ {β * } , we have

α n → α * = mT * δ {β * } = - m π(z -β * ) 2 in D (D 1 ). (108) 
Finally, combining Step 5, ( 107) and ( 108), we have in D (D 1 )

T ω n dx 1 = f n + 2α n -8 ∂Λ n ∂z → ω * := f * + 2α * -8 ∂Λ * ∂z , (109) 
and in view of Step 3, this convergence holds in C k loc (D 1 \ {β * }), ∀k ∈ N and ω * is 2π times the Hopf differential of w * in D 1 \ {β * }. To conclude, note that, by Step 5,

Λ * = λ 2π ∂ ∂ z log |(x 2 , x 3 )| * δ β * , thus ∂Λ * ∂z = λ 2π ∂ ∂z ∂ ∂ z log |(x 2 , x 3 )| * δ β * = λ 8π (∆ log |(x 2 , x 3 )|) * δ β * = λ 4 δ 0 * δ β * = λ 4 δ β * .
From (109), we then infer, in

D (D 1 \ {β * }), with z = x 2 + ix 3 , ω * = f * + 2α * = f * - 2m π(z -β * ) 2 . ( 110 
)
This has to be compared with ( 13) and ( 14) in [START_REF] Bethuel | Ginzburg-Landau vortices[END_REF], chapter VII. From ( 98) and the fact that the canonical harmonic map w 0 writes z-β * |z-β * | e iχ 1 for some harmonic map χ 1 in a neighborhood of β * , we infer that w

* = z -β * |z -β * | exp(iκ log |z -β * | + iχ ),
for some smooth real harmonic map χ near β * . Computing then the Hopf differential of w * and comparing with (110), we obtain as in [START_REF] Bethuel | Ginzburg-Landau vortices[END_REF] that for z near β * and z

= β * f * - 2m π(z -β * ) 2 = ω * = 2π κ -i z -β * + 2 ∂χ ∂z 2 = 2π (κ -i) 2 (z -β * ) 2 + 4 κ -i z -β * ∂χ ∂z + 4 ∂χ ∂z 2 .
Since f * and χ are continuous in a neighborhood of β * (including β * ), multiplying by (zβ * ) 2 and letting z → β * , we obtain

2π(κ -i) 2 = - 2m π , (111) 
and then, multiplying by zβ * and letting z → β * , we deduce

8π(κ -i) ∂χ ∂z (β * ) = 0. ( 112 
)
From ( 111), we infer that κ = 0 and m = π 2 , since κ ∈ R, thus w * = w 0 the canonical harmonic map. From (112), it follows ∂χ ∂z (β * ) = 0, which means ∇χ (β * ) = 0 since χ is real-valued. This last condition is equivalent to the fact that β * is a critical point to the renormalized energy (see [START_REF] Bethuel | Ginzburg-Landau vortices[END_REF], chapter VIII). From Theorem VIII.6 in [START_REF] Bethuel | Ginzburg-Landau vortices[END_REF], we then know that the only critical point of the renormalized energy with one vortex and the boundary map e iθ is 0. Therefore, β * = 0 and the proof is complete.

Remark 3.2. With a little more work, one can show that λ = 0.

Proof of Theorem 2 completed

In order to complete the proof of Theorem 2, we notice that U ε ∈ Y ε is already proved. Hence, we are just left with proving that U ε is a "local minimizer", that is, in view of the scaling, that u ε is also one. Therefore, we assume that there exist R > 0 and v ∈ H

1 loc (T × R 2 , C) such that v = u ε outside C R , p(v) = 2π 2 L 2 = p(u ε ) and E ε (v, C R ) < E ε (u ε , C R ).
We recall that since v = u ε outside T × D R , p(v) is well-defined. Taking R larger if necessary, we may assume

|v| = |u ε | ≥ 1 2 outside C R .
If we had v = e iθ+iϕ 0 outside T × D R where ϕ 0 is a real constant, for n ≥ R, the restriction of e -iϕ 0 v to Ω n would be a map in X n having momentum p(v) = 2π 2 L 2 (since in that case, (iv, ∂ 1 v) = 0 outside C R ) and energy strictly less than the one of the minimizer u ε,n , which is a contradiction. For the general case, as in [BOS], we construct such a map.

Outside C R , since v = u ε , we may write

v = u ε = ρ exp(iϕ + iθ).
We then define the functions (using cylindrical coordinates),

σ(x) := 2R -r R , τ (x) := 3R -r R and µ R := 1 |{2R ≤ r ≤ 3R}| 2R≤r≤3R ϕ and then ρ R (x) := σ(x)ρ(x) + (1 -σ(x)), ϕ R (x) := τ (x)ϕ(x) + (1 -τ (x))µ R .
We then set

v R (x) :=        v(x) if r ≤ R, ρ R (x) exp(iϕ(x) + iθ) if R ≤ r ≤ 2R, exp(iϕ R (x) + iθ) if 2R ≤ r ≤ 3R, exp(iµ R + iθ) if r ≥ 3R.
We claim that, for a constant C independent of ε, n ≥ 3R and R

|p(v R ) -p(u ε )| ≤ Cε r≥R |∂ 1 u ε | 2 + 1 2ε 2 (1 -|u ε | 2 ) 2 (113) and E ε (u ε , Ω n \ C R ) -E ε (v R , Ω n \ C R ) ≤ C L R λ + C L σ n (ε). ( 114 
)
Proof of the claim. We first note that, in the definition of p given in (77), we may let χ tend to the characteristic function of

C R (for R ≥ R 0 ) to obtain p(u ε ) = C R (iu, ∂ 1 u) + T×R 2 \C R (ρ 2 -1)∂ 1 ϕ. Therefore, |p(v R ) -p(u ε )| ≤ R≤r≤2R (ρ -ρ R )∂ 1 ϕ + 2R≤r≤3R (τ -ρ 2 )∂ 1 ϕ + r≥3R (ρ 2 -1)∂ 1 ϕ . ( 115 
)
For the first term, by Cauchy-Schwarz, since ρ ≥ 1/2,

R≤r≤2R (ρ -ρ R )∂ 1 ϕ ≤ R≤r≤2R |1 -σ| • |1 -ρ| • |∂ 1 ϕ| ≤ ε 2 R≤r≤2R (1 -ρ 2 ) 2 ε 2 + |∂ 1 ϕ| 2 ≤ Cε R≤r≤2R |∂ 1 u| 2 + 1 2ε 2 (1 -|u| 2 ) 2 . ( 116 
)
For the second term, note that since ϕ is periodic in the variable x 1 and

∂ 1 τ = 0, 2R≤r≤3R (τ -ρ 2 )∂ 1 ϕ = - 2R≤r≤3R ρ 2 ∂ 1 ϕ = 2R≤r≤3R (1 -ρ 2 )∂ 1 ϕ, thus 2R≤r≤3R (τ -ρ 2 )∂ 1 ϕ ≤ Cε 2R≤r≤3R |∂ 1 u| 2 + 1 2ε 2 (1 -|u| 2 ) 2 . ( 117 
)
Concerning the last term, write also

r≥3R (ρ 2 -1)∂ 1 ϕ ≤ Cε r≥3R |∂ 1 u| 2 + 1 2ε 2 (1 -|u| 2 ) 2 . ( 118 
)
Inserting ( 116), ( 117) and ( 118) into ( 115) yields ( 113).

Concerning the energy, we have similarly

|E ε (u ε , Ω n \C R ) -E ε (v R , Ω n \ C R )| ≤ R≤r≤2R |ρ 2 -ρ 2 R | • ∇ϕ + e θ r 2 + (1 -ρ 2 ) 2 2ε 2 - (1 -ρ 2 R ) 2 2ε 2 + 2R≤r≤3R ρ 2 ∇ϕ + e θ r 2 -∇ϕ R + e θ r 2 + 3R≤r≤n e θ r 2 -e ε (u ε ) , (119) 
and we estimate each term in (119). First, notice that

|1 -ρ R | = |(1 -σ R )(1 -ρ)| ≤ |1 -ρ|, so (1 -ρ 2 R ) 2 ≤ C L (1 -ρ R ) 2 ≤ C L (1 -ρ) 2 ≤ C L (1 -ρ 2 ) 2 ,
and then, by the decay result (12) in Proposition 1,

R≤r≤2R (1 -ρ 2 ) 2 2ε 2 - (1 -ρ 2 R ) 2 2ε 2 ≤ C L R≤r≤2R (1 -ρ 2 ) 2 2ε 2 ≤ C L R λ + C L σ n (ε).
Next, since ∇ϕ + r -1 e θ ≤ C L and using Proposition 1 once again

R≤r≤2R |ρ 2 -ρ 2 R | • ∇ϕ + e θ r 2 ≤ C L ε R≤r≤2R |ρ 2 -1| ε (|∇ϕ| + 1 r 2 ) ≤ C L R≤r≤2R f ε ≤ C L R λ + C L σ n (ε), since r -2 ∈ L 2 ({r ≥ 1}).
We then infer the estimate for the first term in ( 119)

R≤r≤2R |ρ 2 -ρ 2 R | • ∇ϕ + e θ r 2 + (1 -ρ 2 ) 2 2ε 2 - (1 -ρ 2 R ) 2 2ε 2 ≤ C L R λ + C L σ n (ε). ( 120 
)
For the second term, since

∂ θ ϕ R = ∂ θ ϕ, expansion yields ∇ϕ + e θ r 2 -∇ϕ R + e θ r 2 = |∇ϕ| 2 -|∇ϕ R | 2 , thus, 2R≤r≤3R ρ 2 ∇ϕ + e θ r 2 -∇ϕ R + e θ r 2 ≤ 2R≤r≤3R (ρ 2 -1) • (|∇ϕ| 2 -|∇ϕ R | 2 ) (121) + 1 R 2R≤r≤3R |ρ 2 -1| • |∇ϕ| + 2R≤r≤3R |ρ 2 -1| r 2 .
In (121), we estimate the second term by Cauchy-Schwarz, with the decay result ( 12), and the third one by Cauchy-Schwarz also, since r

-2 ∈ L 2 ({r ≥ R 0 }), to obtain 1 R 2R≤r≤3R |ρ 2 -1| • |∇ϕ| + 2R≤r≤3R |ρ 2 -1| r 2 ≤ C L R λ + C L σ n (ε). ( 122 
)
For the first term in (121),

using |∇ϕ R | + |∇ϕ| ≤ C L , ∇ϕ -∇ϕ R = (τ -1)∇ϕ + (ϕ -µ R )∇τ and |∇τ | = R -1
, then Poincaré-Wirtinger inequality and finally the decay result ( 12), we deduce

2R≤r≤3R (ρ 2 -1) • (|∇ϕ| 2 -|∇ϕ R | 2 ) ≤ 2R≤r≤3R (ρ 2 -1) • (∇ϕ + ∇ϕ R , ∇ϕ -∇ϕ R ) ≤ C L 2R≤r≤3R |ρ 2 -1| |τ -1| • |∇ϕ| + |ϕ -µ R | R ≤ C L ε 2R≤r≤3R |∇ϕ| 2 + (ρ 2 -1) 2 ε 2 ≤ C L R λ + C L σ n (ε). ( 123 
)
Inserting ( 122) and ( 123) into (121) yields

2R≤r≤3R ρ 2 ∇ϕ + e θ r 2 -∇ϕ R + e θ r 2 ≤ C L R λ + C L σ n (ε). ( 124 
)
From Proposition 1, we know that the last term verifies

3R≤r≤n e θ r 2 -e ε (u ε ) = 3R≤r≤n e ε (u ε ) -2π 2 log n 3R ≤ C L R λ + σ n (ε). ( 125 
)
Inserting ( 120), ( 124) and ( 125) into ( 119) yields ( 114) and concludes the proof of the claim.

