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Geometric optics and boundary layers

for Nonlinear-Schrödinger Equations.

D. Chiron, F. Rousset∗

Abstract

We justify supercritical geometric optics in small time for the defocusing semiclassical Non-
linear Schrödinger Equation for a large class of non-necessarily homogeneous nonlinearities. The
case of a half-space with Neumann boundary condition is also studied.

1 Introduction

We consider the nonlinear Schrödinger equation in Ω ⊂ R
d

iε
∂Ψε

∂t
+

ε2

2
∆Ψε − Ψεf(|Ψε|2) = 0, Ψε : R

+ × Ω → C (1)

with an highly oscillating initial datum under the form

Ψε
|t=0 = Ψε

0 = aε
0 exp

(

i

ε
ϕε

0

)

, (2)

where ϕε
0 is real-valued. We are interested in the semiclassical limit ε → 0. The nonlinear

Schrödinger equation (1) appears, for instance, in optics, and also as a model for Bose-Einstein
condensates, with f(ρ) = ρ − 1, and the equation is termed Gross-Pitaevskii equation, or also
with f(ρ) = ρ2 (see [13]). Some more complicated nonlinearities are also used especially in low
dimensions, see [12].

At first, let us focus on the case Ω = R
d. To guess the formal limit, when ε goes to zero, it is

classical to use the Madelung transform, i.e to seek for a solution of (1) under the form

Ψε =
√

ρε exp

(

i

ε
ϕε

)

.

By separating real and imaginary parts an by introducing uε ≡ ∇ϕε, this allows to rewrite (1) as
an hydrodynamical system















∂tρ
ε + ∇ ·

(

ρεuε
)

= 0

∂tu
ε +

(

uε · ∇
)

uε + ∇
(

f(ρε)
)

=
ε2

2
∇

(

∆
√

ρε

√
ρε

)

.

(3)
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The system (3) is a compressible Euler equation with an additional term in the right-hand side
called quantum pressure. As ε tends to 0, the quantum pressure is formally negligible and (3)
reduces to the (compressible) Euler equation







∂tρ + ∇ ·
(

ρu
)

= 0

∂tu +
(

u · ∇
)

u + ∇
(

f(ρ)
)

= 0.
(4)

The justification of this formal computation has received much interest recently. The case of analytic
data was solved in [7]. Then for data with Sobolev regularity and a defocusing nonlinearity, so that
(4) is hyperbolic, it was noticed by Grenier, [9], that it is more convenient to use the transformation

Ψε = aε exp
(

i
ϕε

ε

)

(5)

and to allow the amplitude aε to be complex. By using an identification between C and R
2, this

allows to rewrite (1) as










∂ta
ε + uε · ∇aε +

aε

2
∇ · uε =

ε

2
J ∆aε

∂tu
ε +

(

uε · ∇
)

uε + ∇
(

f(|aε|2)
)

= 0,

(6)

where J is the matrix of complex multiplication by i:

J =

(

0 −1
1 0

)

.

When ε = 0, we find the system










∂ta + u · ∇a +
a

2
∇ · u = 0

∂tu +
(

u · ∇
)

u + ∇
(

f(|a|2)
)

= 0,

(7)

which is another form of (4), since then (ρ ≡ |a|2, u) solves (4). The rigorous convergence of (6)
towards (7) provided the initial conditions suitably converge was rigorously performed by Grenier
[9] in the case f(ρ) = ρ (which corresponds to the cubic defocusing NLS). More precisely, it was
proven in [9] that there exists T > 0 independent of ε such that the solution of (6) is uniformly
bounded in Hs on [0, T ]. In terms of the unknown Ψε of (1), this gives that

sup
ε∈(0,1]

sup
[0,T ]

∣

∣

∣

∣Ψε exp
(

− i
ϕ

ε

)
∣

∣

∣

∣

Hs < +∞

for every s where (a, u = ∇ϕ) is the solution of (7). Furthermore, the justification of WKB
expansions under the form

Ψε −
(

m
∑

k=0

εkak
)

e
iϕ
ε = O(εm)e

iϕ
ε

for every m was performed in [9]. The main idea in the work of Grenier [9] is to use the symmetrizer

S ≡ diag
(

1, 1,
1

4f ′(|a|2) , · · · ,
1

4f ′(|a|2)
)
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of the hyperbolic system (7) to get Hs energy estimates which are uniform in ε for the singularly
perturbed system (6). The case of nonlinearities for which f ′ vanishes at zero (for instance the
case f(ρ) = ρ2) was left opened in [9]. The additional difficulty is that for such nonlinearities, the
system (7) is only weakly hyperbolic at a = 0 and in particular the symmetrizer S becomes singular
at a = 0.

In more recent works, see [19], [14], [1] it was proven that for every weak solution of (1) with
f(ρ) = ρ − 1 or f(ρ) = ρ, the limits as ε → 0

|Ψε|2 − ρ → 0 in L∞([0, T ], L2) εIm
(

Ψ̄ε∇Ψε
)

− ρu → 0 in L∞([0, T ], L1
loc) (8)

hold under some suitable assumption on the initial data. The approach used in these papers is
completely different, and relies on the modulated energy method introduced in [4]. The advantage
of this powerfull approach is that it allows to describe the limit of weak solutions and to handle
general nonlinearities once the existence of a global weak solution in the energy space for (1)
is known. Nevertheless, it does not give precise qualitative information on the solution of (1),
for example, it does not allow to prove that the solution remains smooth on an interval of time
independent of ε if the initial data are smooth or to justify WKB expansion up to arbitrary orders
in smooth norms.

In the work [2], the possibility of getting the same result as in [9] for pure power nonlinearities
f(ρ) = ρσ in the case Ω = R

d was studied. It was first noticed that, thanks to the result of [15],
the system







∂ta + ∇ϕ · ∇a +
a

2
∆ϕ = 0

∂tϕ +
1

2
|∇ϕ|2 + f(|a|2) = 0,

(9)

with the initial condition
(

a, ϕ
)

/t=0
=

(

a0, ϕ0

)

∈ H∞ has a unique smooth maximal solution

(a, ϕ) ∈ C
(

[0, T ∗[,Hs(Rd) × Hs−1(Rd)
)

for every s. It was then established:

Theorem 1 ([2]) Let d ≤ 3, σ ∈ N
∗ and initial data aε

0, ϕε
0 ≡ ϕ0 in H∞ such that, for some

functions (ϕ0, a0) ∈ H∞,
∣

∣

∣

∣aε
0 − a0

∣

∣

∣

∣

Hs = O(ε),

for every s ≥ 0. Then, there exists T ∗ > 0 such that (9) with f(ρ) = ρσ has a smooth maximal
solution (a, ϕ) ∈ C([0, T ∗[,H∞ × H∞). Moreover, there exists T ∈ (0, T ∗) independent of ε, such
that the solution of (1), (2) remains smooth on [0, T ] and verifies the estimate

sup
ε∈(0,1]

∣

∣

∣

∣Ψε exp
(

− i
ϕ

ε

)
∣

∣

∣

∣

L∞([0,T ],Hs)
< +∞, (10)

where

• if σ = 1, then s ∈ N is arbitrary,

• if σ = 2 and d = 1, then one can take s = 2,

• if σ = 2 and 2 ≤ d ≤ 3, then one can take s = 1,

• if σ ≥ 3 then one can take s = σ.
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As emphasized in [2], in some cases, the global existence of smooth solutions is already known
for (1). For example, in the quintic case, σ = 2, global existence is known for d ≤ 3 (see [6] for
the difficult critical case d = 3), so that only the bound (10) is interesting. Nevertheless, Theorem
1 may be also applied to cases where (1) is H1 super-critical (σ ≥ 3, d = 3 for example) and
hence the fact that it is possible to construct a smooth solution on a time interval independent of
ε is already interesting. The main ingredient used in [2] is a subtle transformation of (1) into a
perturbation of a quasilinear symmetric hyperbolic system with non smooth coefficients when σ ≥ 2.

The first aim of this paper is to prove that the estimate (10) holds true for every s, every
dimension d and every nonlinearity f which satisfies the following assumption:

(A) f ∈ C∞
(

[0,+∞)
)

, f(0) = 0, f ′ > 0 on (0,+∞), ∃n ∈ N
∗, f (n)(0) 6= 0.

Note that we allow f ′ to vanish at the origin. The assumption (A) takes into account in
particular all the homogeneous polynomial nonlinearities f(ρ) = ρσ but also nonlinearities under
the form f(ρ) = ρσ1 + ρσ2 or ρσ

1+ρ for example. Our result reads:

Theorem 2 We assume (A), and consider an initial data (2) with ϕε
0 real-valued, aε

0, ϕε
0 in H∞

such that, for some real-valued functions (ϕ0, a0) ∈ H∞, we have for every s,

∣

∣

∣

∣aε
0 − a0

∣

∣

∣

∣

Hs = O(ε) and
∣

∣

∣

∣ϕε
0 − ϕ0

∣

∣

∣

∣

Hs = O(ε).

Then, there exists T ∗ > 0 such that (7) with initial value (a0, ϕ0) has a unique smooth maximal
solution (a, ϕ) ∈ C([0, T ∗[,H∞ × H∞). Moreover, there exists T ∈ (0, T ∗] such that for every
ε ∈ (0, 1), the solution Ψε to (1)-(2) exists at least on [0, T ] and satisfies for every s

sup
ε∈(0,1]

∣

∣

∣

∣

∣

∣

∣

∣

Ψε exp
(

− i

ε
ϕ
)

∣

∣

∣

∣

∣

∣

∣

∣

L∞([0,T ],Hs)

< +∞.

More precisely, there exists ϕε = ϕ + OH∞(ε) such that, for every s,

∣

∣

∣

∣

∣

∣

∣

∣

Ψε exp
(

− i

ε
ϕε

)

− a

∣

∣

∣

∣

∣

∣

∣

∣

L∞([0,T ],Hs)

= O(ε). (11)

Let us give a few comments on the statement of Theorem 2.
At first, note that Theorem 2 contains a result of local existence of smooth solutions for (9)

in the case of non necessarily homogeneous nonlinearities satisfying (A). Since (a,∇ϕ) solves a
compressible type Euler equation, the case of a homogeneous nonlinearity was studied in [15], and
we thus give an extension of this result to smooth non-linearities satisfying assumption (A). A
precise statement of our result with the required regularity of the initial data is given in Theorem
4 below. The new difficulty when f is not homogeneous is that the nonlinear symmetrization does
not seem to allow to transform the problem into a classical symmetric or symmetrizable hyperbolic
system with smooth coefficients.

The correction of order ε that we have to add to the phase to get the estimate (11) is expected.
Indeed, a perturbation of order ε in the phase modifies the amplitude at the leading order.

Our approach to prove Theorem 2 is completely different from the one of [2] and [9]. We do not
work any more on the system (6) or any reformulation of (1) into a perturbation of a quasilinear
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symmetric hyperbolic system, but directly on the NLS equation (1). Basically, we first prove the
linear stability for (1) in arbitrary Sobolev norms of highly oscillating solution of the form aeiϕ/ε

and then use a fixed point argument to prove the nonlinear stability. The crucial estimate of linear
stability of highly oscillating solution is given in Lemma 1 and Theorem 3.

This actually allows to justify WKB expansions up to arbitrary orders (see Theorem 5). Since
we deal in this paper with sufficiently smooth and in particular bounded solutions, the assumption
(A) can be replaced by a local version where we assume that f ′ > 0 on (0, β) with β independent
of ε if the initial datum verifies |a0|2 < β. Indeed, since a0 takes it values in the (weak) hyperbolic
region of the limit system (7), there still exists a local smooth solution of (7) defined on [0, T ] for
some T > 0 and the stability argument leading to Theorem 2 still holds. Consequently, our result
can also be applied to nonlinearities like f(ρ) = ρσ1 − ρσ2 for every σ2 > σ1 provided |a0|2 ≤ β < 1.
Note that when σ2 is too large, the classical global existence result of weak solutions (see [8]) for
(1) is not valid and hence it does not seem possible to use the modulated energy method of [1], [14]
to investigate the semi-classical limit.

Finally, the last advantage of our approach is that it can be easily generalized to the case of a
domain with boundary and to non-zero condition at infinity. This will be the aim of the second
part of the paper. We shall restrict ourself to a physical case, the Gross-Pitaevskii equation, i.e.
f(ρ) = ρ − 1. The generalization to more general nonlinearities satisfying an assumption like (A)
is rather straightforward. This simplifying assumption is only made to avoid the multiplication of
difficulties. Again to avoid too many technicalities, we restrict ourselves to the simplest domain
Ω = R

d
+ = R

d−1 × (0,+∞). For x ∈ R
d
+, we shall use the notation x = (y, z), y ∈ R

d−1, z > 0. We
add to (1) the Neumann boundary condition

∂zΨ
ε(t, y, 0) = 0. (12)

We also impose the following condition at infinity

Ψε(t, x) ∼ exp
(

− i t
|u∞|2

2ε
+ i

u∞ · x
ε

)

, |x| → +∞, (13)

that we can write in hydrodynamical variables

∣

∣Ψε(t, x)
∣

∣

2 → 1, uε(t, x) → u∞, |x| → +∞,

where u∞ is a constant vector. This condition appears naturally when we study a moving obstacle
in the fluid. Indeed, if we start from (1) with the Neumann boundary condition on an obstacle
moving at constant velocity and fluid at rest at infinity, then we can use the Galilean invariance of
(1) to transform the problem into the study of (1) in a fixed domain but with the condition (13)
at infinity.