Hence, if R → +∞, we have v R = e iµ R outside T × D 3R and p(v R ) → p(v) = 2π 2 L 2 .
We may then define for R sufficiently large

vR (x) := v R (x 1 , λ R x 2 , λ R x 3 ),
where λ R → 1 is uniquely defined by the equality

p(v R ) = 2π 2 L 2 .
Furthermore, we recall that v = u ε for r ≥ R, and in view of the claim (114), we have

|E ε (u ε , Ω n \ C R ) -E ε (v R , Ω n \ C R )| ≤ C L R λ + C L σ n (ε)
thus for fixed (but large) R, we have for n sufficiently large

E ε (v R , Ω n ) < E ε (u ε , Ω n ),
with vR = e iθ+iµ R on ∂Ω n , where µ R is a constant. We are led to the desired contradiction.

Proof of Proposition 2

The proof of the existence of a minimizer is standard and relies on the weak lower semicontinuity of the energy E ε on X n and on the fact that the momentum is, by Rellich compactness, weakly sequentially continuous on H 1 , that is if u k u weakly in H 1 as k → +∞, then u k → u strongly in L 2 by compactness of Ωn , hence

2π 2 L 2 = p(u k ) = T×Dn (iu k , ∂ 1 u k ) → T×Dn (iu, ∂ 1 u) = p(u).
The Lagrange multiplier is written cε,n 2 |log ε| ∈ R and we expect the speed c ε,n to be bounded. We give the proof of Proposition 2, providing a bound for the energy of u ε,n and a bound in |log ε| for

Ωn |∂ 1 u ε,n | 2 + ∇ 2,3 |u ε,n | 2 + (1 -|u ε,n | 2 ) 2 2ε 2 .

Definition of the comparison map

For the proof of the upper bound for I n ε , we have to construct a comparison map, behaving like an helicoidal vortex. To that aim, we first prove the following lemma, stating that the projection of the nearest point from T × R 2 onto H L is well-defined on the L-neighborhood of H L , but first, notice that the Frenet basis for H L at the point (α, L cos α, L sin α) ∈ H L is given by

     τ (α) = 1 √ 1+L 2 (1, -L sin α, L cos α), β(α) = (0, -cos α, -sin α), ν(α) = 1 √ 1+L 2 (L, sin α, -cos α).
We then define the following map (note that it is defined for α ∈ R and not for α ∈ T)

Φ L : R × R 2 → R × R 2 (α, u, v) → (α, L cos α, L sin α) + u β(α) + v ν(α).
Lemma 4.1. The map Φ L is injective on R × DL and, if L ≤ 1/2, on T × D1/2 ; it induces a map, still denoted

Φ L , from T × R 2 into T × R 2 . Moreover, det Jac(Φ L ) = 1 + L(L -u) √ 1 + L 2 .
Proof of Lemma 4.1. In view of the expression of the Frenet basis, for (α, u, v) ∈ R × DL and

x ∈ R × R 2 , Φ L (α, u, v) = x if and only if      α + Lv √ 1+L 2 = x 1 , L cos α -u cos α + v √ 1+L 2 sin α = x 2 , L sin α -u sin α -v √ 1+L 2 cos α = x 3 . (126)
For (u, v) ∈ DL , we have Lu ≥ 0, thus we may write

L -u, v √ 1 + L 2 = ρ(cos ϕ, sin ϕ) (127)
for a ρ ≥ 0 and a phase ϕ ∈ [-π 2 , π 2 ], since Lu ≥ 0, well-defined except for (u, v) = (L, 0). Using cylindrical coordinates (x 1 , r, θ) with θ ∈ R for x, the two last equations in (126) become

ρ cos(α -ϕ) = x 2 = r cos θ ρ sin(α -ϕ) = x 3 = r sin θ, (128) 
which yields r = ρ and αϕ = θ mod 2π. ( 129)

Substituting ( 129) in the first equation in ( 126) yields

x 1 = α + Lr sin ϕ = α + Lr sin(α -θ). ( 130 
)
We conclude noticing that, for fixed (r, θ), the map

ψ → ψ + Lr sin(ψ -θ) (131) is smoothly increasing on the set ∪ k∈Z [θ -π 2 +2kπ, θ + π 2 +2kπ] (since sin is increasing on [-π 2 , π 2 
]), thus relations ( 129) and ( 130) define at most one couple (k, ϕ)

∈ Z × [-π 2 , π 2 ] such that, if α = θ + ϕ + 2kπ, then α + Lr sin ϕ = x 1 ,
which proves that Φ L is injective and concludes the proof in the first case.

For the second case, we may also write

(L -u, v √ 1+L 2 ) = ρ(cos ϕ, sin ϕ), but for (u, v) ∈ D1/2 now, we do not know that ϕ ∈ [-π 2 , π 2 ]
. However, we may use the fact that Lr ≤ √ 5/4 < 1. Indeed, if (u, v) ∈ D1/2 and L ≤ 1/2, we deduce from ( 127) and the equality r = ρ that

r 2 = ρ 2 = (L -u) 2 + v 2 1 + L 2 ≤ 1 + 1 4 = 5 4 , thus r ≤ √ 5 2 , which implies 0 ≤ Lr ≤ √ 5
4 < 1. Therefore, the map ( 131) writes Identity plus a perturbation whose lipschitz constant is < 1. Hence, it is a smooth increasing diffeomorphism from R onto R.

For the computation of the jacobian, it suffices to write

Jac(Φ L ) =    1 0 L √ 1+L 2 -(L -u) sin α + v √ 1+L 2 cos α -cos α sin α √ 1+L 2 (L -u) cos α + v √ 1+L 2 sin α -sin α -cos α √ 1+L 2    ,
and the computation of the determinant follows.

From its definition, it is then clear that Φ L is a diffeomorphism from T × DL onto the closed L-neighborhood (or 1/2-neighborhood if L ≤ 1/2) of H L in T × R 2 . For x in this neighborhood, the closest point of x on H L is the point (α, L cos α, L sin α) ∈ H L and (u, v) = dist(x, H L ). In particular, the projection of the nearest point onto H L is always well-defined in the 1/2-neighborhood of H L .

We then come back to the definition of the comparison map. For R > 0 and 0

< ε ≤ 1/4, we define w ε,R in the 1/2-neighborhood of H R , denoted H 1/2 R , by setting, with Φ -1 R (x) = (α, u, v), w ε,R (x) := ε -1 (u + iv) if (u, v) ≤ ε, u+iv |u+iv| if ε ≤ (u, v) ≤ 1/2,
which is the usual test function constructed with the projection on the orthogonal plane to the curve H R . The function w ε,R has therefore a degree one around H R , and is of modulus one in H

1/2 R \ H ε R . We also define w ε,R outside T × D L+2 by w ε,R (x) := e iθ if L + 2 ≤ r ≤ n.
We are then just left with defining

w ε,R on T × D L+2 \ H 1/2
R , which is done in the following lemma.

Lemma 4.2. For 0 ≤ R ≤ L + 1 and 0 < ε ≤ 1/4, the map w ε,R , defined on

T × ∂D L+2 ∪ H 1/2 R , admits an (helicoidally symmetric) extension to T × D L+2 \ H 1/2 R , still denoted w ε,R , S 1 -valued and having an energy ≤ C L on T × D L+2 \ H 1/2 R .
Proof of Lemma 4.2. The proof of Lemma 4.2 follows the one of Theorem I.3 in chapter I of [START_REF] Bethuel | Ginzburg-Landau vortices[END_REF], therefore, we only sketch the proof. The energy of the extension is related to the energy of the solution of the elliptic problem for the (closed) 2-form Ψ ε , where h denotes the restriction of w ε,R to ∂H

1/2 R (i.e. h = u+iv |u+iv| ),          -∆Ψ ε = 0 in T × D L+2 \ H1/2 R , (d * Ψ ε ) = h × dh on ∂H 1/2 R , (d * Ψ ε ) = (dθ) on T × ∂D L+2 , (Ψ ε ) = 0 on T × ∂D L+2 ∪ ∂H 1/2
R . Since (dθ) and h × dh are uniformly bounded, we infer

∇Ψ ε L 2 (T×D L+2 \ H1/2 R ) ≤ C L .
The conclusion then follows as in [START_REF] Bethuel | Ginzburg-Landau vortices[END_REF], since the capacity of

H 1/2 R in T × D L+2 is ≤ C L for R ≤ L + 1.
The following lemma summarizes the estimates concerning the energy and momentum of w ε,R .

Lemma 4.3. For 0 < ε ≤ 1/4, n ∈ N and 0 < ε ≤ R ≤ L + 1 < L + 2 ≤ n, the following inequalities hold for a constant C L depending only on L and a function ρ such that |ρ(s

)| ≤ C L s for all 0 ≤ s ≤ 1. (i) 1 4ε 2 Ωn (1 -|w ε,R | 2 ) 2 ≤ C L , (ii) 1 2 Ωn |∇w ε,R | 2 ≤ 2π 2 log n + 2π 2 √ 1 + R 2 |log ε| + C L , (iii) Ωn (iw ε,R , ∂ 1 w ε,R ) = 2π 2 R 2 1 + ρ( ε R ) .
To prove the upper bound ( 19), note that in view of (iii), since L > 0, there exists for ε sufficiently small (ε

< L) R = R(ε) such that p(w ε,R ) = 2π 2 L 2 and |R(ε) -L| ≤ C L ε.
Hence, this w ε,R(ε) satisfies, by (i) and (ii), which proves (19). We turn now to the proof of Lemma 4.3.

E ε (w ε,R(ε) ) ≤ 2π 2 log n + 2π 2 1 + R(ε) 2 |log ε| + C L + C L R(ε) ≤ 2π 2 log n + 2π 2 1 + L 2 |log ε| + C L ,

Estimates for the comparison map

Here, we prove the estimates of Lemma 4.3 for the energy and the momentum of the map w ε,R .

Proof of (i) (the potential term). By construction, w ε,R is of modulus 1 outside H ε R , and ≤ 1 in

H ε R which is of measure ≤ C L ε 2 . Therefore, Ωn (1 -|w ε,R | 2 ) 2 4ε 2 = H ε R (1 -|w ε,R | 2 ) 2 4ε 2 ≤ C L ,
which is (i).

We will use during the proof the estimate

|∇w ε,R | ≤ C L ε , valid in H 1/4
R . This estimate is due to the definition of w ε,R there, namely w ε,R = ε -1 (u + iv), and the fact that Φ R is uniformly lipschitz for 0 ≤ R ≤ L + 1. Indeed, from the computations of Lemma 4.1, the first column of Jac(

Φ R ) has a norm 1 + (R -u) 2 + v 2 /(1 + R 2 ) = 1 + r 2 ≤ C L , the two last columns have a norm 1 and (either R -u ≥ 0 and R ≤ L + 1, either R ≤ ε ≤ 1/4 and |R -u| ≤ 1/2) det Jac(Φ R ) = 1 + R(R -u) √ 1 + R 2 ≥ C -1 L .
Proof of (ii) (the gradient term). First, since

w ε,R = e iθ if r ≥ L + 2, we have |∇w ε,R | 2 = r -2 for r ≥ L + 2, thus 1 2 L+2≤r≤n |∇w ε,R | 2 = 2π 2 n L+2 dr r = 2π 2 log n L + 2 ≤ 2π 2 log n. (132) 
In order to estimate the gradient on

H ε R , we just write |∇w ε,R | ≤ C L ε , hence integrating on H ε R which is of measure ≤ C L ε 2 , we have H ε R |∇w ε,R | 2 ≤ C L . (133) 
Furthermore, by definition, we have

|∇w ε,R | 2 = 1 (u,v) 2 on H 1/2 R \H ε R thus, integrating, using the change of variables x = Φ R (α, u, v) (for which Jac(Φ R ) = 1+R(R-u) √ 1+R 2 ≥ 0) and passing to polar coordinates (u, v) (ρ, ϕ) yields 1 2 H 1/2 R \H ε R |∇w ε,R | 2 = π √ 1 + R 2 1/2 ε 2π 0 (1 + R(R -ρ cos ϕ))dϕ dρ ρ = 2π 2 1 + R 2 1/2 ε dρ ρ ≤ 2π 2 1 + R 2 |log ε|. (134) 
We conclude the proof of (i) combining Lemma 4.2, (132), ( 133) and (134).

Proof of (iii) (the momentum). For the momentum, we integrate by parts, to obtain 127) and (129), we have

p(w ε,R ) = Ωn Jw ε,R , ξ = H ε R Jw ε,R , ξ , since, outside H ε R , w ε,R is lipschitz and of modulus 1 (if 1 ≤ i < j ≤ 3, the two partial derivatives ∂ x i w ε,R and ∂ x j w ε,R are both tangent to S 1 ⊂ C at the point w ε,R ∈ S 1 thus are colinear and then Jw ε,R = 0). We then write ξ = x 2 dx 1 ∧ dx 2 + x 3 dx 1 ∧ dx 3 = rdx 1 ∧ dr, so that Jw ε,R , ξ = r∂ 1 w ε,R × ∂ r w ε,R . From (
u = R -r cos ϕ and v = 1 + R 2 r sin ϕ, (135) 
which yields

∂u ∂x 1 = r sin ϕ ∂ϕ ∂x 1 , ∂v ∂x 1 = 1 + R 2 r cos ϕ ∂ϕ ∂x 1 , (136) 
∂u ∂r = -cos ϕ + r sin ϕ ∂ϕ ∂r , ∂v ∂r = 1 + R 2 r cos ϕ ∂ϕ ∂r + 1 + R 2 sin ϕ. (137) 
In view of ( 129 

Combining relations ( 136), ( 137), ( 138) and ( 139), we deduce, by ( 135) and recalling Ru ≥ 0,

∂ϕ ∂x 1 = (1 + R(R -u)) -1 and ∂ϕ ∂r = -(R sin ϕ)(1 + R(R -u)) -1
and therefore

∂u ∂x 1 = v(1 + R 2 ) -1/2 (1 + R(R -u)) -1 , ∂v ∂x 1 = 1 + R 2 (R -u)(1 + R(R -u)) -1 , r ∂u ∂r = -(R -u) - Rv 2 1 + R 2 (1 + R(R -u)) -1 , r ∂v ∂r = v(1 + R(R -u)) -1 .
We thus infer that, since

w ε,R = ε -1 (u + iv) in H ε R , Jw ε,R , ξ = r∂ 1 w ε,R × ∂ r w ε,R = ε -2 ∂u ∂x 1 r ∂v ∂r - ∂v ∂x 1 r ∂u ∂r = ε -2 (1 + R 2 ) -1/2 (1 + R(R -u)) -2 v 2 + (R -u) Rv 2 + (1 + R 2 )(R -u)(1 + R(R -u)) .
Next, we integrate and successively use the change of variables x = Φ R (α, u, v) (we have computed its jacobian det Jac(Φ R ) = (1 + R 2 ) -1/2 (1 + R(Ru)) in Lemma 4.1) and use polar coordinates (u, v) (ερ, ψ) to obtain, with δ := ε/R,

p(w ε,R ) = 2π 1 + R 2 2π 0 1 0 (1 + R 2 (1 -ρδ cos ψ)) -1 R 2 δ 2 ρ 2 sin 2 ψ +R(1-δρ cos ψ) R 3 δ 2 ρ 2 sin 2 ψ +R(1+R 2 )(1-δρ cos ψ)(1+R 2 (1-δρ cos ψ)) ρ dρdψ.
To conclude the proof of (iii), we notice that the integrand is a smooth function in the variables

(δ, R, ρ, ψ) in [0, 1] × [0, L + 1] × [0, 1] × [0, 2π] since there 1 + R 2 (1 -ρδ cos ψ) ≥ 1,

and the integral has value for

δ = 0 2π 1 + R 2 2π 0 1 0 (1 + R 2 ) -1 (R 2 (1 + R 2 ) 2 )ρ dρdψ = 2π 2 R 2 .
Hence there exists ρ :

[0, 1] → R, such that |ρ(s)| ≤ C L s for s ∈ [0, 1], and for 0 < ε ≤ R ≤ L + 1 p(w ε,R ) = 2π 2 R 2 1 + ρ( ε R )
which is (iii).

A preliminary result

In this subsection, we present a preliminary result concerning a lower bound for the Ginzburg-Landau functional taking into account the degree at infinity. These lower bounds, as in [START_REF] Sandier | Lower bounds for the energy of unit vector fields and applications[END_REF] (see also [J2]), will provide directly the desired result (compare with Theorem 3 in [START_REF] Sandier | Lower bounds for the energy of unit vector fields and applications[END_REF]). Comparing with [J2], it has the advantage of separating the energies of the modulus and of the phase globally in Ω n , which is crucial for our problem. We consider a lipschitz map

w : T × D n → C
satisfying w = g = e iθ on T × ∂D n . We follow very closely the lines of [START_REF] Sandier | Lower bounds for the energy of unit vector fields and applications[END_REF]. We will need to extend w on a larger domain. In view of the boundary condition, it is natural to extend w by setting

w := e iθ in T × (D 3n \ D n ).
The energy of the new w is then the old one plus π log 3n n = π log 3. We recall the definition of the radius from [START_REF] Sandier | Lower bounds for the energy of unit vector fields and applications[END_REF] (in our context). Let K ⊂ R 2 be compact. We define the radius |K| of K by

|K| := inf n i=1 r i , n ∈ N, a i ∈ R 2 , K ⊂ ∪ n i=1 D(a i , r i ) .
We will make use of the following Proposition taken from [START_REF] Sandier | Lower bounds for the energy of unit vector fields and applications[END_REF].

Proposition 4.1. Assume Ω ⊂ R 2 is a bounded open set and ω ⊂ Ω is compact at distance greater than 2ρ > 0 from ∂Ω. Then, for any v : Ω \ ω → S 1 ⊂ C having degree d ∈ Z on ∂Ω, 1 2 Ω\ω |∇v| 2 ≥ π|d| log ρ |ω| .
For the extended map w, we will have Ω = D 3n , ρ = n and d = 1, and we deduce the following corollary.

Corollary 4.1. Let ω ⊂ Dn be compact and v :

D n \ ω → S 1 ⊂ C such that v(z) = z/|z| = e iθ on ∂D n , then 1 2 Dn\ω |∇v| 2 ≥ π log n |ω| -π log 3.
We deduce from Corollary 4.1 the main lower bound for a map having a degree one at infinity.

Lemma 4.4. Let H ⊂ Dn be compact and w : T × D n → C be a lipschitz map such that w = e iθ on T × ∂D n . Then, there exists C, independent of 0 < ε ≤ 1/2, n ∈ N * and H, such that

1 2 T×(Dn\H) |∇ 2,3 w| 2 + (1 -|w| 2 ) 2 2ε 2 ≥ 2π 2 log n + 2π 2 (1 -t 2 * )|log ε| -2π 2 t 2 * log(|H|) -C, with t * := 1 + πε 2 √ 2|H| 2 - πε 2 √ 2|H| ∈ [0, 1]
and the convention that

t * = t 2 * log(|H|) = 0 if |H| = 0.
Notations: We will use the following notations. For t ≥ 0 and a ∈ T, set

Ω a t := {y ∈ D n \ H, |w(a, y)| > t}, ω a t := {y ∈ D n \ H, |w(a, y)| ≤ t}, w a := w(a, .), γ a t := ∂Ω a t \ ∂D n = ∂ω a t and E a ε (w) := 1 2 {a}×(Dn\H) |∇ 2,3 w a | 2 + (1 -|w a | 2 ) 2 2ε 2 .
For a ∈ T and t ≥ 0, consider the functions

Θ a (t) := 1 2 Ω a t ∇ w a |w a | 2 dy and ν a (t) := γ a t ∇|w a | dH 1 .
Proof of Lemma 4.4. First, we fix a ∈ T. Since w a is lipschitz, the coarea formula gives

E a ε (w) = 1 2 +∞ 0 γ a t ∇|w a | + (1 -t 2 ) 2 2ε 2 ∇|w a | dH 1 -2t 2 (Θ a ) (t) dt.
By Cauchy-Schwarz inequality,

γ a t 1 ∇|w a | dH 1 ≥ H 1 (γ a t ) 2 ν a (t)
and from the definition of the radius,

H 1 (γ a t ) ≥ 2diam(γ a t ) ≥ 4|ω a t |, since if u, v ∈ γ a t are such that diam(γ a t ) = |u -v|, then ω a t ⊂ D((u + v)/2, |u -v|/2) and therefore |ω a t | ≤ |u -v|/2 = diam(γ a t )/2. It follows from the inequality (a 2 + b 2 )/2 ≥ ab that E a ε (w) ≥ 1 2 +∞ 0 ν a (t) + 8(1 -t 2 ) 2 |ω a t | 2 ε 2 ν a (t) dt - +∞ 0 t 2 (Θ a ) (t) dt ≥ +∞ 0 2 √ 2 ε |1 -t 2 | • |ω a t | dt - +∞ 0 t 2 (Θ a ) (t) dt.
We integrate by parts the last term. Since w is lipschitz, Θ a has compact support in R + and is locally lipschitz on R * + (note that Θ a (0) = +∞). Since Θ a ≥ 0 and -(Θ a ) ≥ 0, we have by monotone convergence