This problem with such boundary conditions is physically meaningfull since it can be used to
describe superfluids past an obstacle (we refer to [16] for example). The semiclassical limit ε tends
to zero was already studied in [14] by using the modulated energy method. The limit (8) was proven
with (ρ, u) the solution of the compressible Euler equation with boundary condition u ·n/∂Ω = 0, n
being the normal to the boundary. Note that the result of [14] is restricted to the two-dimensional
case only in order to have a global solution in the energy space of (1). By using more recent results
on the Cauchy problem, [3], one can also get the result in the three-dimensional case at least when
u∞ = 0. Our aim here is to give a more precise description of the convergence which takes into
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account boundary layers. More precisely, since the solution of the Euler system (9) cannot match
the Neumann boundary condition ∂za(t, y, 0) = 0, a boundary layer of weak amplitude ε and of

size ε appears. They are formally described for example in [16]. WKB expansions Ψε = aεei ϕε

ε are
thus to be seek under the form

aε = a0 +

m
∑

k=1

εk
(

ak(t, x) + Ak(t, y,
z

ε
)
)

, ϕε = ϕ0 +

m
∑

k=1

εk
(

ϕk(t, x) + Φk(t, y,
z

ε
)
)

(14)

where the profiles Ak(t, y, Z), Φk(t, y, Z) are exponentially decreasing in the Z variable and are
chosen such that

∂za
k(t, y, 0) + ∂ZAk+1(t, y, 0) = 0, ∂zϕ

k(t, y, 0) + ∂ZΦk+1(t, y, 0) = 0

so that the approximate WKB expansion ΨWKB = aε exp
(

i
εϕ

ε
)

matches the Neumann boundary
condition (12). Our result (Theorem 6) is that under suitable assumptions on the initial conditions,
we have the nonlinear stability of WKB expansions: in particular we have the existence of a smooth
solution for (1), (12), (13) on a time interval independent of ε and the estimate

∣

∣

∣

∣Ψεe−i ϕε

ε − aε
∣

∣

∣

∣

W 1,∞ . ε. (15)

Note that it is necessary to incorporate the boundary layer εA1 in order to get (15) since its gra-
dient has amplitude one in L∞. The case of Dirichlet boundary condition which is also physically
meaningfull, we again refer to [16], seems more complicated to handle as often in boundary layer
theory in fluid mechanics since the boundary layers involved have amplitude one. This is left for
future work.

The paper is organized as follows. In section 2, we prove the linear stability in Hs of an
approximate WKB solution of (1) under the form aε exp

(

iϕε

ε

)

in the case Ω = R
d. This is the

crucial part towards the proof of Theorem 2. Next in section 3, we give the construction of a
WKB expansion up to arbitrary order and give the proof of the local existence of smooth solution
for the compressible Euler equation with a pressure law satisfying (A). In section 4, we give the
justification of WKB expansions at every order and recover Theorem 2 as a particular case. This
part uses in a classical way the linear stability result and a fixed point argument. Finally, in section
5, we study the problem in the half-space with Neumann boundary condition.

2 Linear Stability

In this section, we consider a smooth WKB approximate solution Ψa = aε exp
(

iϕε

ε

)

of (1) such
that

NLS(Ψa) = Rε exp
(

i
ϕε

ε

)

, (16)

where

NLS(Ψ) ≡ iε∂tΨ +
ε2

2
∆Ψ − Ψf(|Ψ|2).

6



Moreover, we also set

Rϕ ≡ ∂tϕ
ε +

1

2
|∇ϕε|2 + f(|aε|2), (17)

Ra ≡ ∂ta
ε + ∇ϕε · ∇aε +

1

2
aε∆ϕε, (18)

so that

Rε = −aεRϕ + iεRa +
ε2

2
∆aε.

Looking for an exact solution of (1) under the form

Ψε = Ψa + w ei ϕε

ε = (aε + w)ei ϕε

ε ,

we find that w solves the nonlinear Schrödinger equation

iε
(

∂tw + uε · ∇w +
1

2
w∇ · uε

)

+
ε2

2
∆w − 2(w, aε)f ′(|aε|2)aε = Rϕw − Rε + Qε(w), (19)

where (·, ·) stands for the real scalar product in C ≃ R
2, with

uε ≡ ∇ϕε

and the nonlinear term Qε(w) is defined by

Qε(w) ≡ (aε + w)
(

f(|aε + w|2) − f(|aε|2)
)

− 2(w, aε)f ′(|aε|2)aε. (20)

Of course, Rε will be very small and Rϕ (and Ra) are to be thought small (at least O(ε)) for
applications to nonlinear stability results. Nevertheless, in this section the exact form of these
terms is not important. The way to construct an accurate WKB solution Ψa will be explained in
the next section.

Remark 1 If we work with a non-linearity f such that f(A2) = 0 for some A ∈ R, we can impose
a non-zero condition at infinity such as a0 ∈ A + H∞ and ∇ϕ0 ∈ U∞ + H∞ for some constant
vector U∞ ∈ R

d. Since we can still look for the perturbation w in Hs, this does not affect the
proofs.

Since we expect the correction term w to be small, we shall only consider in this section the
linearized equation

iε
∂w

∂t
+ Lε w = Rϕw + F ε, x ∈ R

d, (21)

where the linear operator Lε is defined as

Lε(w) ≡ ε2

2
∆w + iε uε · ∇w +

iε

2
w∇ · uε − 2f ′(|aε|2)(w, aε)aε.

In this section, F ε is considered as a given source term. Of course, for the proof of Theorem 2, we
shall apply the result of this section to

F ε = −Rε + Qε(w). (22)
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Furthermore, let us emphasize that at this stage, Rϕ is seen as a multiplicative operator with no
link with the vector field uε appearing in Lε, even though we will use this lemma with uε = ∇ϕε.
We notice that Lε is formally self-adjoint, but only the first and last term give rise to a nonnegative
quadratic functional. Indeed, the quadratic form (in H1) associated to the operator

Sε w ≡ −ε2

2
∆w + 2f ′(|aε|2)(w, aε)aε

is, since f ′ ≥ 0,
∫

Rd

(

w,Sε w
)

=
1

2

∫

Rd

ε2|∇w|2 + 4f ′(|aε|2)(w, aε)2 ≥ 0.

It is then natural to consider the (squared) norm

∫

Rd

(

w,Sε(w)
)

as a good energy for the linearized

equation (21). Consequently, we introduce the weighted norm

N ε(w) ≡ 1

2

∫

Rd

ε2|∇w|2 + 4f ′(|aε|2)(w, aε)2 + Kε2|w|2

for every K > 0 (K will be chosen sufficiently large only in the next subsection).
Our first result of this section is a linear stability result in the energy norm N ε(w).

Lemma 1 Assume that uε : [0, T ] × R
d → R

d and aε : [0, T ] × R
d → C are smooth and such that

M ≡
∣

∣

∣

∣∇xu
ε
∣

∣

∣

∣

L∞([0,T ]×Rd)
+

∣

∣

∣

∣∇x(∇ · uε)
∣

∣

∣

∣

L∞([0,T ]×Rd)
+

∣

∣

∣

∣|aε|2
∣

∣

∣

∣

L∞([0,T ]×Rd)
< +∞.

Let w ∈ C1([0, T ],H2) be a solution of (21). Then, there exists CM depending only on d, f and M
such that for every ε ∈ (0, 1], the solution w of (21) satisfies the energy estimate

d

dt
N ε

(

w(t)
)

≤ CM

(

1 +
1

ε

∣

∣

∣

∣Ra(t)
∣

∣

∣

∣

L∞ +
1

ε

∣

∣

∣

∣Rϕ(t)
∣

∣

∣

∣

W 1,∞ +
1

ε2

∣

∣

∣

∣Rϕ(t)
∣

∣

∣

∣

L∞

)

N ε
(

w(t)
)

(23)

+
∣

∣

∣

∣F ε(t)
∣

∣

∣

∣

2

L2 −
∫

Rd

4

ε
f ′(|aε|2)(w, aε)(aε, iF ε) +

∫

Rd

(ε∆w, iF ε).

Note that it is very easy to get from (23) and the Gronwall inequality a classical estimate of
linear stability. Indeed, assuming that Ra = OL∞([0,T ],L∞)(ε) and Rϕ = OL∞([0,T ],W 1,∞)(ε

2) (which
is true if (aε, ϕε) come from the WKB method), we infer from a crude estimate for the two last
terms in (23) that for 0 ≤ t ≤ T ,

d

dt
N ε

(

w(t)
)

≤ CN ε
(

w(t)
)

+
1

ε2

∣

∣

∣

∣F ε(t)
∣

∣

∣

∣

2

H1 ,

which gives for 0 ≤ t ≤ T

N ε
(

w(t)
)

≤ eCt
(

N ε
(

w(0)
)

+
1

ε2

∫ t

0

∣

∣

∣

∣F ε(τ)
∣

∣

∣

∣

2

H1 dτ
)

,

which is a more classical result of linear stability in the energy norm N ε(w) since the amplification
rate C is independent of ε. Nevertheless, to get Hs estimates and the best nonlinear results as
possible, it is important to have the special structure of the two last terms in (23).

Modulated linearized functionals like N ε were also used in asymptotic problems in fluid me-
chanics, see [10] for example.
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2.1 Proof of Lemma 1

The norms L∞, W 1,∞, L2 ... always stand for the norms in the x variable. At first, since Sε

is self adjoint, we have

d

dt

∫

Rd

(

Sεw,w
)

=

∫

Rd

2
(

Sεw, ∂tw
)

+ 2∂t

[

f ′(|aε|2)
]

(w, aε)2 + 4f ′(|aε|2)(w, aε)(w, ∂ta
ε). (24)

Next, we use (21) to express ∂tw as

∂tw = − i

ε
Sεw −

(

uε · ∇w +
1

2
w∇ · uε

)

− i

ε
Rϕw − i

ε
F ε

to get

2

∫

Rd

(

Sεw, ∂tw
)

= 2

∫

Rd

(ε2

2
∆w − 2f ′(|aε|2)(w, aε)aε, uε · ∇w +

1

2
w∇ · uε +

i

ε
Rϕw +

i

ε
F ε

)

. (25)

We shall now estimate the various terms in the right-hand side of (25). Integrating by parts, we
get

∫

Rd

(

ε2 ∆w,
i

ε
Rϕw

)

= −ε

∫

Rd

(

∇w, iw∇Rϕ

)

≤ ε ||∇Rϕ||L∞ ||w||L2 ||∇w||L2

≤ 1

ε
||Rϕ||W 1,∞N ε(w).

Note that we have used that Rϕ is real-valued and thus that

(∇w, iRϕ∇w) = 0

for the first equality. We also easily obtain by integration by parts that

∫

Rd

(

ε2∆w,w∇ · uε
)

≤ C
(

∣

∣

∣

∣∇ · uε
∣

∣

∣

∣

L∞ +
∣

∣

∣

∣∇(∇ · uε)
∣

∣

∣

∣

L∞

) (

ε2
∣

∣

∣

∣∇w
∣

∣

∣

∣

2

L2 + ε2
∣

∣

∣

∣w
∣

∣

∣

∣

2

L2

)

≤ CMN ε(w).

In the proof, CM is a harmless number which changes from line to line and which depends only on
M . In particular, it is independent of ε. Moreover, we can also write for k = 1, · · · , d,

∫

Rd

(

∂2
kkw, uε · ∇w

)

= −
∫

Rd

uε · ∇|∂kw|2
2

−
∫

(

∂kw, ∂kuε · ∇w
)

=

∫

Rd

|∂kw|2
2

∇ · uε −
∫

Rd

(

∂kw, ∂kuε · ∇w
)

and hence, we immediately infer

∫

Rd

(

ε2∆w, uε · ∇w
)

≤ CMN ε(w).
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Furthermore, from the inequality 2ab ≤ a2 + b2, there holds

−4

ε

∫

Rd

f ′(|aε|2)(w, aε)
(

aε, iRϕw
)

≤ CM

ε2
||Rϕ||L∞

∫

Rd

(

f ′(|aε|2)
)

1

2

∣

∣(w, aε)
∣

∣ ε|w|

≤ CM

ε2
||Rϕ||L∞

∫

Rd

f ′(|aε|2)(w, aε)2 + ε2|w|2

≤ CM

ε2
||Rϕ||L∞N ε(w). (26)

Consequently, we can replace (25) in (24) and use the above estimates to get

d

dt

∫

Rd

(

Sεw,w
)

=

∫

Rd

4f ′(|aε|2)(w, aε)
(

(w, ∂ta
ε) −

(

uε · ∇w +
1

2
w∇ · uε, aε

)

)

(27)

+2

∫

Rd

∂t

[

f ′(|aε|2)
]

(w, aε)2 + E1,

where E1 satisfies the estimate

E1 ≤ CM

(

1 +
1

ε

∣

∣

∣

∣Rϕ

∣

∣

∣

∣

W 1,∞ +
1

ε2

∣

∣

∣

∣Rϕ

∣

∣

∣

∣

L∞

)

N ε(w) (28)

−4

ε

∫

Rd

f ′(|aε|2)(w, aε)(aε, iF ε) +

∫

Rd

(ε∆w, iF ε).

To estimate the first integral in the right hand side of (27), we use the equation (18) to get

4

∫

Rd

f ′(|aε|2)(w, aε)
(

(w, ∂ta
ε) −

(

uε · ∇w +
1

2
w∇ · uε, aε

)

)

= 4

∫

Rd

f ′(|aε|2)(w, aε)
(

(w,Ra) − uε · ∇(w, aε) − (w, aε)∇ · uε
)

= 4

∫

Rd

f ′(|aε|2)(w, aε)(w,Ra) − 2

∫

Rd

f ′(|aε|2)uε · ∇
(

(w, aε)2
)

− 4

∫

Rd

f ′(|aε|2)(w, aε)2 ∇ · uε

= 4

∫

Rd

f ′(|aε|2)(w, aε)(w,Ra) + 2

∫

Rd

(w, aε)2 uε · ∇
[

f ′(|aε|2)
]

− 2

∫

Rd

f ′(|aε|2)(w, aε)2 ∇ · uε.