- +∞ 0 t 2 (Θ a ) (t) dt = lim η→0 - +∞ η t 2 (Θ a ) (t) dt = lim η→0 2 +∞ η tΘ a (t) dt + η 2 Θ a (η) ≥ lim η→0 2 1 η tΘ a (t) dt = 2 1 0 tΘ a (t) dt. From Corollary 4.1, we know that Θ a (t) ≥ -π log |ω a t ∪ H| n -π log 3, (140) 
hence, since

|ω a t ∪ H| ≤ |ω a t | + |H|, E a ε (w) ≥ 1 0 2 √ 2 ε (1 -t 2 )|ω a t | -2tπ log |ω a t | + |H| n dt -C.
Next, we notice that, for fixed ε > 0, t ∈ (0, 1), the function f (r

) := 2 √ 2ε -1 (1 -t 2 )r -2tπ log r+|H| n , defined for r > -|H| has a minimum for r = r * := 2 -1/2 πεt(1 -t 2 ) -1 -|H| (note that r * > -|H|), but it can occur that r * < 0. If r * ≥ 0, then 2 √ 2 ε (1 -t 2 )|ω a t | -2tπ log |ω a t | + |H| n = f (|ω a t |) ≥ f (r * ) ≥ -2tπ log πtε n √ 2(1 -t 2 ) ,
and if r * < 0, f is increasing on R + and then

2 √ 2 ε (1 -t 2 )|ω a t | -2tπ log |ω a t | + |H| n = f (|ω a t |) ≥ f (0) = -2tπ log |H| n .
Moreover, we have r * ≥ 0 if and only if t ≥ t * , thus

E a ε (w) ≥ t * 0 + 1 t * 2 √ 2 ε (1 -t 2 )|ω a t | -2tπ log |ω a t | + |H| n dt -C ≥ t * 0 -2tπ log |H| n dt - 1 t * 2tπ log πtε n √ 2(1 -t 2 ) dt -C ≥ πt 2 * log n |H| + π(1 -t 2 * ) log n ε -C since t → t log t(1 -t 2 ) -1 ∈ L 1 (0, 1
). The conclusion follows integrating in a ∈ T.

Proof of Proposition 2 completed

We are now in position to complete the proof of Proposition 2. We are just left with the (important) inequality ( 20). We will follow closely the lines of the proof of Theorem 3 in [START_REF] Sandier | Lower bounds for the energy of unit vector fields and applications[END_REF]. We also denote, for the lipschitz map u = u ε,n : T × D n → C having boundary condition u = e iθ on T × ∂D n and for a ∈ T,

T a := - +∞ 0 t 2 (Θ a ) (t) dt, N a := 1 2 Dn ∇ 2,3 |u a | 2 + (1 -|u a | 2 ) 2 2ε 2 dx 2 dx 3 , T a := 1 0 2tΘ a (t) dt, I a := 1 0 2 √ 2 ε |ω a t |(1 -t 2 ) dt and J a := 1 0 2tπ log n |ω a t | dt -C.
From the proof of Lemma 4.4 with H = ∅ (so t 2 * log(|H|) = 0 and r * ≥ 0), we know that for any a ∈ T,

J a ≤ T a ≤ T a , I a ≤ N a and T (I a + T a ) da ≥ T (I a + J a ) da ≥ 2π 2 log n ε -C. (141) 
Moreover, we have by the upper bound (19)

E ε (u) = T (T a + N a ) da + 1 2 Ωn |∂ 1 u| 2 ≤ 2π 2 log n + 2π 2 1 + L 2 |log ε| + C L . (142) 
Writing 1 = 1 0 2t dt, we deduce from (141) that for a ∈ T

T a -π log n ε ≥ J a -π log n ε 1 0 2t dt = 1 0 2tπ log ε |ω a t | dt -C,
and since t → log(1 -t 2 ) ∈ L 1 (0, 1), T a -π log n ε ≥ -π 1 0 2t log 2 √ 2 ε |ω a t |(1 -t 2 ) dt -C.
By Jensen inequality applied with the concave function log and the interval [0, 1] with measure 2t dt (hence the total mass of [0, 1] is 1),

1 0 2t log 2 √ 2 ε |ω a t |(1 -t 2 ) dt ≤ log 1 0 4t √ 2 ε |ω a t |(1 -t 2 ) dt ≤ log 1 0 2 √ 2 ε |ω a t |(1 -t 2 ) dt + log 2.
We therefore deduce

T a -π log n ε ≥ -π log 1 0 2 √ 2 ε |ω a t |(1 -t 2 ) dt -C = -π log I a -C.
Adding N a , with (141), integrating for a ∈ T and using (142), we infer

2π 2 log n + 2π 2 1 + L 2 |log ε| + C L ≥ 1 2 Ωn |∂ 1 u| 2 + T (T a + N a ) da ≥ 1 2 Ωn |∂ 1 u| 2 dx + 2π 2 log n ε + T (N a -π log N a ) da -C,
and thus

1 2 Ωn |∂ 1 u| 2 + T (N a -π log N a ) da ≤ C L |log ε| + C L .
We then use Jensen inequality with log again but on T with measure da/(2π) to obtain

T log N a da = 2π T log N a da 2π ≤ 2π log T N a da 2π = 2π log T N a da + C, which implies 1 2 Ωn |∂ 1 u| 2 + T N a da -2π 2 log T N a da ≤ C L |log ε| + C L ,
from which we easily deduce

1 2 Ωn |∂ 1 u| 2 + T N a da ≤ C L |log ε|. (143) 
Estimate (20) comes from ( 143) and ( 141).

5 Proofs of Lemmas 2 and 3

Proof of Lemma 2

We recall that Lemma 2 states that the two expressions integrated in the momentum of u ε,n and v ε,n are close (nearly in L 1 (Ω n )). From ( 19) and Lemma 2.1, we know that

E ε (v ε,n ) + Ωn |ũ -v ε,n | 2 2ε ≤ I n ε ≤ 2π 2 log n + 2π 2 1 + L 2 |log ε| + C L . (144) 
Since v ε,n is lipschitz and has value g = e iθ on T × ∂D n we may apply the arguments of subsection 4.4 to v ε,n and obtain first the following lemma.

Lemma 5.1. The map v ε,n satisfies, ω a t being defined for v ε,n ,

Ωn |∂ 1 v ε,n | 2 + 1 2ε 2 (1 -|v ε,n | 2 ) 2 + |v ε,n -ũ| 2 ε ≤ C L |log ε|, (145) 
T 1 0 ε -1 |ω a t |(1 -t 2 ) dtda ≤ C L |log ε|. ( 146 
)
The proof is the same as for Lemma 4.4, just replace ( 142) by ( 144). Estimate ( 146) is then deduced as (143) and will be used in the proof of Corollary 1. We can therefore prove Lemma 2.

Proof of Lemma 2. Let B ⊂ D n be a measurable set. In view of the periodicity in the x 1 variable, integration by parts yields

T×B (iv ε,n , ∂ 1 v ε,n ) - T×B (iũ, ∂ 1 ũ) = T×B (i(v ε,n -ũ), ∂ 1 (v ε,n + ũ)).
Thus, by ,

T×B (iv ε,n , ∂ 1 v ε,n ) - T×B (iũ, ∂ 1 ũ) ≤ T×B |ũ -v ε,n |(|∂ 1 ũ| + |∂ 1 v ε,n |) ≤ √ 2 T×B |ũ -v ε,n | 2 1 2 T×B |∂ 1 ũ| 2 + |∂ 1 v ε,n | 2 1 2 ≤ C L √ ε|log ε|. ( 147 
)
We estimate similarly, since |∂ 1 ũ| ≤ |∂ 1 u ε,n | and using (20),

T×B (iũ, ∂ 1 ũ) - T×B (iu ε,n , ∂ 1 u ε,n ) ≤ T×B |u ε,n -ũ|(|∂ 1 ũ| + |∂ 1 u ε,n |) ≤ 2 T×B |ũ -u ε,n | 2 1 2 T×B |∂ 1 u ε,n | 2 1 2 = 2 (T×B)∩{|u|>1} (1 -|u| 2 ) 2 1 2 T×B |∂ 1 u ε,n | 2 1 2 ≤ C L ε|log ε|. ( 148 
)
Combining estimates ( 147) and ( 148) yields the result.

Proof of Lemma 3 : rough localization of the singular set

In this subsection, we prove Lemma 3 concerning the rough location of the singular set of v ε,n , defined by S := {|v ε,n | ≤ 1/2}. We will make use of the following trivial observation.

Lemma 5.2. Let (D i ) i∈I be a finite collection of closed disks in R 2 of radii r i . Then, there exists a finite collection of pairwise disjoint closed disks ( Dj ) j∈J in R 2 of radii rj such that

∪ i∈I D i ⊂ ∪ j∈J Dj , the sets ({i ∈ I, D i ⊂ Dj }) j∈J induce a partition of I, j∈J rj ≤ i∈I r i
and J ≤ I with strict inequality unless (D i ) i∈I is pairwise disjoint.

Proof of Lemma 5.2. If D i ∩ D j = ∅ for i, j ∈ I, i = j, then we replace them by a disk D of radius r such that D i ∪ D j ⊂ D and r ≤ r i + r j , and then delete the disks D k ⊂ D (k ∈ I, k = i, j); we repeat this until the collection is pairwise disjoint, which occurs in a finite number of steps since I is finite.

Proof of Lemma 3. In order to locate the singular set S := {|v ε,n | ≤ 1/2} of v ε,n , we consider the covering of S by the balls B(x, 5ε/(4C 0 )), x ∈ S (where C 0 is the constant in Lemma 2.1). By the Vitali´s covering theorem, there exists an at most countable family (a i ) i∈I in S such that

S ⊂ ∪ i∈I B(a i , 5ε/(4C 0 ))
and

B(a i , ε/(4C 0 )) ∩ B(a j , ε/(4C 0 )) = ∅ if i = j.
The question is then to determine a bound for I. To that aim, from (146) in Lemma 5.1

T 1 0 ε -1 |ω a t |(1 -t 2 ) dtda ≤ C L |log ε|,
there exists, by the mean-value formula, τ * ∈ [3/4, 1] such that

T |ω a τ * | da ≤ C L ε|log ε|. (149) 
For each i ∈ I, we have

|v ε,n (a i )| ≤ 1/2, so, since |∇v ε,n | ≤ C 0 /ε, B(a i , ε/(4C 0 )) ⊂ {|v ε,n | ≤ 3/4}. Hence, if |a -a 1 i | ≤ ε/(4C 0 ) (where a i = (a 1 i , a 2 i , a 3 i ) and |.| denotes the distance in R/(2πZ)), D (a 2 i , a 3 i ), (ε/(4C 0 )) 2 -|a -a 1 i | 2 ⊂ {|v ε,n (a, .)| ≤ 3/4} ⊂ ω a τ *
and since the balls B(a i , ε/(4C 0 )) are pairwise disjoint, we deduce

|ω a τ * | ≥ i∈I χ {|a-a 1 i |≤ε/(4C 0 )} (ε/(4C 0 )) 2 -|a -a 1 i | 2 ,
where χ stands for the characteristic function. Integrating for a ∈ T yields

T |ω a τ * | da ≥ i∈I T χ {|a-a 1 i |≤ε/(4C 0 )} (ε/(4C 0 )) 2 -|a -a 1 i | 2 da.
By periodicity, all the integrals are equal and have value (for ε/(4C 0 ) < π)

ε/(4C 0 ) -ε/(4C 0 ) (ε/(4C 0 )) 2 -t 2 dt = (ε/(4C 0 )) 2 1 -1 1 -t 2 dt = ε 2 C 0 , thus T |ω a τ * | da ≥ Iε 2 C 0 .
Comparing with (149), we obtain the upper bound

I ≤ C L |log ε| ε . (150) 
Applying Lemma 5.2 to the family of closed disks ( D(a i , 5ε/(4C 0 ))) i∈I , there exists a family of closed pairwise disjoint disks ( D(b j , r j )) j∈J such that

J ≤ I ≤ C L |log ε| ε , ∪ i∈I D(a i , 5ε/(4C 0 )) ⊂ ∪ j∈J D(b j , r j )
and, by (150), j∈J

r j ≤ i∈I 5ε/(4C 0 ) = I × 5ε/(4C 0 ) ≤ C L |log ε|. (151) 
By construction, we have therefore localized S in disjoint closed cylinders :

S = {|v ε,n | ≤ 1/2} ⊂ • ∪ j∈J C(b j , r j ), (152) 
which concludes the proof of Lemma 3.