To get the last line, we have integrated by parts the second integral. Note that the last term is

bounded by CMN ε(w), and, as for (26), that the first integral is bounded by
CM

ε
||Ra||L∞N ε(w).

Consequently, we can replace the above identity in (27) to get

d

dt

∫

Rd

(

Sεw,w
)

=

∫

Rd

2(w, aε)2
(

∂t + uε · ∇
)

f ′(|aε|2) + E1 + E2 =: I + E1 + E2, (29)

where E2 is such that

E2 ≤ CM

(

1 +
1

ε

∣

∣

∣

∣Ra

∣

∣

∣

∣

L∞

)

N ε(w). (30)

To estimate I, we use again the equation (18) which gives

(

∂t + uε · ∇
)

f ′(|aε|2) = 2f ′′(|aε|2)
(

aε, ∂ta
ε + uε · ∇aε

)

= 2f ′′(|aε|2)
(

Ra −
1

2
aε ∇ · uε, aε

)

10



and hence we find

I ≤ C

∫

Rd

|aε|2
∣

∣f ′′(|aε|2)
∣

∣ (w, aε)2 + 4

∫

Rd

|aε| |f ′′(|aε|2)| (w, aε)2 |Ra|.

To conclude, we shall use the assumption (A). By defining n ∈ N
∗ the first integer such that

f (n)(0) 6= 0, we see from Taylor expansion that

f ′(ρ) = ρn−1q(ρ) (31)

for some smooth positive function q on [0,+∞). In particular, since q > 0, we have

ρ 7→ ρf ′′(ρ)

f ′(ρ)
= n − 1 + ρ

q′(ρ)

q(ρ)
∈ C∞

(

[0,+∞)
)

,

which implies
∣

∣ρf ′′(ρ)
∣

∣ ≤ CMf ′(ρ) for 0 ≤ ρ ≤ M. (32)

This yields
∫

Rd

|aε|2 |f ′′(|aε|2)|(w, aε)2 ≤ CM

∫

Rd

(w, aε)2f ′(|aε|2) ≤ CMN ε(w),

where, again, CM depends only on M . In a similar way, we also obtain
∫

Rd

(w, aε)2|aε| |f ′′(|aε|2)| |Ra| ≤
∣

∣

∣

∣Ra

∣

∣

∣

∣

L∞

∫

Rd

|w| ·
∣

∣(w, aε)
∣

∣ · |aε|2
∣

∣f ′′(|aε|2)
∣

∣

≤ CM

ε

∣

∣

∣

∣Ra

∣

∣

∣

∣

L∞

∫

Rd

(

ε|w|
)

∣

∣

∣

∣

(w, aε)
√

f ′(|aε|2)
∣

∣

∣

∣

≤ CM

ε

∣

∣

∣

∣Ra

∣

∣

∣

∣

L∞N ε(w).

Consequently, we have proven that

I ≤ CM

(

1 +
1

ε

∣

∣

∣

∣Ra

∣

∣

∣

∣

L∞

)

N ε(w). (33)

To get the result of Lemma 1, it remains to perform the L2 estimate. Taking the L2 scalar product
of (21) with iw and using that

(w, uε · ∇w +
1

2
w∇ · uε) =

1

2
∇ ·

(

|w|2uε
)

,

we get
d

dt

(ε2

2
||w||2L2

)

=

∫

Rd

ε(F ε, iw) + 2ε

∫

Rd

f ′(|aε|2)(w, aε)(aε, iw).

Note that we have once again used that Rϕ is real-valued and hence that (Rϕw, iw) = 0. The first
integral is clearly bounded by N ε(w) +

∣

∣

∣

∣F ε
∣

∣

∣

∣

L2 whereas for the second one, we have
∫

Rd

2εf ′(|aε|2)(w, aε)(aε, iw) ≤ CM

∫

Rd

(

f ′(|aε|2)(w, aε)2 + ε2|w|2
)

≤ CMN ε(w).

As a consequence, we get

d

dt

(ε2

2

∣

∣

∣

∣w
∣

∣

∣

∣

2

L2

)

≤ CMN ε(w) +
∣

∣

∣

∣F ε
∣

∣

∣

∣

2

L2 . (34)

Finally, we can collect (28), (29), (30), (33) and (34) to get (23). This completes the proof. �
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2.2 Higher order estimates

Since our final aim is to prove Theorem 2 by a fixed point argument, we also need to have
Hs estimates for s sufficiently large for the solution of the linear equation (21). This is the aim
of the following. Note that the term −2(w, aε)f ′(|aε|2)aε in (19) can be seen as a singular term
with variable coefficients. Consequently, a crude way to get Hs estimates is to apply ε|α|∂α to
the equation, the weight ε|α| being used to compensate the singular commutator when we take the
derivative of (19), and then to apply Lemma 1 to the resulting equation. Nevertheless, it is possible
to avoid the loss of ε|α| with more work by using more clever higher order modulated functionals.
We set N ε

1 ≡ N ε and, if s ∈ N, s ≥ 2, we define the following weighted norm, where α ∈ N
d are

multi-indices

N ε
s (w) ≡

∑

|α|≤s−1

N ε(∂αw) + K||Re w||2Hs−2 (35)

=
1

2
ε2||∇w||2Hs−1 + 2

∑

|α|≤s−1

∫

Rd

f ′(|aε|2)(∂αw, aε)2 + K
(

ε2||w||2Hs−1 + ||Re w||2Hs−2

)

.

In this section, we shall use that
aε = a0 + εar

with a0 real-valued and
sup

ε∈(0,1]
||ar||L∞([0,T ],W s,∞) ≤ C.

Note that this allows to write
∫

Rd

f ′(|aε|2)(∂αw, aε)2 ≥ 1

2

∫

Rd

f ′(|aε|2)(a0)2|Re ∂αw|2 − Cε2||Re ∂αw||2L2

and hence by choosing K sufficiently large (K > C) we get the lower bound

N ε
s (w) ≥ 1

2

∑

|α|≤s−1

N ε
(

∂α
x w

)

+
∑

|α|≤s−1

∫

Rd

f ′(|aε|2)(a0)2|Re ∂αw|2 dx (36)

Note that we also have the equivalence of norms:

∣

∣

∣

∣w
∣

∣

∣

∣

2

Hs ≤ 2

ε2
N ε

s (w), N ε
s (w) ≤ C(|aε|W s−1,∞)

∣

∣

∣

∣w
∣

∣

∣

∣

2

Hs + ||Re w||2Hs−2 . (37)

The main result of this section is:

Theorem 3 Let 0 < T < ∞, s ∈ N
∗, f satisfying (A) and w ∈ C1([0, T ],Hs) a solution of (21)

with uε : [0, T ] × R
d → R

d and aε : [0, T ] × R
d → C such that

M ≡ sup
0<ε<1

(

∣

∣

∣

∣uε
∣

∣

∣

∣

L∞([0,T ],W s+1,∞(Rd))
+

∣

∣

∣

∣aε
∣

∣

∣

∣

L∞([0,T ],W s,∞(Rd))

)

< +∞.

Assume finally that, for some a0 ∈ L∞([0, T ],W s,∞(Rd)) real-valued, aε writes

aε = a0 + OW s,∞(ε) (38)

uniformly on [0, T ]. Then, there exists C, depending only on d, f and M , such that

d

dt
N ε

s

(

w(t)
)

≤ C

(

1+
1

ε

∣

∣

∣

∣Ra(t)
∣

∣

∣

∣

L∞+
1

ε2

∣

∣

∣

∣Rϕ(t)
∣

∣

∣

∣

W s−1,∞

)

N ε
s

(

w(t)
)

+C
∣

∣

∣

∣F ε(t)
∣

∣

∣

∣

2

Hs+
C

ε2

∣

∣

∣

∣Im F ε(t)
∣

∣

∣

∣

2

Hs−1 .
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Remark 2 In view of (38), aε is real up to O(ε), hence, in the integral in the right-hand side of
(23), the real and imaginary parts of F ε do not play the same role. This explains that the estimate
is better for Re F ε than for ImF ε. As a matter of fact, for s = 1, Theorem 3 follows immediately
from Lemma 1 and (38).

2.3 Proof of Theorem 3

We estimate separately the two terms in N ε
s (w), when s ≥ 2 (otherwise, the result follows from

Lemma 1 as we have seen). Let us set

Σ(w) ≡ ||Re w||2Hs−2 .

Note that we have

Σ(w) ≤ N ε
s (w). (39)

In the proof, C is a constant depending only on d, f and M .
We shall first prove that

d

dt
Σ(w) ≤ C

(

1 +
1

ε2

∣

∣

∣

∣Rϕ

∣

∣

∣

∣

W s−2,∞

)

N ε
s

(

w
)

+ C
∣

∣

∣

∣F ε
∣

∣

∣

∣

2

Hs−2 +
C

ε2

∣

∣

∣

∣Im F ε
∣

∣

∣

∣

2

Hs−2 . (40)

For α ∈ N
d, we have

∂t

(

∂αw
)

+ uε · ∇
(

∂αw
)

=
iε

2
∆(∂αw) − i

ε
∂αF ε − i

ε
∂α

(

Rϕw
)

(41)

−2i

ε
∂α

(

f ′(|aε|2)(aε, w)aε
)

−
[

∂α, uε · ∇
]

w − 1

2
∂α

(

w∇ · uε
)

.

Next, by taking the real part of (41), we get

∂t

(

∂αRe w
)

+ uε · ∇
(

∂αRe w
)

= −
[

∂α, uε · ∇
]

Re w − 1

2
∂α

(

Re w∇ · uε
)

+ Rε

where

Rε = Re
( iε

2
∆(∂αw) − i

ε
∂αF ε − i

ε
∂α

(

Rϕw
)

− 2i

ε
∂α

(

f ′(|aε|2)(aε, w)aε
)

)

. (42)

By using (38), we have
Im ∂γaε = O(ε), ∀γ, |γ| ≤ |α|

and

|(∂βaε, ∂γw)| ≤ Cβ,γ

(

|Re ∂γw| + ε|∂γw|
)

(43)

for every β, γ. Consequently, we immediately obtain for every α, |α| ≤ s − 2,

||Rε||L2 ≤ C
(

ε||w||Hs +
||Rϕ||W s−1,∞

ε2
||w||Hs−2 + ||Re w||Hs−2 + ε||w||Hs−2

)

+
1

ε
||Im F ε||Hs−2

≤ C
(

1 +
||Rϕ||W s−2,∞

ε2

)

N ε
s (w)

1

2 +
1

ε
||Im F ε||Hs−2 .
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Consequently, the standard L2 energy estimate for (42) gives

d

dt
||Re ∂αw||2L2 ≤ C

(

1 +
||Rϕ||W s−1,∞

ε2

)

N ε
s (w) +

1

ε2
||ImF ε||2Hs−2 .

Note that we have used that
∫

Rd

(

uε · ∇
(

∂αRe w
)

, ∂αRe w
)

= −1

2

∫

Rd

(∇ · uε)|∂αRe w|2.

Consequently, (40) is proven.

The next step is to estimate N ε(∂αw) for |α| ≤ s − 1. By applying ∂α to (21), we get

iε
∂(∂αw)

∂t
+ Lε

(

∂αw
)

= Rϕ∂αw + F̃ ε, (44)

where
F̃ ε ≡ Cα + Dα + ∂αF ε + [∂α, Rϕ]w,

with

Cα ≡ 2 ∂α
(

f ′(|aε|2)aε(w, aε)
)

− 2f ′(|aε|2)(∂αw, aε)aε,

Dα ≡ −iε
[

∂α, uε · ∇
]

w − iε

2

[

∂α, ∇ · uε
]

w.

To estimate N ε(∂αw), we shall use Lemma 1. Towards this, we need to estimate the commutators
in the right hand side of (44). For |α| ≤ s − 1, the following estimates hold for Cα and Dα:

∣

∣

∣

∣[∂α, Rϕ]w
∣

∣

∣

∣

2

H1 ≤ C
∣

∣

∣

∣Rϕ

∣

∣

∣

∣

2

W s,∞

∣

∣

∣

∣w
∣

∣

∣

∣

2

Hs ≤ C

ε2

∣

∣

∣

∣Rϕ

∣

∣

∣

∣

2

W s,∞N ε
s (w), (45)

∣

∣

∣

∣Dα
∣

∣

∣

∣

2

H1 ≤ C ε2
∣

∣

∣

∣w
∣

∣

∣

∣

2

Hs ≤ CN ε
s (w), (46)

∣

∣

∣

∣

(

if ′(|aε|2) 1

2 aε,Dα
)
∣

∣

∣

∣

2

L2 ≤ Cε2N ε
s (w), (47)

∣

∣

∣

∣Cα
∣

∣

∣

∣

2

H1 ≤ CN ε
s (w), (48)

∣

∣

∣

∣(iaε, Cα)
∣

∣

∣

∣

2

L2 ≤ Cε2N ε
s (w). (49)

The estimates (45) and (46) follow easily from (37). For (47), we note that

1

ε

(

iaε,Dα
)

= −
(

aε, [∂α, uε · ∇]w
)

− 1

2

(

aε, [∂α,∇ · uε]w
)

= −
∑

γ<α

(

α
γ

)

(

∂α−γuε
)

·
(

aε,∇∂γw
)

− 1

2

∑

γ<α

(

α
γ

)

∂α−γ
(

∇ · uε
)(

aε, ∂γw
)

since uε is real. Next, we can use (38) and (43) again. In particular, in the above expansion, the
terms

(

aε, ∂γw
)

are bounded in L2 by Σ(w) + ε2||w||2Hs−2 and thus by N ε
s (w). Similarly, the terms

(

aε,∇∂γw
)

are bounded in L2 by N ε
s (w) if |γ| ≤ s − 3. Consequently, we get

∣

∣

∣

∣

(

if ′(|aε|2) 1

2 aε,Dα
)∣

∣

∣

∣

2

L2 ≤ C
(

∑

|β|=s−1

∫

Rd

f ′(|aε|2)(∂βw, aε)2 + N ε
s (w)

)

≤ CN ε
s (w),
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which yields (47). Next, we turn to Cα. The Leibnitz formula gives

Cα =
∑

α̃ < α,
α̃ + β + λ + µ = α

∗ ∂λ
[

f ′(|aε|2)
](

∂α̃w, ∂βaε
)

∂µaε, (50)

where ∗ is a real coefficient depending only on α̃, β, λ and µ. Since |α̃| ≤ |α| − 1 ≤ s − 2, we can
use again (38) through (43) to get that

||Cα||2L2 ≤ C
(

Σ(w) + ε2||w||2Hs

)

≤ CN ε
s (w).

Since (iaε, ∂µaε) = O(ε) thanks to (38), we also get (49). For the H1 norm, the same argument
yields

||Cα||2H1 ≤ C
(

Σ(w) + ε2||w||2Hs +
∑

|γ| = s − 1,
|β + λ + µ| = 1

∫

Rd

∣

∣∂λ
[

f ′(|aε|2)
](

∂γw, ∂βaε
)

∂µaε
∣

∣

2
)

.

To estimate the last sum, we first consider the terms with β = 0. They are always bounded by

C

∫

Rd

[

f ′(|aε|2) + |aε|2|f ′′(|aε|2)|
](

∂γw, aε
)2

with |γ| = s − 1 and hence, thanks to (32), they are bounded by

C

∫

Rd

f ′(|aε|2)
(

∂γw, aε
)2

and hence by N ε
s (w). Next, we consider the terms with |β| = 1. Since then λ = µ = 0, we have to

estimate terms like

T =

∫

Rd

f ′(|aε|2)
(

∂γw, ∂βaε
)2|aε|2.

By using again (38) and (43), we get

T ≤ C

∫

Rd

f ′(|aε|2)|a0|2|Re ∂γw|2 + Cε2||w||2Hs−1

and hence, by using (36), we finally obain

T ≤ CN ε
s (w).

Consequently, (48) is proven. This ends the estimates of the commutators.
We are now able to establish:

d

dt
N ε

(

∂αw
)

≤ C
(

1 +
1

ε2

∣

∣

∣

∣Rϕ

∣

∣

∣

∣

W s−1,∞ +
1

ε

∣

∣

∣

∣Ra

∣

∣

∣

∣

L∞

)

N ε
s (w)

+
∣

∣

∣

∣F ε
∣

∣

∣

∣

2

Hs +
C

ε2

∣

∣

∣

∣Im F ε
∣

∣

∣

∣

2

Hs−1 . (51)
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Indeed, from Lemma 1, we deduce

d

dt
N ε

(

∂αw
)

≤ C
(

1 +
1

ε

∣

∣

∣

∣Rϕ

∣

∣

∣

∣

W 1,∞ +
1

ε

∣

∣

∣

∣Ra

∣

∣

∣

∣

L∞ +
1

ε2

∣

∣

∣

∣Rϕ

∣

∣

∣

∣

L∞

)

N ε
(

∂αw
)

+
∣

∣

∣

∣F̃ ε
∣

∣

∣

∣

2

L2 +
4

ε

∫

Rd

f ′(|aε|2)(∂αw, aε)
(

iaε, F̃ ε
)

−
∫

Rd

(iε∆∂αw, F̃ ε). (52)

To estimate the right-hand side of (52), we first estimate
∣

∣

∣

∣F̃ ε
∣

∣

∣

∣

2

L2 . Combining (45) and (46) with
(48), we infer

∣

∣

∣

∣F̃ ε
∣

∣

∣

∣

2

L2 ≤
∣

∣

∣

∣F ε
∣

∣

∣

∣

2

Hs−1 + C
(

1 +
1

ε2

∣

∣

∣

∣Rϕ

∣

∣

∣

∣

2

W s−1,∞

)

N ε
s (w). (53)

Next, we turn to the term

4

ε

∫

Rd

f ′(|aε|2)(∂αw, aε)
(

iaε, F̃ ε
)

=
4

ε

∫

Rd

f ′(|aε|2)(∂αw, aε)
(

iaε, Cα + Dα + ∂αF ε + [∂α, Rϕ]w
)

,

which splits as four integrals. For the first one, by (49) and Cauchy-Schwarz:

4

ε

∫

Rd

f ′(|aε|2)(∂αw, aε)
(

iaε, Cα
)

≤ C
(

∫

Rd

f ′(|aε|2)
(

∂αw, aε
)2

)
1

2

N ε
s (w)

1

2 ≤ CN ε
s (w).

For the second one, we use (47) and Cauchy-Schwarz, which gives

4

ε

∫

Rd

f ′(|aε|2) 1

2 (∂αw, aε)
(

if ′(|aε|2) 1

2 aε,Dα
)

≤ CN ε
s (w).

For the third integral, we simply write, using once again (38)

1

ε

∣

∣

∣

∣

(

iaε, ∂αF ε
)∣

∣

∣

∣

L2 ≤ C
∣

∣

∣

∣F ε
∣

∣

∣

∣

Hs−1 +
C

ε

∣

∣

∣

∣Im F ε
∣

∣

∣

∣

Hs−1 ,

which yields by Cauchy-Schwarz

4

ε

∫

Rd

f ′(|aε|2)(∂αw, aε)
(

iaε, ∂αF ε
)

≤ CN ε
s (w) + C

∣

∣

∣

∣F ε
∣

∣

∣

∣

2

Hs−1 +
C

ε2

∣

∣

∣

∣Im F ε
∣

∣

∣

∣

2

Hs−1 .

Finally, for the fourth integral, we have by (45)

4

ε

∫

Rd

f ′(|aε|2)(∂αw, aε)
(

iaε, [∂α, Rϕ]w
)

≤ C

ε

∣

∣

∣

∣Rϕ

∣

∣

∣

∣

W s−1,∞N ε(w).

By summing these estimates, we find

4

ε

∫

Rd

f ′(|aε|2)(∂αw, aε)
(

iaε, F̃ ε
)

≤ C
(

1 +
1

ε

∣

∣

∣

∣Rϕ

∣

∣

∣

∣

W s−1,∞

)

N ε
s (w) + C

∣

∣

∣

∣F ε
∣

∣

∣

∣

2

Hs−1 +
C

ε2

∣

∣

∣

∣Im F ε
∣

∣

∣

∣

2

Hs−1 .

(54)
Finally, we handle the term

−
∫

Rd

(

iε∆∂αw, F̃ ε
)

= −
∫

Rd

(

iε∆∂αw, Cα + Dα + ∂αF ε + [∂α, Rϕ]w
)

.

By using an integration by parts, we have

−
∫

Rd

(

iε∆∂αw, F̃ ε) ≤
∣

∣

∣

∣Cα
∣

∣

∣

∣

2

H1 +
∣

∣

∣

∣Dα
∣

∣

∣

∣

2

H1 +
∣

∣

∣

∣[∂α, Rϕ]w
∣

∣

∣

∣

2

H1 +
∣

∣

∣

∣F ε
∣

∣

∣

∣

2

Hs + CN ε
s (w)

≤
∣

∣

∣

∣F ε
∣

∣

∣

∣

2

Hs + C
(

1 +
1

ε2

∣

∣

∣

∣Rϕ

∣

∣

∣

∣

W s−1,∞

)

N ε
s (w)

thanks to (45), (46) and (48). Consequently, we can collect the last estimate and (52), (53), (54)
to get (51). This ends the proof of Theorem 3.
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3 Construction of WKB expansions

In this section, we construct an approximate solution of (1) using a WKB expansion. The first
step is to prove the local existence of smooth solutions of the limit hydrodynamical system.

3.1 Well-posedness of the limit system

We consider the system











∂ta + u · ∇a +
1

2
a∇ · u = 0

∂tu + u · ∇u + ∇
(

f(a2)
)

= 0,

(55)

which is only weakly hyperbolic, with the pressure law f satisfying assumption (A) and the initial
condition (a, u)|t=0 = (a0, u0).

Theorem 4 Assume that f satisfies (A) and let s > 2 + d/2. Then, for every initial conditions
(a0, u0) ∈ Hs × Hs with a0 ∈ R, there exists T > 0 and a unique solution (a, u) of (55) such that
(a, u) ∈ C([0, T ],Hs−1 × Hs) ∩ C1([0, T ],Hs−2 × Hs−1).

Let us remark that if n = 1, then f ′(0) > 0 and thus f ′ > 0 in [0,+∞) (by (A)). In this case,
(55) is symmetrizable (with the symmetrizer S = diag

(

1, 1
4f ′(a2)

, ..., 1
4f ′(a2)

)

used in [9]) and the

local existence and uniqueness for (55) follows easily.

Proof of Theorem 4.

The first step is to rewrite the system by using more convenient unknowns. At first, we notice that
thanks to (A), we can write f under the form

f(ρ) = ρnf̃(ρ),

with f̃ smooth on [0,+∞) and such that f̃(0) 6= 0. Next, since we have by assumption f(0) = 0
and f ′(ρ) > 0 for ρ 6= 0, we also have that f(ρ) > 0 for ρ > 0. This implies that f̃(ρ) > 0 for ρ ≥ 0.
This allows to define a smooth function h on R by

h(a) ≡ a
[

f̃(a2)
]

1

2n . (56)

Note that h(a) 6= 0 for a 6= 0. It is usefull to notice that we can also write h under the form

h(a) = sgn(a) f(a2)
1

2n

and hence that we have
h(a)2n = f(a2), a ∈ R.

Furthermore, since f ′ > 0 and f̃(0) > 0 in (0,+∞), we deduce that h′(a) > 0 for a 6= 0 and that

h′(0) =
[

f̃(0)
]

1

2n > 0, so that h′ > 0 on R. Thus h is a smooth diffeomorphism from R to h
(

R
)

. In
particular, this allows to define a smooth positive function c on h

(

R
)

such that

1

2
ah′(a) = h(a) c

(

h(a)
)

, ∀a ∈ R.
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With this definition, (h, u), with h ≡ h(a), solves the system







∂th + u · ∇h + hc(h)∇ · u = 0

∂tu + u · ∇u + ∇
(

h2n
)

= 0.

(57)

Since a is in Hs if and only if h is in Hs, we shall prove local existence of smooth solution for the
weakly hyperbolic system (57). As we shall see below, the nonlinear symmetrization method of
[15] does not allow to reduce (57) to a symmetric or symmetrizable system with smooth coefficients
except in the case where c(h) = c̃(hn) for some smooth map c̃. Nevertheless, it will be still possible
to use the same idea to prove the existence of an energy estimate with loss for the system (57).
When we are in such a situation, the simplest way to construct a solution is to use the vanishing
viscosity method. Indeed, this approximation method allows to preserve the nonlinear energy
estimate verified by (57). We thus consider for ǫ > 0 the system







∂thǫ + uǫ · ∇hǫ + hǫc(hǫ)∇ · uǫ = ǫ∆hǫ

∂tuǫ + uǫ · ∇uǫ + ∇
(

h2n
ǫ

)

= ǫ∆uǫ.
(58)

The local existence of smooth solutions for this parabolic system is very easy to obtain. Moreover,
we note that hǫ remains nonnegative if the initial datum (hǫ)|t=0 is nonnegative. In the following,
we shall only prove an Hs energy estimate independent of ǫ for this system which ensures that the
solution remains smooth on an interval of time independent of ǫ. The final step which consists in
using the uniform bounds to pass to the limit when ǫ goes to zero to get a solution of (57) is very
classical and hence will not be detailled. In the proof of the energy estimates, we shall omit the
subscript ǫ for notational convenience.

As in the work of [15], we introduce the unknown H ≡ hn = anf̃(a2)
1

2 . Note that by definition
of h, H is in Hs as soon as a is in Hs. We get for (H,u) the system











∂tH + u · ∇H + nHc(h)∇ · u = ǫ nhn−1∆h = ǫ
(

∆H − n(n − 1)hn−2|∇h|2
)

∂tu + u · ∇u + 2H∇H = ǫ∆u.

(59)

Note that it does not seem possible to get a classical hyperbolic symmetric system (in the case
ǫ = 0) involving only H and u as in the case of homogeneous pressure laws considered in [15].

Indeed, the coefficient c(h) = c(H
1

n ) is not (in general) a smooth function of H. Nevertheless, it
will be possible to prove that the system with unknowns (h,H, u) though only weakly hyperbolic
(when ǫ = 0) satisfies an energy estimate. We notice that the symmetrizer

S ≡ diag
(

1,
n

2
c(h)Id

)

,

which is positive since c(h) is positive, symmetrizes the first order part of (59). We shall first
perform an Hs energy estimate (s > 2+d/2) on (59) but we have to track carefully the dependence
on h in the energy estimates.