6 Proofs of Proposition 3, Corollary 1 and Lemma 5

6.1 Proof of Proposition 3 : the speed is bounded

We give here the proof of Proposition 3 : the speed c ε,n is bounded for 0 < ε < ε 0 (L) and n ≥ C L |log ε| 2 . We first recall the Besicovitch Covering Theorem.

Theorem 5. Let E be a subset of R N and let r : E → R be a positive bounded function defined on E.

Then one can choose an at most countable family of points (x i ) i∈I in E such that Strategy of the proof of Proposition 3. The proof is based on Pohozaev identity (Step 1). The question is then to find a cylinder (or more) such that the momentum is large enough on this cylinder (Step 2) and Č(a,R) Ju ε,n , ξ is close to the momentum on this cylinder. This introduces boundary terms when integrating by parts, that we will have to control (Step 4). We have also to bound the right-hand side of the Pohozaev identity. We can not use a too large cylinder (or too many) since the energy diverges as n → +∞. We will then have to bound the energy in some "small" cylinders (Step 5) : the lower bound given in Lemma 4.4 will be useful here. The estimates for the boundary terms will be established through an averaging argument, thus we will need to dilate a little the cylinder(s), and then to choose a suitable radius (Step 6). To conclude, note that one cylinder will not be enough and thus we will be compelled to work with many of them. In order to control the overlapping of these cylinders, we will make use of the Besicovitch Theorem.

(i) E ⊂ ∪ i∈I B(x i , r(x i )), ( 
Step 1: Pohozaev type identity. The following Pohozaev type identity holds for the solution u ε,n of (9). Let C(a, R) be a cylinder, with a ∈ D n and R > 0, then

Č(a,R) |∂ 1 u ε,n | 2 + (1 -|u ε,n | 2 ) 2 2ε 2 dx - c ε,n 2 |log ε| Č(a,R) Ju ε,n , ξ = 1 2 T×∂(D(a,R)∩Dn ) ((x 2 , x 3 ) -a) • ν |∇ u ε,n | 2 - ∂u ε,n ∂ν 2 + (1 -|u ε,n | 2 ) 2 2ε 2 . ( 153 
)
For the proof, multiply, as for Pohozaev identity, the equation by x 2 ∂ 2 u ε,n + x 3 ∂ 3 u ε,n and integrate by parts over Č(a, R) (note that we do not need an identification R/(2πZ) [0, 2π) since the Pohozaev multiplier is 2π-periodic in the x 1 variable).

Step 2: Localizing the momentum of v ε,n . We now estimate the contribution outside the cylinders ( C(b j , r j )) j∈J given by Lemma 3 for the integral for the momentum of v ε,n . We claim that,

for any measurable set ω ⊂ G := D n \ • ∪ j∈J D(b j , r j ), we have ω (iv ε,n , ∂ 1 v ε,n ) dx ≤ C L ε|log ε|, for n ≥ C L |log ε|, with C L depending only on L.
First, notice that since the closed disks ( D(b j , r j )) j∈J are pairwise disjoint, for 0 < ε < ε 0 (L) and n ≥ (C L + 1)|log ε| (C L being the one in ( 151)),

G = D n \ • ∪ j∈J D(b j , r j ) is connected. Hence, since |v ε,n | ≥ 1/2 outside Ω n \ • ∪ j∈J C(b j , r j ), for every y ∈ G, v ε,n (., y) |v ε,n (., y)| : T → S 1
has a degree 0. Indeed, there exists at least one point, denoted y * , in ∂D n \

• ∪ j∈J D(b j , r j ), for otherwise, since the disks are pairwise disjoint, r j ≥ n for at least one j ∈ J, which contradicts ( 151 

where ρ(., y) ≥ 1/2 and ϕ(., y) ∈ R are lipschitz maps defined on T (the periodicity of ϕ comes from the fact that it has degree 0). We can not write (154) in the whole Ω n \

• ∪ j∈J C(b j , r j ) since v ε,n is expected to have a non-zero degree around (at least) one cylinder (in the (x 2 , x 3 ) variables). Let ,y) dx 1 dy (since ϕ(., y) is well-defined on the torus, i.e. 2π-periodic). Hence, by Cauchy-Schwarz and ( 145)

ω ⊂ G = D n \ • ∪ j∈J D(b j , r j ) be measurable. Since (iv ε,n (., y), ∂ 1 v ε,n (., y)) = ρ(., y) 2 ∂ 1 ϕ(., y) for y ∈ ω, it follows that T×ω (iv ε,n , ∂ 1 v ε,n ) dx = ω T ρ(., y) 2 ∂ 1 ϕ(., y) dx 1 dy = ω T ρ(., y) 2 -1 ∂ 1 ϕ(.
T×ω (iv ε,n , ∂ 1 v ε,n ) dx ≤ 8ε T×ω (1 -|v ε,n | 2 ) 2 4ε 2 1/2 T×ω |∂ 1 v ε,n | 2 1/2 ≤ C L ε|log ε|,
which concludes the proof of the claim.

Step 3: Going back to the Pohozaev identity. We infer from the Pohozaev identity of Step 1

|c ε,n | • q l=1 ω l λ Ju ε,n , ξ ≤ C L + 2ζ |log ε| d dλ j∈J Č(b j ,λr j ) e ε (u ε,n ) + C L ∂Ωn e ε (u ε,n ). ( 155 
)
We apply the Besicovitch Covering Theorem to the family ( D(b j , 3r j )) j∈J . It provides us a partition (J l ) 1≤l≤q of J ⊂ J, with q ≤ ζ (ζ being an absolute integer), such that

∪ j∈J D(b j , 3r j ) ⊂ ∪ j∈ J D(b j , 3r j ) (156) 
and for 1 ≤ l ≤ q, the disks D(b j , 3r j ), j ∈ J l , are pairwise disjoint. Next, for every 1 ≤ λ ≤ 3, we apply Step 1 on each C(b j , λr j ) and deduce by summing over j ∈ J l (since the disks D(b j , λr j ), j ∈ J l , are pairwise disjoint for 1 ≤ λ ≤ 3 and 1 ≤ l ≤ q) that, denoting ω l λ := ∪ j∈J l D(b j , λr j ),

c ε,n |log ε| q l=1 ω l λ Ju ε,n , ξ = 2 q l=1 ω l λ |∂ 1 u ε,n | 2 + (1 -|u ε,n | 2 ) 2 2ε 2 dx - q l=1 j∈J l ∂ Č(b j ,λr j ) ((x 2 , x 3 ) -b j ) • ν |∇ u ε,n | 2 - ∂u ε,n ∂ν 2 + (1 -|u ε,n | 2 ) 2 2ε 2 . ( 157 
)
Since q ≤ ζ, we deduce from (20) that the first sum in the right-hand side of (157) satisfies

2 q l=1 ω l λ |∂ 1 u ε,n | 2 + (1 -|u ε,n | 2 ) 2 2ε 2 dx ≤ 2q ∪ j∈J D(b j ,3r j ) |∂ 1 u ε,n | 2 + (1 -|u ε,n | 2 ) 2 2ε 2 dx ≤ 2ζC L |log ε|. ( 158 
)
Concerning the last sum in (157), we note that, there, |((x 2 , x 3 )b j ) • ν| ≤ r j and

|∇ u ε,n | 2 - ∂u ε,n ∂ν 2 + (1 -|u ε,n | 2 ) 2 2ε 2 ≤ 2e ε (u ε,n ),
thus, since the disks D(b j , λr j ), j ∈ J l , are pairwise disjoint for 1 ≤ l ≤ q and 1 ≤ λ ≤ 3,

q l=1 j∈J l ∂ Č(b j ,λr j ) ((x 2 , x 3 ) -b j ) • ν |∇ u ε,n | 2 - ∂u ε,n ∂ν 2 + (1 -|u ε,n | 2 ) 2 2ε 2 ≤ 2ζ j∈J r j ∂ Č(b j ,λr j ) e ε (u ε,n ) ≤ 2ζ d dλ j∈J Č(b j ,λr j ) e ε (u ε,n ) + 2ζ j∈J r j ∂Ωn∩C(b j ,λr j ) e ε (u ε,n ) ≤ 2ζ d dλ j∈J Č(b j ,λr j ) e ε (u ε,n ) + C L |log ε| ∂Ωn e ε (u ε,n ) (159) 
by ( 151). Combining ( 158) and ( 159) with ( 157), we are led to (155).