To prove our Hs energy estimate, we shall make an extensive use of the following classical (see
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[18] for example) tame estimates

∣

∣

∣

∣fg
∣

∣

∣

∣

Hk ≤ Ck

(

∣

∣

∣

∣f
∣

∣

∣

∣

L∞

∣

∣

∣

∣g
∣

∣

∣

∣

Hk +
∣

∣

∣

∣f
∣

∣

∣

∣

Hk

∣

∣

∣

∣g
∣

∣

∣

∣

L∞

)

, (60)

∣

∣

∣

∣∂α(fg) − f∂αg
∣

∣

∣

∣

L2 ≤ Ck

(

∣

∣

∣

∣f
∣

∣

∣

∣

Hk

∣

∣

∣

∣g
∣

∣

∣

∣

L∞ +
∣

∣

∣

∣∇f
∣

∣

∣

∣

L∞

∣

∣

∣

∣g
∣

∣

∣

∣

Hk−1

)

, |α| ≤ k, (61)
∣

∣

∣

∣F (u)
∣

∣

∣

∣

Hk ≤ C(
∣

∣

∣

∣u
∣

∣

∣

∣

L∞)(1 +
∣

∣

∣

∣u
∣

∣

∣

∣

Hk) (62)

if F is smooth and such that F (0) = 0.
At first, we notice that (∂αH,∂αu) for |α| ≤ s solves the system



















∂t∂
αH + u · ∇∂αH + nc(h)

(

∇ · u
)

∂αH = ǫ
(

∆∂αH − n(n − 1)∂α(hn−2|∇h|2)
)

−[∂α, u] · ∇H − n[∂α,Hc(h)]∇ · u

∂t∂
αu + u · ∇∂αu + 2H∇∂αH = ǫ∆∂αu − [∂α, u] · ∇u − [∂α, 2H]∇H.

By using (61) to estimate in L2 the commutators in the right hand-side, we get in a classical way
by integration by parts

d

dt

[1

2

∫

Rd

|∂αH|2 +
n

2
c(h)|∂αu|2

]

+ ǫ

∫

Rd

|∇∂αH|2 +
n

2
c(h)|∇∂αu|2 (63)

≤ C0

(

∣

∣

∣

∣(h, u)
∣

∣

∣

∣

W 1,∞

)

||V ||2Hs + Cα + ǫDα + Rα,

where V ≡ (H,u), C0 is a non-decreasing function depending only on f , s and d, and

Cα ≡ −n

∫

Rd

(∂αH) [∂α,Hc(h)](∇ · u),

Dα ≡ −n

2

∫

Rd

c′(h)
(

(∇h · ∇)∂αu
)

· ∂αu − n(n − 1)

∫

Rd

∂α
(

hn−2|∇h|2
)

∂αH,

Rα ≡ n

4

∫

Rd

c′(h)∂th|∂αu|2.

We have singled out the three terms above since they are the ones involving h which must be
estimated with care. Note that the estimate of Cα will be crucial since this term involves high order
derivatives of h. Next, we can integrate (63) in time, sum the estimates for |α| ≤ s and use that
c(h) > 0, hence nc(h)/2 ≥ 1

C1(||h||L∞) to obtain

||V (t)||2Hs + ǫ

∫ t

0
||∇V (τ)||2Hs dτ (64)

≤ C1

(

||h||L∞

)

(

||V (0)||2Hs +

∫ t

0
C0

(

||(h, u)(τ)||W 1,∞

)

||V (τ)||2Hs + C(τ) + ǫD(τ) + R(τ) dτ
)

,

with
C ≡

∑

|α|≤s

Cα, D ≡
∑

|α|≤s

Dα, R ≡
∑

|α|≤s

Rα.

Estimate for C. We claim that

C ≤ C0(||(h, u)||W 1,∞)
(

||V ||2Hs + ||h||2Hs−1

)

. (65)
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The crucial point is that this estimate only involves the Hs−1 norm of h. This will allow to conclude
by using that for the first equation in (59), the Hs−1 norm of h is controlled by the Hs norm of u.

By using the commutator estimate (61), we have

C ≤ C||H||Hs

(

||Hc(h)||Hs ||∇ · u||L∞ + ||∇
(

Hc(h)
)

||L∞ ||∇ · u||Hs−1

)

≤ C0

(

||(h, u)||W 1,∞

)

(

||V ||2Hs + ||H||Hs ||Hc(h)||Hs

)

.

To estimate the last term, we use that H = hn, which yields h∂iH = nH∂ih, thus

∂i

(

Hc(h)
)

= c(h)∂iH + c′(h)H∂ih = c(h)∂iH +
1

n
c′(h)h∂iH.

Consequently, by (60), (62), we get

||Hc(h)||Hs ≤ C||c(h)∇H||Hs−1 + C||c′(h)h∇H||Hs−1 ≤ C0

(

||(h, u)||W 1,∞

)

(

||H||Hs + ||h||Hs−1

)

,

and (65) follows.

Estimate for D. The term D involves derivatives of u of order ≤ s + 1, and we shall use the
energy dissipation in (63). We prove that

C1(||h||L∞) ǫD ≤ 1

2
ǫ ||∇V ||2Hs + ǫC0(||h||W 1,∞)

(

||V ||2Hs + ||∇h||2Hs−1

)

. (66)

We have, on the one hand,

∣

∣

∣

∫

Rd

c′(h)∇h · ∇∂αu · ∂αu
∣

∣

∣
≤ C0(||h||W 1,∞)||∇u||Hs ||u||Hs ≤ C0(||h||W 1,∞)||∇V ||Hs ||V ||Hs .

On the other hand, for the second term (which vanishes if n = 1), after one integration by parts
when |α| > 0, we get

n(n − 1)
∣

∣

∣

∫

Rd

∂α
(

hn−2|∇h|2
)

∂αH
∣

∣

∣
≤ C||∇H||Hs ||hn−2|∇h|2||Hs−1

≤ C0(||h||W 1,∞) ||∇H||Hs ||∇h||Hs−1 ,

and if α = 0, since H = hn and s ≥ 1,

n(n − 1)
∣

∣

∣

∫

Rd

hn−2|∇h|2H
∣

∣

∣
=

n − 1

n

∫

Rd

|∇H|2 ≤ C||H||2Hs .

Consequently,

ǫD ≤ ǫC0(||h||W 1,∞) ||∇V ||Hs

(

||V ||Hs + ||∇h||Hs−1

)

+ ǫC||V ||2Hs ,

and (66) follows from the standard inequality, for a, b, θ > 0, ab ≤ θa2 + b2

4θ .
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Estimate for R. We prove that

C1(||h||L∞)R ≤ 1

2
ǫ ||∇V ||2Hs + C0(||(h, u)||W 1,∞ ) ||V ||2Hs . (67)

By using the first equation in (58) for h and an integration by parts, we find, as for the first
term in D,

Rα ≤ C0(||(h, u)||W 1,∞) ||V ||2Hs + ǫ
n

4

∫

Rd

c′(h)∆h|∂αu|2

≤ C0(||(h, u)||W 1,∞) ||V ||2Hs − ǫ
n

4

∫

Rd

c′(h)
(

(∇h · ∇)∂αu
)

· ∂αu − ǫ
n

4

∫

Rd

c′′(g)|∇h|2 |∂αu|2

≤ C0(||(h, u)||W 1,∞)
(

||V ||2Hs + ǫ ||∇V ||Hs ||V ||Hs

)

.

Then, (66) follows as above from the inequality ab ≤ θa2 + b2

4θ .

Summing (65), (66) and (67), inserting this into (64) and cancelling the terms ǫ ||∇V ||2Hs , we
infer

||V (t)||2Hs ≤ C1

(

||h(t)||L∞

)

(

||V (0)||2Hs

+

∫ t

0
C0(||(h, u)(τ)||W 1,∞ )

[

||V (τ)||2Hs + ||h(τ)||2Hs−1 + ǫ||∇h(τ)||2Hs−1

]

dτ
)

. (68)

To close the estimate, it remains to evaluate ||h||2Hs−1 and ǫ
∫ t
0 ||∇h||2Hs−1 . We use the standard Hs−1

estimate for the convection diffusion equation (58) which yields, as for (63), for |α| ≤ s − 1,

d

dt

[1

2

∫

Rd

|∂αh|2
]

+ ǫ

∫

Rd

|∂αh|2 ≤ C0

(∣

∣

∣

∣(h, u)
∣

∣

∣

∣

W 1,∞

)

(

||h||2Hs−1 + ||h||Hs−1 ||u||Hs

)

.

Summing for |α| ≤ s − 1 and integrating in time, this yields

1

2
||h(t)||2Hs−1+ ǫ

∫ t

0
||∇h(τ)||2Hs−1 dτ

≤ 1

2
||h(0)||2Hs−1 +

∫ t

0
C0

(
∣

∣

∣

∣(h, u)(τ)
∣

∣

∣

∣

W 1,∞

)

(

||V (τ)||2Hs + ||h(τ)||2Hs−1

)

dτ. (69)

Finally, we can combine (68) and (69), to get

||V (t)||2Hs + ||h(t)||2Hs−1

≤ C0

(
∣

∣

∣

∣(h, u)
∣

∣

∣

∣

L∞([0,t],W 1,∞)

)

(

||V (0)||2Hs + ||h(0)||2Hs−1 +

∫ t

0
||V (τ)||2Hs + ||h(τ)||2Hs−1 dτ

)

. (70)

Since Hs−1 is embedded in W 1,∞ for s > 2+d/2, we easily get by classical continuation arguments
and the Gronwall lemma that the solution of (58) is defined on an interval of time [0, T ) independent
of ǫ. Finally, (70) provides a uniform bound for (h,H, u) in Hs−1 ×Hs ×Hs, which allows to prove
in a classical way that (hǫ, uǫ) converges towards a solution of (57). This ends the proof of the
existence of solution.

To prove the uniqueness, it suffices to use the same method as above and perform an L2 energy
estimate on the system satisfied by h1 − h2, u1 − u2,H1 − H2. This is left to the reader.
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3.2 WKB expansions

We now turn to the construction of WKB expansions up to arbitrary order. Let us first notice
that in Theorem 4, if the initial datum (a0, u0) is in H∞ × H∞, then the solution (a, u) is in
C0([0, T ],Hs−1 × Hs) for every s > 2 + d/2, with T independent of s > 2 + d/2. In other words,
the existence time of the maximal solution in H∞ × H∞ is positive. This fact follows easily from
(70) and the Gronwall inequality (since Hs−1 ⊂ W 1,∞).

Lemma 2 Consider Ψε
0 = aε

0e
iϕε

0
/ε with aε

0 ∈ H∞, ϕε
0 ∈ H∞ and that for some m ∈ N, there exists

an expansion

aε
0 =

m
∑

k=0

εkak
0 + εm+1

a
ε

0
, ϕε

0 =

m
∑

k=0

εkϕk
0 + εm+1

ϕ
ε

0
(71)

with a0
0 ∈ R, ak

0, ϕk
0 ∈ H∞, satisfying, for every s,

sup
ε∈(0,1)

(

∣

∣

∣

∣a
ε

0

∣

∣

∣

∣

Hs +
∣

∣

∣

∣ϕ
ε

0

∣

∣

∣

∣

Hs

)

< +∞. (72)

Let us denote 0 < T ∗ ≤ +∞ the existence time of the maximal smooth (i.e. H∞ × H∞) solution
(a0, ϕ0) for (55) with the initial condition (a0

0, ϕ
0
0). Then, there exists an approximate smooth

solution of (1) on [0, T ∗) under the form Ψa = aεeiϕε/ε, with aε, ϕε ∈ H∞ and aε complex-valued,
solving



















∂ϕε

∂t
+ f(|aε|2) +

1

2
|∇ϕε|2 = Rm

ϕ

∂aε

∂t
+

(

∇ϕε
)

· ∇aε +
aε

2
∆ϕε − ε

2
J∆aε = Rm

a ,

(73)

with the initial condition
(

aε, ϕε
)

/t=0
=

(

aε
0, ϕ

ε
0

)

, and where, for every s and 0 < T < T ∗,

sup
[0,T ]

(

∣

∣

∣

∣Rm
a

∣

∣

∣

∣

Hs +
∣

∣

∣

∣Rm
ϕ

∣

∣

∣

∣

Hs

)

≤ Cs,T εm+2. (74)

Finally, for 0 < T < T ∗, aε verifies (38): aε − a0 = O(ε) in L∞([0, T ],W s,∞).

Note that Ψa is indeed an approximate solution of (1) since

iε
∂Ψa

∂t
+

ε2

2
∆Ψa − Ψaf(|Ψa|2) =

(

− iεRm
a + aεRm

ϕ

)

exp
(

i
ϕε

ε

)

.

By using the notation of section 2, we have Rε = −iεRm
a + aεRm

ϕ , hence

sup
[0,T ]

∣

∣

∣

∣Rε
∣

∣

∣

∣

Hs ≤ Csε
m+2. (75)
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Proof.

As in [9], we look for expansions

aε =

m
∑

k=0

εkak + εm+1am+1, ϕε =

m
∑

k=0

εkϕk + εm+1ϕm+1.

This yields that (a0, ϕ0) solves the nonlinear system



















∂ϕ0

∂t
+ f(|a0|2) +

1

2
|∇ϕ0|2 = 0

∂a0

∂t
+

(

∇ϕ0
)

· ∇a0 +
a0

2
∆ϕ0 = 0,

(76)

which is just (9), and that for 1 ≤ k ≤ m, (ak, ϕk) solves the linear system



















∂ϕk

∂t
+ 2f ′(|a0|2)(a0, ak) + ∇ϕ0 · ∇ϕk = Sk

ϕ

∂ak

∂t
+

(

∇ϕ0
)

· ∇ak + ∇a0 · ∇ϕk +
a0

2
∆ϕk +

ak

2
∆ϕ0 = Sk

a ,

(77)

where the source terms (Sk
ϕ, Sk

a ) depend only on (aj , ϕj)0≤j≤k−1, and Sk
a is complex-valued.