Step 4: Control for the momentum and the boundary terms. We prove that

q l=1 ω l λ Ju ε,n , ξ ≥ q l=1 ω l λ \G (iu ε,n , ∂ 1 u ε,n ) -C L ε|log ε| -4 √ ε d dλ j∈J Č(b j ,λr j ) f ε (160) 
and

n T×∂Dn e ε (u ε,n ) ≤ C L |log ε| + C L |c ε,n | • |log ε|. (161) 
First, note that integration by parts yields

Č(b j ,λr j ) Ju ε,n , ξ = Č(b j ,λr j ) (iu ε,n , ∂ 1 u ε,n ) - 1 2 T×∂(D(b j ,λr j )∩Dn) ((x 2 , x 3 ) -b j ) • ν(iu ε,n , ∂ 1 u ε,n ),
and therefore (the disks D(b j , λr j ), j ∈ J l , are pairwise disjoint for 1 ≤ λ ≤ 3 and 1

≤ l ≤ q) q l=1 ω l λ Ju ε,n , ξ ≥ q l=1 ω l λ (iu ε,n , ∂ 1 u ε,n ) - 1 2 q l=1 j∈J l ∂ Č(b j ,λr j ) ((x 2 , x 3 ) -b j ) • ν(iu ε,n , ∂ 1 u ε,n ) . (162) 
As in the proof of Lemma 2, we have

∂ Č(b j ,λr j ) ((x 2 , x 3 ) -b j ) • ν (iu ε,n , ∂ 1 u ε,n ) - ∂ Č(b j ,λr j ) ((x 2 , x 3 ) -b j ) • ν (iũ, ∂ 1 ũ) (163) = ∂ Č(b j ,λr j ) ((x 2 , x 3 ) -b j ) • ν(i(u ε,n -ũ), ∂ 1 (u ε,n + ũ)) ≤ εr j ∂ Č(b j ,λr j ) f ε = ε d dλ Č(b j ,λr j ) f ε ,
where

f ε := |∂ 1 u ε,n | 2 + |∂ 1 v ε,n | 2 + (1 -|u ε,n | 2 ) 2 2ε 2 + (1 -|v ε,n | 2 ) 2 2ε 2 + |v ε,n -ũ| 2 ε ,
since by definition of g, f ε = 0 on ∂Ω n , and similarly

∂ Č(b j ,λr j ) ((x 2 , x 3 ) -b j ) • ν(iũ, ∂ 1 ũ) - ∂ Č(b j ,λr j ) ((x 2 , x 3 ) -b j ) • ν(iv ε,n , ∂ 1 v ε,n ) ≤ √ εr j ∂ Č(b j ,λr j ) f ε = √ ε d dλ Č(b j ,λr j ) f ε . (164) 
Moreover, we also have (since |v ε,n | ≥ 1/2 on ∂ Č(b j , λr j ), we may write v ε,n (., y) = ρ(., y)e iϕ(.,y) on T for y ∈ ∂ Ď(b j , λr j ) and for a lipschitz ϕ, x 1 -periodic), as in Step 2, by Cauchy-Schwarz and ( 145)

∂ Č(b j ,λr j ) ((x 2 , x 3 ) -b j ) • ν (iv ε,n , ∂ 1 v ε,n ) = ∂(D(b j ,λr j )∩Dn) T ρ 2 (., y)∂ 1 ϕ(., y) dx 1 dy = ε ∂(D(b j ,λr j )∩Dn) T (ρ 2 (., y) -1) ε ∂ 1 ϕ(., y) dx 1 dy ≤ 2ε d dλ Č(b j ,λr j ) f ε . (165) 
Combining inequalities ( 163), ( 164) and ( 165) with ( 162) implies

q l=1 ω l λ Ju ε,n , ξ ≥ q l=1 ω l λ (iu ε,n , ∂ 1 u ε,n ) -4 √ ε d dλ j∈J Č(b j ,λr j ) f ε . (166) 
Next, notice that

q l=1 ω l λ (iu ε,n , ∂ 1 u ε,n ) ≥ q l=1 ω l λ \G (iu ε,n , ∂ 1 u ε,n ) - q l=1 ω l λ ∩G (iu ε,n , ∂ 1 u ε,n ) , (167) 
where, we recall, G = D n \

• ∪ j∈J D(b j , r j ) is the set where the momentum is 0. From Step 2 with

ω := ω l λ \ ∪ j∈J D(b j , r j ) ⊂ G for 1 ≤ l ≤ q, we have ω l λ \G (iu ε,n , ∂ 1 u ε,n ) ≤ C L ε|log ε|, thus summing these inequalities for 1 ≤ l ≤ q ≤ ζ yields q l=1 ω l λ \G (iu ε,n , ∂ 1 u ε,n ) ≤ C L ζε|log ε|. (168) 
Combining ( 166), ( 167) and ( 168) gives (160).

Concerning the boundary energy, we know that u ε,n = g = e iθ on ∂Ω n , so |∇ g| 2 = n -2 and

2 ∂Ωn e ε (u ε,n ) = ∂Ωn 1 n 2 + ∂u ε,n ∂ν 2 = 4π 2 n + ∂Ωn ∂u ε,n ∂ν 2 . ( 169 
)
Next, by the Pohozaev identity of Step 1 on Ω

n = C n (0) (recalling p(u ε,n ) = Ωn Ju ε,n , ξ = 2π 2 L 2 ) Ωn |∂ 1 u ε,n | 2 + (1 -|u ε,n | 2 ) 2 2ε 2 dx -π 2 L 2 c ε,n |log ε| = 2π 2 - n 2 T×∂Dn ∂u ε,n ∂ν 2 . (170) 
From ( 20), ( 169) and ( 170), we infer (161).

Step 5: Upper bound for the energy on the cylinders. We claim that

E ε (u ε,n , ∪ j∈J Č(b j , 3r j )) ≤ C L |log ε|. (171) 
Applying Lemma 4.4 with H = Dn ∩ ∪ j∈J D(b j , 3r j ) yields

1 2 T×(Dn\H) |∇ 2,3 u ε,n | 2 + (1 -|u ε,n | 2 ) 2 2ε 2 ≥ 2π 2 log n + 2π 2 (1 -t 2 * )|log ε| -2π 2 t 2 * log(|H|) -C,
where C is independent of ε, n and H and t

* := 1 + πε 2 √ 2|H| 2 -πε 2 √ 2|H| ∈ [0, 1]. We then infer E ε (u ε,n , Ω n \ ∪ j∈J ∪ j∈J Č(b j , 3r j )) ≥ 2π 2 log n -2π 2 log(|log ε|) -C, since from (151), we have |H| ≤ 3 j∈J r j ≤ C L |log ε|,
and (171) follows from (19).

Step 6: Choice of λ. Notice that, since

G = D n \ ∪ j∈J D(b j , r j ), ω l λ \ G = ∪ j∈J l D(b j , r j ).
Hence, the disks D(b j , r j ) for j ∈ J being mutually disjoint,

q l=1 T×ω l λ \G (iu ε,n , ∂ 1 u ε,n ) = ∪ j∈ J Č(b j ,r j ) (iu ε,n , ∂ 1 u ε,n ).
Moreover, in view of the constraint p(u ε,n ) = 2π 2 L 2 , Lemma 2 and Step 2 with ω = G, we have, denoting J 0 := J \ J,

∪ j∈ J D(b j ,r j ) (iu ε,n , ∂ 1 u ε,n ) + ∪ j∈J 0 D(b j ,r j ) (iu ε,n , ∂ 1 u ε,n ) = ∪ j∈J D(b j ,r j ) (iu ε,n , ∂ 1 u ε,n ) ≥ 2π 2 L 2 -C L ε|log ε| ≥ π 2 L 2 > 0, (172) 
for ε > 0 sufficiently small. Assume

∪ j∈ J D(b j ,r j ) (iu ε,n , ∂ 1 u ε,n ) ≥ 1 2 π 2 L 2 > 0, (173) 
then (160) rewrites

q l=1 ω l λ Ju ε,n , ξ ≥ 1 2 π 2 L 2 -C L ε|log ε| - √ ε d dλ j∈J Č(b j ,λr j ) f ε . (174) 
Now, we choose λ ∈ [1, 3]. From ( 20) and ( 145), we know that

3 1 d dλ j∈J Č(b j ,λr j ) f ε dλ ≤ ζ ∪ j∈J Č(b j ,3r j ) f ε ≤ ζC L |log ε|. (175) 54 
Moreover, by

Step 5, we have

3 1 d dλ j∈J Č(b j ,λr j ) e ε (u ε,n ) dλ ≤ ζ ∪ j∈J Č(b j ,3r j ) e ε (u ε,n ) ≤ C L |log ε|. (176) 
Combining ( 175) and ( 176) and the mean-value formula, we deduce that there exists λ ∈ [1, 3] (depending on ε, n and L) such that

d dλ j∈J Č(b j ,λr j ) f ε + d dλ j∈J Č(b j ,λr j ) e ε (u ε,n ) ≤ C L |log ε|. (177) 
In particular, for ε > 0 sufficiently small, (174) implies

q l=1 ω l λ Ju ε,n , ξ ≥ 1 4 π 2 L 2 . ( 178 
)
Inserting ( 161), ( 174) and ( 178) into (155) yields

π 2 L 2 4 |c ε,n | ≤ |c ε,n | • q l=1 ω l λ Ju ε,n , ξ ≤ C L + C L |log ε| n (1 + |c ε,n |). ( 179 
) If n ≥ C L |log ε| 2 and ε is small enough so that C L |log ε| n ≤ 1 8 π 2 L 2 , then π 2 L 2 4 |c ε,n | ≤ C L + 1 8 π 2 L 2 |c ε,n |,
which yields the desired estimate (for L > 0)

|c ε,n | ≤ K(L)
in the case where (173) is satisfied. If it is not, from (172), we deduce that therefore

∪ j∈J 0 D(b j ,r j ) (iu ε,n , ∂ 1 u ε,n ) ≥ 1 2 π 2 L 2 > 0, (180) 
which means that the cylinders Č(b j , r j ) for j ∈ J 0 concentrate a "good part" of the momentum. We may then "forget" the other cylinders and argue as previously (Steps 2, 3 and 4) with the new collection of disks (D(b j , 3r j )) j∈J 0 instead of (D(b j , 3r j )) j∈J . Indeed, when we have applied the Besicovitch Theorem, we have obtained a partition (J l ), 1 ≤ l ≤ q, of J such that

∪ j∈J D(b j , 3r j ) ⊂ ∪ j∈ J D(b j , 3r j ). Since ∪ j∈J D(b j , r j ) ⊂ ∪ j∈J D(b j , 3r j ) ⊂ ∪ j∈ J D(b j , 3r j ), this induces a partition of J 0 in J l 0 := {j ∈ J 0 , D(b j , r j ) ⊂ ∪ j∈J l D(b j , 3r j )}
for 1 ≤ l ≤ q ≤ ζ such that the disks D(b j , 3r j ), j ∈ J l 0 , are mutually disjoint. We follow then Steps 2, 3 and 4 with this collection satisfying (180) and with controlled overlapping. The proof of Proposition 3 is then complete.

Proof of Corollary 1 : fine localization of the singular set

We now apply the arguments used in subsection 5.2 for the (rough) location of the singular set of v ε,n to u ε,n . This enables us to exhibit a family of cylinders, for which the sum of the radii is not too large, and that concentrate the |log ε| term of the energy.