We first solve (76) (that is (9)) with the initial condition ϕ0
/t=0 = ϕ0

0, a0
/t=0 = a0

0. By introducing

u0 ≡ ∇ϕ0 and by taking the gradient of the first equation of (76), we find















∂ta
0 + u0 · ∇a0 +

a0

2
∇ · u0 = 0

∂tu
0 + u0 · ∇u0 + ∇

(

f
(

(a0)2
)

)

= 0,

(78)

which is the compressible Euler type equation considered in the previous section. By using Theorem
4, we get the existence of a smooth solution (a0, u0) ∈ Hs−1 × Hs for every s on [0, T ∗) (with T ∗

independent of s), with a0 real-valued. Finally, to get ϕ0, it is natural to set

ϕ0(t, x) = ϕ0
0(x) −

∫ t

0

(

f
(

(a0)2
)

+
1

2
|u0|2

)

(τ, x) dτ,

and the same argument as in [2] yields u0 = ∇ϕ0.
We now turn to the resolution of (77). We solve it with the initial condition

(

ϕk, ak
)

/t=0
=

(

ϕk
0 , a

k
0

)

. By introducing again uk ≡ ∇ϕk, we can take the gradient in the first line of (77) to get















∂ta
k + u0 · ∇ak +

a0

2
∇ · uk + uk · ∇a0 +

ak

2
∇ · u0 = Sk

a ,

∂tu
k + u0 · ∇uk + ∇

(

a0, f ′((a0)2)ak
)

+ uk · ∇u0 = ∇Sk
ϕ.

(79)
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Again, since f ′
(

(a0)2
)

can vanish, the symmetrization of this linear hyperbolic system requires
some care. We thus set

F k(t, x) ≡







√
2

(

f ′((a0)2)
)

1

2 ak if n is odd
√

2 a0
( f ′((a0)2)

(a0)2

)
1

2 ak if n is even.

Note that in both cases, we have
F k(t, x) =

√
2 g(a0)ak

with g smooth. Indeed, as we have seen, we can write f ′(ρ) = ρn−1q(ρ) with q smooth and positive,
and we have in both cases :

g(a0) = (a0)n−1
(

q((a0)2)
)

1

2 . (80)

This is the natural generalization of the change of unknown used in [2]. Then, thanks to the
equation on a0, we get for (F k, uk) the system























∂tF
k + u0 · ∇F k +

1√
2

a0g(a0)∇ · uk +
√

2 g(a0)uk · ∇a0 +
F k

2

(

1 +
a0g′(a0)

g(a0)

)

∇ · u0 =
√

2g(a0)Sk
a

∂tu
k + u0 · ∇uk +

1√
2
∇

(

a0g(a0), F k
)

+ uk · ∇u0 = ∇Sk
ϕ.

Note that the coefficient a0g′(a0)
g(a0) is smooth even when a0 vanishes since g is under the form (80).

We have obtained a linear symmetric hyperbolic system with a zero order term and a source term
Sk depending only on (aj , ϕj) for 0 ≤ j < k under the form

∂tU
k +

d
∑

j=1

Aj(t, x)∂jU
k + L(t, x)Uk = Sk, Uk =

(

F k

uk

)

,

where Aj(t, x) are smooth, real and symmetric and the matrix L is smooth. By the classical theory,
there exists, on [0, T ∗), a smooth solution (F k, uk) in H∞ × H∞ of this system. Once uk is built,
we get ak by solving the transport equation for ak which is given by the first line of (79). Finally,
we deduce the phase ϕk by integrating in time the first line of (77). We obtain

ϕk(t, x) = ϕk
0(x) −

∫ t

0

(

2f ′(|a0|2)(a0, ak) + ∇ϕ0 · uk − Sk
ϕ

)

(τ, x)dτ.

Finally, we choose in a similar way (am+1, ϕm+1) that solve (77) with the initial condition
(

am+1, ϕm+1
)

/t=0
=

(

a
ε

0
,ϕε

0

)

. Because of the assumption (72), we find that they are also uniformly

bounded in Hs−1 × Hs with respect to ε. This concludes the proof of Lemma 2. �

4 Nonlinear stability

In this section, we give the proof of Theorem 2. We shall actually prove directly a more precise
version which states the existence of a WKB expansion to any order.
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Theorem 5 Consider Ψε
0 = aε

0e
iϕε

0
/ε with aε

0 ∈ H∞, ϕε
0 ∈ H∞ and that for some m ∈ N, there

exists an expansion (71) as in Lemma 2. We assume (A) and let (aε, ϕε) be the smooth approximate
solution given by Lemma 2 which is smooth on [0, T ∗). Then,

• if m = 0, there exists ε0 > 0 and T ∈ (0, T ∗) such that for every ε ∈ (0, ε0], the solution of (1)
with initial data Ψε

0 remains smooth on [0, T ] and satisfies for every s ∈ N, the estimate

∣

∣

∣

∣

∣

∣

∣

∣

Ψε exp
(

− i

ε
ϕε

)

− aε

∣

∣

∣

∣

∣

∣

∣

∣

L∞([0,T ],Hs)

≤ Csε.

• if m ≥ 1, for every T ∈ (0, T ∗), there exists ε0(T ) > 0 such that for every ε ∈ (0, ε0(T )], the
solution of (1) with initial data Ψε

0 remains smooth on [0, T ] and satisfies for every s ∈ N, the
estimate

∣

∣

∣

∣

∣

∣

∣

∣

Ψε exp
(

− i

ε
ϕε

)

− aε

∣

∣

∣

∣

∣

∣

∣

∣

L∞([0,T ],Hs)

≤ Cs,T εm+1.

Note that Theorem 2 is actually the special case m = 0 in Theorem 5.

Proof of Theorem 5.

Let s > d/2. We take (aε, ϕε) the approximate solutions given by Lemma 2 and look for the
solution of (1) under the form Ψε = (aε + w)eiϕε/ε. We get for w the equation (21) with F ε given
by (22) and the initial condition w/t=0 = 0. For s > d/2, and every ε > 0, this semilinear equation
is locally well-posed in Hs: we get very easily that there exists for some T ε > 0 a unique maximal
solution w ∈ C([0, T ε),Hs) of (21) (see [5] for example). We shall prove that T ε is bounded from
below by some T > 0 if m = 0, and that T ε ≥ T for every T ∈ (0, T ∗) for ε sufficiently small if
m ≥ 1. Let us define

τ ε ≡ sup
{

τ ∈ (0, T ε), ∀t ∈ [0, τ ], 2N ε
s

(

w(t)
)

≤ ε2m+4
}

.

Note that τ ε > 0 since w(0) = 0 and that by Sobolev embedding, we have, for t ≤ τ ε,

∣

∣

∣

∣w(t)
∣

∣

∣

∣

2

L∞ ≤ K2ε−2N ε
s

(

w(t)
)

≤ K2ε2m+2 ≤ K2,

for some K independent of ε.

We will apply Theorem 3 with F ε given by (22). To estimate F ε, we use the following lemma:

Lemma 3 Let R > 0, s > d/2 and w such that
∣

∣

∣

∣w
∣

∣

∣

∣

L∞ ≤ R, and F ε given by (22). Then, for a

constant C depending only on
∣

∣

∣

∣aε(t)
∣

∣

∣

∣

W s+2,∞ and R, we have

∣

∣

∣

∣F ε
∣

∣

∣

∣

2

Hs +
1

ε2

∣

∣

∣

∣ImF ε
∣

∣

∣

∣

2

Hs−1 ≤ Cε2m+4 + Cε2mN ε
s (w) + C

[

N ε
s (w)

ε4
+

(

N ε
s (w)

ε4

)2]

N ε
s (w).

We postpone the proof of Lemma 3 to the end of the section. We can first easily end the proof
of Theorem 5. Notice first that, by definition of Ψa, we have

Ra = Rm
a +

iε

2
∆aε = OHk(εm+1) + OHk(ε) = OHk(ε),
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for every k, uniformly for 0 ≤ t ≤ T , hence

1

ε

∣

∣

∣

∣Ra(t)
∣

∣

∣

∣

W s−1,∞ ≤ C.

Applying Theorem 3 and Lemma 3 with R ≡ K, we infer that for 0 ≤ t ≤ τ ε,

d

dt
N ε

s

(

w(t)
)

≤ Cε2m+4 + Cε2mN ε
s

(

w(t)
)

,

which gives immediately, since w/t=0 = 0, that

N ε
s

(

w(t)
)

≤ Cε2m+4
(

eCε2mt − 1
)

≤ 1

2
ε2m+4

in the following cases:

• for m = 0, 0 ≤ t ≤ T with 0 < T < T ∗ sufficiently small independent of ε,

• for m ≥ 1, T ∈ (0, T ∗) is arbitrary, 0 ≤ t ≤ T and ε ≤ ε0(T ) with ε0(T ) sufficiently small.

As a consequence, τ ε ≥ T as desired and

∣

∣

∣

∣w
∣

∣

∣

∣

L∞([0,T ],Hs(Rd))
≤ Cs,T εm+1.

It remains to prove Lemma 3.

Proof of Lemma 3.

We recall that F ε is given by

F ε = Rε + Qε(w) = Rε + (aε + w)
(

f(|aε + w|2) − f(|aε|2)
)

− 2(w, aε)f ′(|aε|2)aε.

As a first try, we could use the rough estimate

Qε(w) = O(|w|2) as w → 0,

which would lead to

∣

∣

∣

∣Qε
∣

∣

∣

∣

2

Hs +
1

ε2

∣

∣

∣

∣Im Qε
∣

∣

∣

∣

2

Hs−1 ≤ C

ε2

∣

∣

∣

∣w
∣

∣

∣

∣

4

Hs ≤ C

ε6
N ε

s (w)2,

which does not allow to conclude in the proof of Theorem 5 for m = 0 and does not give the sharp
result for the existence time if m = 1. To get the refined estimate of Lemma 3, the idea is then to
use a Taylor expansion for Qε w.r.t. w up to second order, and write

Qε(w) = |w|2f ′(|aε|2)aε + 2f ′(|aε|2)(w, aε)w + 2aεf ′′(|aε|2)(w, aε)2 + Gε(x,w),

so that for fixed x, we have as w → 0,

Gε(x,w) = O
(

|w|3
)

.

We turn now to estimate each term in F ε.
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Estimate for Rε = iεRm
a − Rm

ϕ aε. Thanks to (75), we have

∣

∣

∣

∣Rε
∣

∣

∣

∣

2

Hs ≤ Cε2m+4.

Moreover, since Rm
ϕ is real-valued and since, from (38), Imaε = OW s,∞(ε), we also have

1

ε2

∣

∣

∣

∣Im Rε
∣

∣

∣

∣

2

Hs−1 ≤ Cε2m+4

thanks to (74). We have thus proven that

∣

∣

∣

∣Rε
∣

∣

∣

∣

2

Hs +
1

ε2

∣

∣

∣

∣ImRε
∣

∣

∣

∣

2

Hs−1 ≤ Cε2m+4.

Estimate for Gε(x,w). The estimate relies on Lemma 5 in the appendix. Indeed, it is clear from
the Taylor formula that Gε may be written under the form

(

Re w
)2

h11

(

x,w(x)
)

+
(

Rew
)(

Im w
)

h12

(

x,w(x)
)

+
(

Im w
)2

h22

(

x,w(x)
)

,

where h11, h12, h22 : R
d × C → C are of class C∞ and ∀x ∈ R

d, h11(x, 0) = h12(x, 0) = h22(x, 0) =
0. Moreover, h11, h12 and h22 verify the hypothesis of Lemma 5 in the Appendix since aε ∈
L∞([0, T ],W s,∞). As a consequence, if

∣

∣

∣

∣w
∣

∣

∣

∣

L∞ ≤ R,

∣

∣

∣

∣Gε
∣

∣

∣

∣

Hs ≤ C
∣

∣

∣

∣w
∣

∣

∣

∣

3

Hs ,

which implies

∣

∣

∣

∣Gε
(

x,w(x)
)
∣

∣

∣

∣

2

Hs +
1

ε2

∣

∣

∣

∣Im Gε
(

x,w(x)
)
∣

∣

∣

∣

2

Hs−1 ≤ 2

ε2

∣

∣

∣

∣Gε
(

x,w(x)
)
∣

∣

∣

∣

2

Hs ≤ C

ε8
N ε

s (w)3.

The estimate for the quadratic terms in Qε(w) will rely crucially on the fact that aε is real to
first order and that (w, aε) is estimated in Hs−1 by N ε

s (w) and not just by ε−2N ε
s (w).

Estimate for F ε
1 ≡ |w|2f ′(|aε|2)aε. We have

∣

∣

∣

∣F ε
1

∣

∣

∣

∣

2

Hs ≤ C

ε4
N ε

s (w)2,

and in view of (38), Im aε = OW s,∞(ε), thus

1

ε2

∣

∣

∣

∣Im F ε
1

∣

∣

∣

∣

2

Hs−1 ≤ C
∣

∣

∣

∣|w|2
∣

∣

∣

∣

2

Hs−1 ≤ C

ε4
N ε

s (w)2.

Estimate for F ε
2 ≡ 2f ′(|aε|2)(w, aε)w. We begin with the rough estimate

∣

∣

∣

∣F ε
2

∣

∣

∣

∣

2

Hs ≤ C

ε4
N ε

s (w)2.
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Moreover, one has
∣

∣

∣

∣f ′(|aε|2)(w, aε)
∣

∣

∣

∣

2

Hs−1 ≤ CN ε
s (w). (81)

Indeed, let µ ∈ N
d with |µ| ≤ s − 1. Then,

∂µ
(

f ′(|aε|2)(w, aε)
)

=
∑

α+β+λ=µ

∗ ∂λ
[

f ′(|aε|2)
](

∂αw, ∂βaε
)

,

where ∗ is a coefficient depending only on α, β and λ. Since |µ| ≤ s− 1, the terms (∂αw, ∂βaε) are

bounded in L2 by Σ(w)
1

2 + ε||w||Hs−2 as soon as |α| ≤ s− 2. The term in the sum with |α| = s− 1
(hence µ = α and β = λ = 0) is f ′(|aε|2)

(

∂µw, aε
)

is bounded in L2 by N ε(∂µw). Hence, (81)
follows.