First, we apply the results of the previous subsection 5.2 to u ε,n . This is possible since it uses the upper bounds ( 19) and ( 20), together with the estimate on the gradient (4)

|∇u ε,n | ≤ C L ε .
The consequence is that there exists a family of disks (D(b j , r j )) j∈J such that

J ≤ C L |log ε| ε , j∈J r j ≤ C L |log ε|, (181) 
S n ε ⊂ ∪ j∈J Č(b j , r j ) and E ε (u ε,n , ∪ j∈J Č(b j , r j )) ≤ C L |log ε|. (182) 
We may therefore apply the Clearing-Out result of Theorem 4 to assert the existence of R 0 > 0 and η > 0 (independent of ε, n ≥ C L |log ε| 2 and of the b j 's and r j 's) such that for each x ∈ S n ε ,

E ε (u ε,n , B(x, R 0 ) ∩ Ω n ) ≥ η|log ε|. (183) 
Applying Lemma 4.4 with

H = ∪ j∈J Ď(b j , r j + R 0 ), we obtain 1 2 T×(Dn\H) |∇u ε,n | 2 + (1 -|u ε,n | 2 ) 2 2ε 2 ≥ 2π 2 log n + 2π 2 (1 -t 2 * )|log ε| -2π 2 t 2 * log(|H|) -C,
for C independent of ε, n and H and t * ∈ [0, 1]. By (181), |H| ≤ |log ε| ε , thus, using ( 19),

E ε (u ε,n , ∪ j∈J Č(b j , r j + R 0 )) ≤ C L |log ε|. (184) 
Therefore, S n ε being covered by the balls B(y, 5R 0 ), y ∈ S n ε , it follows from Vitali's covering theorem that there exists an at most countable family of points (y i ) i∈I in S n ε such that

S n ε ⊂ ∪ i∈I B(y i , 5R 0 )
and the balls B(y i , R 0 ) are mutually disjoint. As a consequence, from ( 183) and ( 184), we deduce

I ≤ C L η := l. (185) 
We then proceed as in Step 1 of the proof of Theorem 4 in [BOS] (Appendix C) to conclude to the existence of cylinders

C(a i , R 0 ) (1 ≤ i ≤ q ≤ l) (with a different R 0 than before) such that S n ε ⊂ ∪ q i=1 C(a i , R 0 )
and the cylinders C(a i , 8R 0 ) are mutually disjoint. We are then left with (27). We apply Lemma 4.4 with H = Dn ∩ ∪ q i=1 D(a i , R 0 ), as for (184), to deduce

E ε (u ε,n , T × (D n \ H)) ≥ 2π 2 log n -C L , since, by (185), |H| ≤ qR 0 ≤ lR 0 ≤ C L .
This implies ( 28) by ( 19). The proof of Corollary 1 is complete.

Proof of Lemma 5 : defining the limiting current

The proof follows the one of Lemma 5 in [BOS]. Arguing as in Lemma 3.3 of [BOS], we have the following lemma.

Lemma 6.1. Let M 0 > 0 and R > 0 and X :

= {u ∈ H 1 (C 4R , C), |u| ≥ 1/2 in C 4R \ C R }.
Then, for any δ > 0, there exists ε 0 = ε 0 (M 0 , R, δ) > 0 such that for any 0 < ε < ε 0 and any u ∈ X satisfying E ε (u) ≤ M 0 |log ε|, there exists a 1-dimensional integral current T without boundary supported in C R such that

Ju -πT [C 0,1 c (C 4R )] * ≤ δ and M(T ) ≤ E ε (u) π|log ε| + δ.
Proof of Lemma 5. First, we extend ũε,n by e iθ outside Ω n . The energy of the extension on C(a i , 8R 0 ) \ C(a i , R 0 ) is less than or equal to 2π 2 log( n+8R 0 n ) ≤ C L . We then apply Lemma 6.1 to this extension of ũε,n on each cylinder C(a i , 4R 0 ). This provides us, for 0 < ε < ε 0 (L) sufficiently small a 1-dimensional integral current T without boundary supported in C(a i , R 0 ) such that

J ũε,n -πT i [C 0,1 c (C(a i ,4R 0 )] * ≤ r(ε) and M(T i ) ≤ E ε (u ε,n , C(a i , 4R 0 )) π|log ε| + r(ε).
We let T := q i=1 T i . Then, we have

M(T ) ≤ E ε (u ε,n , ∪ q i=1 C(a i , 4R 0 )) π|log ε| + r(ε),
which is iii), and i) follows easily. We are then left with ii). For 1

≤ i ≤ q, let ξ i : C(a i , 2R 0 ) → Λ 2 R 3 be a smooth map compactly supported such that ξ i ≡ (a i ) 2 dx 1 ∧ dx 2 + (a i ) 3 dx 1 ∧ dx 3 in C(a i , R 0 ) and ξ i L ∞ (C(a i ,2R 0 )) ≤ C L . Then, since J ũε,n and T ε,n are supported in ∪ q i=1 C(a i , R 0 ), we infer from the equality p(u ε,n ) = Ωn Ju ε,n , ξ that p(u ε,n ) -F(T ε,n ) ≤ Ωn Ju ε,n -J ũε,n , ξ + q i=1 C(a i ,2R 0 ) J ũε,n -πT ε,n , ξ . (186) 
For the second term, we write, by construction of ξ i ,

q i=1 C(a i ,2R 0 ) J ũε,n -πT i , ξ ≤ q i=1 C(a i ,2R 0 ) J ũε,n -πT i , ξ -ξ i ≤ qC L r(ε) = r(ε), (187) 
since ξ -ξ i C 0,1 c (C(a i ,2R 0 )) ≤ C L (but ξ C 0,1 c (C(a i ,2R 0 
)) → +∞ if a i → +∞ as n → +∞) and q ≤ l. Concerning the first term, we integrate by parts (note that u ε,n = ũε,n = g = e iθ on ∂Ω n ) to obtain

Ωn Ju ε,n -J ũε,n , ξ = Ωn (iu ε,n , ∂ 1 u ε,n ) -(iũ ε,n , ∂ 1 ũε,n ) . ( 188 
)
It suffices then to write that, by Cauchy-Schwarz,

{|uε,n|≤1/2} (iu ε,n , ∂ 1 u ε,n ) -(iũ ε,n , ∂ 1 ũε,n ) ≤ 3 {|uε,n|≤1/2} (iu ε,n , ∂ 1 u ε,n ) ≤ C L |{|u ε,n | ≤ 1/2}| 1/2 Ωn |∂ 1 u ε,n | 2 1/2 (189) ≤ C L ε Ωn (1 -|u ε,n | 2 ) 2 2ε 2 1/2 Ωn |∂ 1 u ε,n | 2 1/2 = r(ε)
by ( 20). Also, still by (20), {|uε,n|>1/2}

(iu ε,n , ∂ 1 u ε,n ) -(iũ ε,n , ∂ 1 ũε,n ) ≤ C L {|uε,n|>1/2} 1 - 1 |u ε,n | 2 • (iu ε,n , ∂ 1 u ε,n ) (190) ≤ C L ε Ωn (1 -|u ε,n | 2 ) 2 2ε 2 1/2 Ωn |∂ 1 u ε,n | 2 1/2 = r(ε).
Combining ( 187), ( 188), ( 189), ( 190) with (186) gives ii). We emphasize however that i) is stated with J ũε,n and not Ju ε,n , since we do not know yet that these two jacobians are close globally in Ω n (compare with Lemma 3.1 in [BOS]) since we do not have a bound E ε (u ε,n ) ≤ M 0 |log ε|. However, since u ε,n satisfies the local bound (28), we deduce (29) from Lemma 3.1 in [BOS].

7 Proof of Proposition 4 : the current tends to the helix

The proof of Proposition 4, where we prove that the integral current T ε,n is supported in a single cylinder and tends, up to a translation, to the helix H L , is divided in several steps.

Step 1: We prove that T ε,n is close to an helix.

Lemma 7.1. For every sequence ε j and n j ≥ C L |log ε j | 2 , there exists a subsequence, still denoted ε j and n j , and a translation τ j in T × R 2 such that

τ j (T ε j ,n j ) → H L in [C 0,1 c (T × R 2 )] * as j → +∞.
Proof of Lemma 7.1. We first note that, by Lemma 5, T ε,n is without boundary and satisfies

M(T ε,n ) ≤ 2π 1 + L 2 + r(ε) and |F(T ε,n ) -2π 2 L 2 | ≤ r(ε). (191) 
Therefore, from [F] (Theorem 4.2.17), there exists, up to a possible subsequence, a translation τ j in T × R 2 and a 1-dimensional integral current T , without boundary, such that τ j (T ε j ,n j ) → T in [C 0,1 c (T × R 2 )] * as j → +∞.

Passing to the limit in (191) yields

M(T ) ≤ 2π 1 + L 2 and F(T ) = 2π 2 L 2 .
Moreover, in view of the boundary condition, J ũε,n , dx 2 ∧ dx 3 = 2π. Since J ũε,n is supported in the cylinders Č(a i , R 0 ) for 1 ≤ i ≤ q ≤ l (l being independent of ε and n) with the cylinders Č(a i , 8R 0 ) mutually disjoint, we can construct a 2-form ζ in T × R 2 (depending on the cylinders C(a i , R 0 ), 1 ≤ i ≤ q) such that ζ is supported in the cylinders C(a i , 3R 0 ), 1 ≤ i ≤ q, ζ = dx 2 ∧ dx 3 in the cylinders C(a i , 2R 0 ), 1 ≤ i ≤ q, and ζ C 0,1 c (T×R 2 ) ≤ C L . Thus, by Lemma 5 i), We may now apply Lemma 6 to obtain the existence of a translation t in T × R 2 such that t(T ) = H L , and the proof of Lemma 7.1 is complete by replacing τ j by t • τ j .

From now on, we work for any sequence ε j , n j ≥ C L |log ε j | 2 . From Step 1, we have extracted a subsequence, still denoted ε j , n j .

Step 2: We then prove (30), that is there exist R 0 > 0, depending only on L, and a ∈ T × R 2 , depending on ε j and n j , such that Supp(T ε j ,n j ) ⊂ C(a, R 0 ). We proceed as in the proof of Lemma 6 in [BOS], arguing by contradiction. By Step 1, (up to a subsequence) we have τ j (T ε j ,n j ) → H L in [C 0,1 c (T × R 2 )] * as j → +∞.

Let a := τ -1 j (0). We may assume, relabelling the a i 's if necessary, that a ∈ C(a 1 , R 0 ). If, for some 1 < i 0 ≤ q, S n j ε j ∩ C(a i 0 , 8R 0 ) = ∅, then by Step 1, Theorem 4 with σ = 1/2 and Lemma 5 iii), by (27) in Corollary 1. This is a contradiction.

M(H L ) ≤ lim inf j→+∞ E ε j (u ε j ,n j , C(a 1 , 8R 0 )) π|log ε j | and 0 < η σ=1/2 ≤ lim inf j→+∞ E ε j (u ε j ,n j , C(a i 0 , 8R 0 )) π|log ε j | , thus M(H L ) + η = 2π 1 + L 2 + η ≤ lim inf j→+∞ E ε j (u ε j ,n j , ∪ q i=1 C(a i , 8R 0 )) π|log ε j | ≤ 2π 1 + L 2 ,
Up to a translation of vector e 1 a 1 , we may assume that a = a(ε j , n j ) = (0, b), b ∈ D n , and, τ -b denoting the translation of vector -a, τ -b T ε j ,n j → H L .

Step 3: We prove (31) and (32), that is E ε j (u ε j ,n j , Č(a, R 0 )) = 2π 2 √ 1 + L 2 |log ε j | + r(ε j )|log ε j |, E ε j (u ε j ,n j , Ω n j \ Č(a, R 0 )) = 2π 2 log n j + r(ε j )|log ε j |.