As a consequence, by (60) and Sobolev embedding, we obtain

∣

∣

∣

∣f ′(|aε|2)(w, aε)w
∣

∣

∣

∣

Hs−1 ≤ Cs

∣

∣

∣

∣w
∣

∣

∣

∣

L∞

(

∣

∣

∣

∣f ′(|aε|2)(w, aε)
∣

∣

∣

∣

Hs−1 +
∣

∣

∣

∣w
∣

∣

∣

∣

Hs−1

)

≤ C

ε2
N ε

s (w).

Consequently,
∣

∣

∣

∣F ε
2

∣

∣

∣

∣

2

Hs +
1

ε2

∣

∣

∣

∣Im F ε
2

∣

∣

∣

∣

2

Hs−1 ≤ C

ε4
N ε

s (w)2.

Estimate for F ε
3 ≡ 2aεf ′′(|aε|2)(w, aε)2. We find as for F ε

1

∣

∣

∣

∣F ε
3

∣

∣

∣

∣

2

Hs ≤ C

ε4
N ε

s (w)2,

and once again in view of (38),

1

ε2

∣

∣

∣

∣Im F ε
3

∣

∣

∣

∣

2

Hs−1 ≤ C
∣

∣

∣

∣w
∣

∣

∣

∣

4

Hs−1 ≤ C

ε4
N ε

s (w)2.

We conclude the proof of Lemma 3 summing these estimates. �

5 Geometric optics in a half-space

In this section, we consider the Gross-Pitaevskii equation in a half-space in dimension d ≤ 3

GP (Ψε) ≡ iε∂tΨ
ε +

ε2

2
∆Ψε − Ψε(|Ψε|2 − 1) = 0, x ∈ R

d
+ ≡ R

d−1 × (0,+∞). (82)

We consider the Neumann boundary condition (12) on the boundary and the condition (13) at
infinity, that is

∂Ψε

∂n /∂R
d
+

=
∂Ψε

∂z /z=0
= 0 and exp

( i

2ε
|u∞|2 t − i

ε
u∞ · x

)

Ψε → 1 |x| → +∞

by using the notation x = (y, z) ∈ R
d−1 × (0,+∞).
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5.1 Construction of the WKB expansion

In this section, we shall consider a smooth solution (a, u), with a real-valued, of











∂ta + u · ∇a +
1

2
a∇ · u = 0

∂tu + u · ∇u + ∇(a2) = 0,

(83)

with the boundary condition ud(t, y, 0) = 0 and the condition at infinity

u(t, x) → u∞, a(t, x) → 1 when |x| → +∞.

Since we look for a real-valued, the resolution of this system is made in [14] (Theorem 2). Given
s ∈ N

∗, if the initial datum a0 is positive and (a0−1, u0−u∞) ∈ Hs, and under some compatibility
conditions for (a0, u0) on the boundary ∂R

d
+ of sufficiently high order on the initial data, there exists

T0 ∈ (0,+∞) and a solution (a, u) on [0, T0] with (a−1, u−u∞) ∈ C0([0, T0],H
s)∩C1([0, T0],H

s−1),
such that

a(t, x) ≥ α > 0, ∀t ∈ [0, T0], ∀x ∈ Rd
+. (84)

for some α > 0. We also define the phase ϕ by

ϕ(t, x) ≡ ϕ0(x) −
∫ t

0

(1

2
|u|2 + |a|2 − 1

)

(τ, x) dτ.

In view of the condition (13) at infinity, ϕ is not in Hs but ϕ(t, .) − u∞ · x + t
2 |u∞|2 ∈ Hs. As we

have seen and as in [2], u = ∇ϕ.

The aim of this subsection is to prove the existence of WKB expansion (which involves boundary
layers since the solution of (83) does not match the Neumann boundary condition (12)) up to
arbitrary orders for (82), (12), (13) starting from a smooth (a, u) which verifies (84).

We define the set of boundary layer profiles Sexp as

Sexp =
{

A(t, y, Z) ∈ H∞(R+×R
d−1×R+), ∀k, α, l, ∃γ > 0, |∂k

t ∂α
y ∂l

ZA| ≤ Ck,α,l exp(−γZ)
}

.

Lemma 4 Let s ∈ N and m ∈ N
∗ be fixed. Then, there exists a smooth function Ψa,m = aεei ϕε

ε on
[0, Tm] verifying the Neumann condition (12) and the condition (13) at infinity and such that Ψa,m

is an approximate solution of (82) on [0, Tm]:

GP (Ψa,m) = εmRεei ϕε

ε , (85)

where Rε can be written under the form

Rε = −aε
(

Rint,m
ϕ (t, x) + R♭,m

ϕ (t, y,
z

ε
)
)

+ i
(

εRint,m
a (t, x) + R♭,m

a (t, y,
z

ε
)
)

, (86)
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with Rint,m
ϕ , Rint,m

a smooth and uniformly bounded in Hs and R♭,m
a (t, y, Z), R♭,m

ϕ (t, y, Z) ∈ Sexp.
Moreover, aε is real-valued and aε, ϕε have smooth expansions under the form

aε = a +

m−1
∑

k=1

εk
(

ak(t, x) + Ak(t, y,
z

ε
)
)

+ εmAm(t, y,
z

ε
), (87)

ϕε = ϕ +

m−1
∑

k=1

εk
(

ϕk(t, x) + Φk(t, y,
z

ε
)
)

+ εmΦm(t, y,
z

ε
). (88)

The boundary layer profiles Ak(t, y, Z), Φk(t, y, Z) belong to Sexp and are such that

∂ZA1(t, y, 0) = −∂za(t, y, 0), ∂ZΦ1(t, y, 0) = −∂zϕ(t, y, 0),

∂ZAk(t, y, 0) = −∂za
k−1(t, y, 0), ∂ZΦk(t, y, 0) = −∂zϕ

k−1(t, y, 0) ∀2 ≤ k ≤ m. (89)

Proof.

Since Ψa,m = aε exp
(

iϕε

ε

)

, we want to solve approximately

−aε
(

∂tϕ
ε +

1

2
|∇ϕε|2 + |aε|2 − 1

)

+ iε
(

∂ta
ε + ∇ϕε · ∇aε +

1

2
aε∆ϕε

)

+
ε2

2
∆aε = 0. (90)

Since, in this section, we are looking for aε real-valued, we can split the system (90) into


















∂ta
ε + ∇ϕε · ∇aε +

1

2
aε∆ϕε = 0

∂tϕ
ε +

1

2
|∇ϕε|2 + (aε)2 − 1 =

ε2

2

∆aε

aε

for t ≥ 0, x ∈ R
d
+. (91)

Note that in this section, the division by aε in the right-hand side of the second equation of (91) is
not a problem since a0 = a verifies (84) and hence does not vanish.

We thus plug the expansions (87), (88) in (91) and we cancel the powers of ε. To separate
interior and boundary layer terms, we use the general theory of [11]. In particular, we use that for
every smooth function f and V ∈ Sexp, we have the expansion

f
(

u(t, x) + V (t, y, z/ε)
)

= f
(

u(t, x)
)

+ f
(

u(t, y, 0) + V (t, y, z/ε)
)

− f
(

u(t, y, 0)
)

+ εR,

where R ∈ Sexp. This yields that the boundary layer part of f
(

u(t, x) + V (t, y, z/ε)
)

is given by
f
(

u(t, y, 0) + V (t, y, z/ε)
)

− f
(

u(t, y, 0)
)

. In the following, we use the notation Wb = W (t, y, 0) for
every W (t, x). At first, the ε−1 term in the equation only gives

ab∂ZZΦ1 = 0

and hence we have Φ1 = 0, since ab ≥ α > 0 and Φ1 ∈ Sexp. Note that this is coherent with the
fact that ud(t, y, 0) =

(

∂zϕ
)

b
= 0 so that we do not need a boundary layer to correct the boundary

condition. The ε0 term gives, as expected,














∂tϕ +
1

2
|∇ϕ|2 + a2 − 1 = 0

∂ta + ∇ϕ · ∇a +
1

2
a∆ϕ = 0

for t ≥ 0, x ∈ R
d
+ (92)
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for the interior part, and for the boundary layer terms, for (t, y) ∈ R
+ × R

d−1,

ab∂ZZΦ2 = −(∂zϕ)b ∂ZA1 = 0 for Z > 0, (93)

since (∂zϕ)b = ud(t, y, 0) = 0. Consequently, we also find Φ2 = 0. Next, the order ε gives











∂ta
1 + ∇ϕ · ∇a1 + ∇ϕ1 · ∇a +

1

2
(a∆ϕ1 + a1∆ϕ) = 0

∂tϕ
1 + 2a a1 + ∇ϕ · ∇ϕ1 = 0

for t ≥ 0, x ∈ R
d
+

in the interior and for the boundary layer terms











1

2
∂ZZA1 = A1

(

∂tϕ +
1

2
|∇ϕ|2 + a2 − 1

)

b
+ 2a2

bA
1 = 2a2

bA
1

ab∂ZZΦ3 = G3

for Z > 0, (94)

where G3 ∈ Sexp depends only on (a,A1, a1) and (ϕ,ϕ1). Consequently, the boundary layer A1 is
given by

A1 ≡ (∂za)b
2ab

e−2abZ

in order to match (89). Finally, the εk, k ≥ 2 terms give















∂tϕ
k + 2a ak + ∇ϕ · ∇ϕk = Sk

ϕ

∂ta
k + ∇ϕ · ∇ak + ∇a · ∇ϕk +

a

2
∆ϕk +

ak

2
∆ϕ = Sk

a

for t ≥ 0, x ∈ R
d
+ (95)

and






∂ZZAk = 4a2
bA

k + F k

∂ZZΦk = Gk
for Z > 0, (96)

where Sk
ϕ and Sk

a depend only on (a, ϕ) and (aj, ϕj)1≤j≤k−1; F k ∈ Sexp depends only on (a, ϕ),

(aj , ϕj , Aj ,Φj)1≤j≤k−1 and Φk; and Gk ∈ Sexp depends on (a, ϕ), (aj , ϕj , Aj ,Φj)1≤j≤k−1. Therefore,
if we want to solve by induction these equations, one has to determine first Φk, then (ak, ϕk) and
finally Ak.

To solve the cascade of equations by induction, we first determine (a1, ϕ1). As before, we
notice that (a1, u1 ≡ ∇ϕ1) solves a symmetrizable hyperbolic system (there is no problem with
the vacuum since we are in the same situation as in [9]). Since the condition at infinity is already
absorbed by (a, ϕ), one can look for (a1, u1) in Hs. Moreover, we solve the system in R

d
+ with the

boundary condition u1
d(t, y, 0) = 0 which is needed in order to match (89) since we have already

found that Φ2 = 0. The existence of a smooth solution for this linear system with the boundary
condition u1

d(t, y, 0) = 0 which is maximal dissipative and an initial condition satisfying suitable
compatibility conditions can be obtained by the classical theory [17]. Then, one finds ϕ1 by the
formula

ϕ1(t, x) = ϕ1
0(x) −

∫ t

0

(

2a a1 + u · u1
)

(τ, x) dτ.
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Furthermore, since F 2 ∈ Sexp and ab ≥ α > 0, the first equation in (96) (with k = 2) has a unique
solution A2 ∈ Sexp. We have therefore found (a1, A1, ϕ1,Φ1, A2,Φ2).

We now proceed by induction. Assume that, for some m ≥ 2, we have determined (aj , ϕj)1≤j≤m−1

and (Aj ,Φj)1≤j≤m. Then, we wish to solve (95) and (96) with k = m + 1. Since Gm+1 is already
determined and Gm+1 ∈ Sexp, the differential equation ∂ZZΦm+1 = Gm+1 has a unique solution in
Sexp and

∂ZΦm+1(t, y, Z) = −
∫ +∞

Z

Gm+1(t, y, ζ)

ab(t, y)
dζ.

This determines the boundary condition for um+1 ≡ ∇ϕm+1. Indeed, to match (89) we shall need
to impose

um+1
d (t, y, 0) = (∂zϕ

m+1)(t, y, 0) = −(∂ZΦm+1)(t, y, 0) =

∫ +∞

0

Gm−1(t, y, ζ)

ab(t, y)
dζ, (97)

which is non-zero in general. We then solve (96) in the following way: (am+1, um+1 ≡ ∇ϕm+1)
still solves a linear symmetrizable hyperbolic system, with source terms Sm+1

ϕ and Sm+1
a already

known, with the maximal dissipative boundary condition (97). It has then a smooth solution by
the above mentionned theory. Then, we recover ϕm+1 as usual by

ϕm+1(t, x) ≡ ϕm+1
0 (x) +

∫ t

0

(

Sm+1
ϕ − 2a am+1 − u · um+1

)

(τ, x) dτ.

Finally, the first equation in (96) (with k = m + 1) is a linear ODE for Am+1, with source term
Fm+1 ∈ Sexp now determined, for which we can write down explicitly the unique exponentially
decreasing solution satisfying ∂ZAk(t, y, 0) = −∂za

k(t, y, 0).
Consequently, we have constructed an approximate solution of (91) such that



















∂ta
ε + ∇ϕε · ∇aε +

1

2
aε∆ϕε = εm

(

Rint,m
a (t, x) + ε−1R♭,m

a (t, y, z/ε)
)

∂tϕ
ε +

1

2
|∇ϕε|2 +

(

aε
)2 − 1 =

ε2

2

∆aε

aε
(t, x) + εm

(

Rint,m
ϕ (t, x) + R♭,m

ϕ (t, y, z/ε)
)

,

where Rint,m
a (t, x), Rint,m

ϕ (t, x) are smooth bounded functions and R♭,m
a , R♭,m

ϕ ∈ Sexp. We can thus
write the error Rε in the GP equation as

Rε(t, x) = εm
(

− aε
(

Rint,m
ϕ (t, x) + R♭,m

ϕ (t, y, z/ε)
)

+ i
(

εRint,m
a (t, x) + R♭,m

a (t, y, z/ε)
)

)

.