We first note that from (27) in Corollary 1, the upper bound E ε j (u ε j ,n j , Č(a, R 0 )) ≤ 2π 2 1 + L 2 |log ε j | + C L holds. The lower bound will be a consequence of the isoperimetric type inequality. Indeed, denoting R ε j ,n j the orthogonal projection of T ε j ,n j on the plane (x 2 , x 3 ) and T 1 ε j ,n j the projection on the x 1 -axis, we have from claim ( 202)

M(T ε j ,n j ) ≥ M(R ε j ,n j ) 2 + M(T 1 ε j ,n j ) 2 .
Arguing as for Lemma 6 and using Lemma 5, we deduce M(T ε j ,n j ) ≥ 2π 1 + L 2r(ε j ).

Using iii) in Lemma 5, we have the lower bound

E ε j (u ε j ,n j , Č(a, R 0 )) ≥ 2π 2 1 + L 2 |log ε j | -r(ε j )|log ε j |,
which finishes the proof of (31). We then infer (32) from (19).

Step 4: We prove that

d||J * || dµ * = 1 µ * -a.e., (192) 
where J * and µ * are weak limits (up to another subsequence) of the (translated) jacobian τ -a Ju ε j ,n j and the energy measure τ -a µ ε j = e ε j (u ε j ,n j )(a + .) dx |log ε j | on C R 0 ∩ C n (-b).

In fact, we already know from [JS] and [ABO] that d J * dµ * ≤ 1 µ * -a.e.. From Step 1, τ -a Ju ε j ,n j → H L in [C 0,1 c (T × R 2 )] * as j → +∞, thus, using Lemma 5 iii), we infer

J * = M(H L ) = 2π 1 + L 2 .
Moreover, from Step 3, we have

µ * ≤ 2π 1 + L 2 .
Combining these two relations, we are led to the conclusion.

Step 5: We prove

c ε j ,n j = 1 √ 1 + L 2 + r(ε j ). ( 193 
)
This relies on the study of the limit equation for the curvature of the singular set given after Theorem 3 in [BOS]. Indeed, applying Theorem 3 in [BOS] for the solution u ε j ,n j (a + .) on the domain C R 0 ∩ C n (-b), which satisfies the bound (27), we obtain that the varifold V = V (Σ µ * , Θ * ) satisfies the equation

H(x) = c e 1 ∧ dJ * dµ * ,
where, we recall, H is the generalized mean curvature of V , refers to Hodge duality, c is a limit of c ε j ,n j (bounded sequence in view of (25)), J * is a weak limit of τ -a Ju ε j ,n j , µ * a weak limit of τ -a µ ε j ,n j and dJ * dµ * is the Radon-Nikodym derivative. In fact, it is easy to see that, even though we have a domain depending on j, the equation is valid in the limiting domain (which is the intersection of a cylinder and a half-plane). From Step 4, we know that d J * dµ * = 1 µ * -a.e. in Σ µ * , thus (see Remark 5 in [BOS]) V is a smooth curve and the curvature equation rewrites

κ = c e 1 × τ , ( 194 
)
where τ is the unit tangent vector and κ := d τ ds the curvature vector. From Step 1, the curve is the helix H L , for which τ (θ) = (1 + L 2 ) -1/2 (1, -L sin θ, L cos θ) and ds = √ 1 + L 2 dθ, thus In view of the uniqueness of the possible limit, we have proved the assertions for all 0 < ε < ε 0 sufficiently small and n ≥ C L |log ε| 2 .

8 Proofs of Lemmas 1 and 6

In this Section, we give the proofs of the auxiliary Lemma 1, stating that the vector field v behaves like e θ r at infinity, and Lemma 6, which exhibits the helix as the unique solution, up to a translation, of an isoperimetric type problem.

Proof of Lemma 1 : behaviour of v at infinity

We recall that Lemma 1 states that v -e θ r ∈ L 2 (T × {r ≥ L + 1}). First, we consider the case L = 0, for which we denote the vector field v 0 , that is the vortex is the straight line T × {0}. In this case, the Biot-Savart law (11) gives

v 0 := 1 2 +∞ -∞
(xϕ e 1 ) × e 1 ||xϕ e 1 || 3 dϕ.

We will denote (x 1 , r, θ) the cylindrical coordinates for x and ( e 1 , e r , e θ ) the corresponding basis, and (x 1 , ρ, ϕ) will be the cylindrical coordinates for γ(ϕ) and ( e 1 , e ρ , e ϕ ) will be the corresponding basis. Since x × e 1 = r e θ , we have (writing t = tan α, α ∈ (-π/2, π/2) for the last integral)

v 0 = r e θ 2 +∞ -∞ dϕ ((x 1 -ϕ) 2 + r 2 ) 3/2 = e θ 2r +∞ -∞ dt (1 + t 2 ) 3/2 = e θ r .
For the general case, recalling γ(ϕ) = (ϕ, L cos ϕ, L sin ϕ) = ϕ e 1 + L e ρ , we first compute (1 + t 2 ) 3/2 dt.

We then note that e ϕ (ϕ) = - (198)

The case of the other term is similar. We have therefore proved that, for r ≥ L + 1,

v = v 0 + O(r -2 ) = e θ r + O(r -2 ),
which concludes since r -2 ∈ L 2 (T × {r ≥ L + 1}).

Proof of Lemma 6 : the isoperimetric type problem

Lemma 6 is the isoperimetric type problem. To prove this Lemma, we proceed as in the proof of Theorem 3.2.27 in [F]. We consider R the orthogonal projection of T on the plane (x 2 , x 3 ) and T 1 on the x 1 axis. Since T has no boundary, neither has R. The current R is therefore compactly supported (since T is), has finite mass (since T has), without boundary and is in R 2 , thus, there exists a 2 dimensional integral current S such that R = ∂S (this was not true for T since T × R 2 has the homotopy type of the circle: for instance, T × {0} is not a boundary in T × R 2 ). Choosing S such that (this is possible by [F], theorem 4.2.17) M(S) = inf{M(S ), ∂S = R}, the following isoperimetric inequality holds (see [A]) On the other hand, we claim that

M(S) ≤ M(R) 2 4π . ( 199 
M(T ) ≥ M(R) 2 + M(T 1 ) 2 . ( 202 
)
Proof of claim (202). We denote σ : Supp(T ) → N * the multiplicity of T . Following the proof of Theorem 3.2.27 in [F], we apply Lemma 3.2.25 in [F] to the rectifiable set T : it provides a H 1 Tmeasurable map ξ, with values in the simple 1-vectors of norm 1, such that, for H 1 T -a.e. x ∈ T , the subspace associated to ξ(x) is the tangent space to T at x. We decompose ξ ∈ Λ 1 R 3 R 3 as ξ = ξ 1 + ξ ,
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  sufficiently small. Let us fix R ∈ (0, 1) and a ∈ T × ( D1 \ {β * }), and denote B R (a) the ball in T × D1 of radius R centered at a. By (100), we have for n sufficiently large (depending on B R (a)), | ŵn | ≥ 1 2 in BR (a), so that we may write ŵn = ρ n e iϕn in BR (a), for a ϕ n such that 1 |B 7R/8 (a)| B 7R/8 (a)

  ii) the balls B(x i , 1 3 r(x i )) are mutually disjoint, (iii) the balls B(x i , r(x i )) i∈I can be distributed in at most ζ(N ) families of disjoint closed balls, with ζ(N ) depending only on N .

  ) if n ≥ (C L + 1)|log ε|. Consider y ∈ G. One can connect y to y * , which gives rise to an homotopy fromv ε,n (., y) |v ε,n (., y)| : T → S 1 to v ε,n (., y * ) |v ε,n (., y * )| : T → S 1 ,which is constant (of value y * |y * | ) in view of the boundary condition, and then has degree 0. Therefore, one may write for y ∈ G v ε,n (., y) = ρ(., y) exp(iϕ(., y))on T,

  2π = J ũε,n , dx 2 ∧ dx 3 = J ũε,n , ζ = T ε,n , ζ + r(ε) = T, ζ + r(ε), since ζ is uniformly bounded in C 0,1 c (T × R 2). Consequently, P r 1 (T ) = 2π.

  2 (0, cos θ, sin θ).Inserting this into (194) yields-L 1 + L 2 (0, cos θ, sin θ) = c e 1 × τ = -cL √ 1 + L 2 (0, cos θ, sin θ),from which we deduce the result c = 1 √ 1+L 2 .

  (xγ(ϕ)) × γ (ϕ) = (xϕ e 1 ) × e 1 + L(xϕ e 1 ) × e ϕ -L e ρ × e 1 -L 2 e ρ × e ϕ = (xϕ e 1 ) × e 1 + Lr e r × e ϕ -L(x 1ϕ) e ρ + L e ϕ -L 2 e 1 .From the Biot-Savart law (11), we deduce , for r ≥ L + 1 and denoting λ := ((x 1ϕ) 2 + r 2 ) 1/2 = ||xϕ e 1 ||, ||xγ(ϕ)|| -3 = λ -3 1 + O(λ -1 ) .(196)Moreover, from the inequality||xγ(ϕ)|| 2 ≥ (x 1ϕ) 2 + r 2 C ,valid for r ≥ L + 1 and C depending only on L, we deduce last two integrals in(195) are O(r -2 ) as r → +∞. Similarly,+∞ -∞ λ -4 dϕ ≤ Cr -3 .Inserting (196) and (197) into (195) yields for r → +∞ v = 1 2 +∞ -∞ (xϕ e 1 ) × e 1 ||xϕ e 1 || 3 dϕ + Lr 2 +∞ -∞ e r × e ϕ ||xϕ e 1 || 3 dϕ -L 2 +∞ -∞ (x 1ϕ) e ρ ||xϕ e 1 || 3 dϕ + O(r -2 ).The first term is v 0 = e θ r . For the first term, we set ϕx 1 = rt and obtain

  (x 1 + rt) (1 + t 2 ) 5/2 dt = O(r -2 ).

  )Moreover, by definition of R and integrating by parts,F(T ) = π T, ξ = π R, ξ = 2π S, dx 1 = 2π S, dx 2 ∧ dx 3 ,that is F(T ) is 2π times the flux of e 1 through S. Therefore, we have by (199)|F(T )| ≤ 2πM(S)

Combining ( 200), ( 201) with the values imposed F(T ) = 2π 2 L 2 and P r 1 (T ) = 2π, we obtain

and M(T 1 ) ≥ 2π, which implies, using (202),

which is the first assertion. If, moreover, we impose M(T

Therefore, equality holds everywhere, in particular in ( 200), ( 201), ( 203) and also

We then deduce, with the equality case in the isoperimetric inequality (199), that R is a circle of radius L that is, there exists an a ∈ R 2 such that (with the natural orientation of R 2 since F(T ) > 0) R = ∂D(a, L).

We then go back to the equality case in (203) to deduce that σ, ξ 1 and ξ are constant and, since P r 1 (T ) = 2π > 0, necessarily, σ ≡ 1, ξ 1 = c(1, 0, 0) and ξ = cL(cos(θθ 0 ), sin(θθ 0 )), for a θ 0 ∈ R and c = (1 + L 2 ) -1/2 , thus, there exists a rotation r of axis x 1 and angle θ 0 such that T = (0, a) + r( H L ).

Denoting τ the translation of vector (θ 0 , a) ∈ T × R 2 , then T = τ ( H L ), which ends the proof.