This ends the proof of Lemma 4. �

5.2 Validity of the WKB expansion

We shall now prove the stability of the WKB expansion built in Lemma 4.

Theorem 6 Let Ψa,m = aεei ϕε

ε a WKB expansion defined on [0, Tm] given by Lemma 4. Then for
d ≤ 3 and m ≥ 4 there exists a unique smooth solution Ψε also defined on [0, Tm] of (82), (12),
(13) such that Ψε

/t=0 = Ψa,m
/t=0

. Moreover, we have the estimate

ε
∣

∣

∣

∣Ψεe
−iϕε

ε − aε
∣

∣

∣

∣

H1(Rd
+

)
+ ε3

∣

∣

∣

∣Ψεe−i ϕε

ε − aε
∣

∣

∣

∣

H3(Rd
+

)
≤ Cmεm− 1

2 , ∀t ∈ [0, Tm]
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and in particular

∣

∣

∣

∣Ψεe−i ϕε

ε −
(

a + εA1
)
∣

∣

∣

∣

W 1,∞(Rd
+

)
≤ Cm max{ε, εm− 7

2}. (98)

Remark 3 For simplicity, we have restricted ourselves to dimension d ≤ 3. Note however that it
is possible to get Hs estimates for every s. By contrast with Theorem 2, we emphasize that the
initial condition in Theorem 6 is exactly the WKB approximate solution Ψa,m. In particular, this
initial datum has to verify some compatibility condition on the boundary.

Proof.

As in the proof of Theorem 5, we set

Ψε = Ψa,m + w e
iϕε

ε

and we study the equation for w i.e. (19). Note that we are now seeking for w which tends to
zero at infinity since the boundary condition at infinity is already absorbed in the WKB expansion.
Again the first step is to get estimates for the linear equation (21) in Ω with the Neumann boundary
condition

∂zw(t, y, 0) = 0. (99)

As we can check in the proof of Lemma 1, in all the integration by parts that are performed, the
boundary terms vanish due to the Neumann boundary condition or the fact that uε

d(t, y, 0) = 0,
and hence the proof of the L2 stability will be almost the same as the one in the whole space.
Nevertheless, we have to pay attention to the presence of boundary layer terms in the coefficients.
At first, we note that since Φ1 = 0 and Φ2 = 0 in the WKB expansion, we still have that M (which
is defined in Lemma 1) is independent of ε. Indeed, for the worse term which is ∇(∇ · uε), we have

∇(∇ · uε) = ∂ZZZΦ3 + ∇∆ϕ + OL∞(ε).

Next, keeping the definitions of Ra and Rϕ given in (17), (18) and by construction of the WKB
expansion, we have

||Ra||L∞ ≤ Cεm. (100)

Nevertheless, again by construction of the WKB expansion, we only have

Rϕ = Rm
ϕ +

ε2

2

∆aε

aε

and due to the presence of boundary layers in aε, we can split Rϕ into

Rϕ = ε2Rint
ϕ (t, y, z) + εR♭

ϕ(t, y,
z

ε
), (101)

where Rint
ϕ is smooth and bounded whereas R♭

ϕ ∈ Sexp and we see that ε ||R♭
ϕ||L∞ = O(ε),

ε ||∇R♭
ϕ||L∞ = O(1), hence the estimate (23) of Lemma 1 would be useless. Moreover, the fact
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that R♭
ϕ belongs to Sexp does not seem to improve the estimates. The way to overcome this diffi-

culty seems to incorporate this new singular term into the functional. Let us define the operator

Sε
+w = −ε2

2
∆w + 2(w, aε)aε + εR♭

ϕw,

our weighted norm in this section will be

N ε
+(w) =

∫

Ω

(

(Sε
+w,w) + K ε2 |w|2

)

dx =
1

2

∫

Ω

(

ε2|∇w|2 + 4(w, aε)2 + 2εR♭
ϕ |w|2 + 2K ε2|w|2

)

dx.

Note that Rϕ has no sign, nevertheless, N ε
+(w) can be bounded from below by a weighted H1 norm

if K is chosen sufficiently large. Indeed, since R♭
ϕ belongs to Sexp we can write

2ε
∣

∣

∣

∫

Ω
R♭

ϕ |w|2 dx
∣

∣

∣
≤ Cε

∫

Ω
e

−γz
ε |w|2 dx

and then use the one-dimensional Sobolev inequality

|w(t, y, z)|2 ≤ C
(

∫

R+

|w(t, y, ζ)|2 dζ
)

1

2
(

∫

R+

|∂zw(t, y, ζ)|2 dζ
)

1

2

to get

ε

∫

Ω
e−

γz
ε |w|2 ≤ Cε||w||L2 ||∇w||L2

∫

R+

e−
γz
ε dz ≤ Cε2 ||w||L2 ||∇w||L2 . (102)

In particular, we have proven that

2ε
∣

∣

∣

∫

Ω
R♭

ϕ |w|2 dx
∣

∣

∣
≤ Cε2 ||w||L2 ||∇w||L2 . (103)

This yields thanks to the Young inequality

2ε
∣

∣

∣

∫

Ω
R♭

ϕ |w|2 dx
∣

∣

∣
≤ 1

2
ε2||∇w||2L2 + Cε2||w||2L2 (104)

where C is independent of ε. Consequently, if K is chosen such that 2K > C, we get

N ε
+(w) ≥ C0

(

ε2||w||2H1 +

∫

Ω
(w, aε)2 dx

)

, C0 > 0.

Note that in this section, we have
aε = a + O(ε)

with a ≥ α, this finally yields that N ε
+(w) is equivalent to the weighted norm

N ε
+(w) ∼ ε2||w||2H1 + ||Re w||2L2 . (105)

The first step in the proof of Theorem 6 is to prove the equivalent of Lemma 1. We shall prove
the estimate

d

dt
N ε

+

(

w(t)
)

≤ CN ε
+

(

w(t)
)

(106)

+||F ε||2L2 +

∫

Ω

4

ε
(w, aε)(iaε, F ε) −

∫

Ω
(iε∆w,F ε) −

∫

Ω
(iF ε, R♭

ϕw),

where C is independent of ε.
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Proof of (106).

The proof follows the same lines as the proof of Lemma 1. At first, since Sε
+ is self adjoint, we have

d

dt

∫

Ω

(

Sε
+w,w

)

dx =

∫

Ω

(

2
(

Sε
+w, ∂tw

)

+ 4(w, aε)(w, ∂ta
ε) + 2ε ∂tR

♭
ϕ |w|2

)

dx.

Since ∂tR
♭
ϕ ∈ Sexp, we can still use (102) to get

2ε

∫

Ω
∂tR

♭
ϕ |w|2 ≤ CN ε

+(w).

Next, as in the proof of Lemma 1, we use (21) to express ∂tw as

∂tw = − i

ε
Sε

+w −
(

uε · ∇w +
1

2
w∇ · uε

)

− i
ε2Rint

ϕ

ε
w − iF ε

ε

to get

2

∫

Ω

(

∂tw,Sε
+w

)

dx = 2

∫

Ω

(

−
(

uε · ∇w +
1

2
w∇ · uε

)

−
iε2Rint

ϕ

ε
w − i

F ε

ε
,Sε

+w
)

dx. (107)

Moreover, since Rint
ϕ and R♭

ϕ are real, we have the cancellation

∫

Ω
(iRint

ϕ w,R♭
ϕw) dx = 0.

Therefore, the only terms in the right-hand side of (107) which are not present in (25) are
−

∫

Ω(iF ε, R♭
ϕw) and

I = −2

∫

Ω

(

uε · ∇w +
1

2
w∇ · uε, εR♭

ϕw
)

.

To estimate I, we note that we have a bound on the second term by using again (102). It remains
to estimate the first term. Integrating by parts and using that uε

d(t, y, 0) = 0, we get

−2

∫

Ω

(

uε · ∇w, εR♭
ϕw

)

= ε

∫

Ω
∇ ·

(

R♭
ϕuε

)

|w|2 =

∫

Ω
∇ · uε εR♭

ϕ|w|2 +

∫

Ω
ε uε · ∇R♭

ϕ |w|2.

Again, the first term can be bounded thanks to (102). For the second one, we first notice that since
uε

d(t, y, 0) = 0 and R♭
ϕ ∈ Sexp, we have

ε
∣

∣uε · ∇R♭
ϕ

∣

∣ ≤ Cε
(

|∇yR
♭
ϕ| + |z∂zR

♭
ϕ|

)

≤ Cεe−
γz
ε .

This finally yields
I ≤ CN ε

+(w)

thanks to a new use of (102).
The end of the proof of (106) is then exactly the same as the proof of Lemma 1, since all

the integration by parts do not create boundary terms either because of the Neumann boundary
condition or because uε

d vanishes on the boundary.
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Higher order estimates.

The estimates of higher order derivatives are more involved than in the whole space. There are
two main reasons. The first one is that there is a new singular term εR♭

ϕw which creates bad terms
when we take the derivatives of the equation. The second reason is that to recover estimates on the
normal derivatives, we need to use the equation which gives in particular that ε2∂2

z behaves like ε∂t

and ε∇. This anisotropy in the weights does not seem to allow to construct high order functionals
like N ε

s (w) which allows to get Hs estimates without additional loss of ε. Let us use the notation

Λ = (Λ0, · · · ,Λd) =
(

∂t,∇y, p(z)∂z

)t

where the weight p(z) is given by p(z) = z/(1 + z). Note that we can apply Λ to the equation
since Λw still satisfies the Neumann boundary condition. The use of Λ is classical in hyperbolic
characteristic initial boundary value problems (see [17] for example) The weighted norm that we
shall estimate is

Y ε
+(w) ≡ N ε

+(w) + N ε
+(εΛw).

In dimension d ≤ 3, this is sufficient to get the nonlinear stability. We shall see in the proof why
the use of Λd is necessary.

We shall prove that

d

dt
Y ε

+(w) ≤ C
(

Y ε
+(w) + Xε(F ε) + Xε(εΛF ε)

)

(108)

for some C > 0 independent of ε where we have set

Xε(F ) ≡ ||F ||2H1 +
||F ||2L2

ε
+

||Im F ||2L2

ε2
.

Proof of (108).

As a preliminary, we shall rewrite (106) in a more convenient form. We can use that aε = a+O(ε)
with a real, perform an integration by parts and use (102) to get from (106) that

d

dt
N ε

+

(

w(t)
)

≤ CN ε
+

(

w(t)
)

+ Xε(F ε) (109)

where

Xε(F ε) = ||F ε||2H1 +
||F ||2L2

ε
+

||Im F ε||2L2

ε2
.

To prove (108), we start with the estimate of N ε
+(ε∂tw). When we apply ε∂t to (21), we find

(

iε∂t + Lε
)

ε∂tw = Rϕ ε∂tw + ε∂tF
ε + C (110)

where the commutator C can be splitted into

C = C1 + C2 + C3 (111)
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with

C1 ≡ ε
(

∂tRϕ

)

w,

C2 ≡ 2ε
(

(∂ta
ε, w)aε + (aε, w)∂ta

ε
)

,

C3 ≡ −iε2
(

∂tu
ε · ∇w +

1

2
∂t(∇ · uε)w

)

.

Consequently, we can apply (109) to (110) with the new source term ε∂tF
ε + C to get

d

dt
N ε

+

(

ε∂tw(t)
)

≤ CN ε
+

(

ε∂tw(t)
)

+ Xε(ε∂tF
ε) + Xε(C). (112)

Thus it remains to estimate Xε(C). Let us begin with Xε(C1). Thanks to the expansion (101), we
easily get

Xε(C1) . N ε
+(w) +

∫

Ω
|∂tR

♭
ϕ|2 ε4|w|2 + ε4|∇w|2) + ε4|∇∂tR

♭
ϕ|2 |w|2

. N ε
+(w). (113)

Note that we could have a better estimate by using that R♭
ϕ ∈ Sexp and (102). Next, we turn to

the estimate of Xε(C2). By using that aε = a + O(ε) with a real, we find

Xε(C2) . N ε
+(w) + ε||Re w||2L2 + ε2||∇w||2L2 . N ε(w). (114)

Note that the above estimate was sharp. This is for the estimate of this commutator C2 that we
had to chose the weight ε in front of the time derivative. Finally, we estimate Xε(C3) using that
∂tu

ε
d vanishes on the boundary which implies that

|∂tu
ε
d| . p(z).

Thanks to this remark, we find

Xε(C3) . N ε
+(w) + ε4||∇Λw||2L2 . Y ε

+(w). (115)

Note that this is for the control of this commutator that we are obliged to add the vector field
p(z)∂z in the definition of the functional space. Consequently, the combination of (112), (113),
(114) and (115) gives

d

dt
N ε

+

(

ε∂tw(t)
)

. Y ε
+

(

w(t)
)

+ Xε(ε∂tF
ε). (116)

The estimate of ε∇yw follows exactly the same lines, and we also find

d

dt
N ε

+

(

ε∇yw(t)
)

. Y ε
+

(

w(t)
)

+ Xε(ε∇yF
ε). (117)

The estimate of εΛdw = εp(z)∂zw requires some additional work since the vector field Λd does not
commute with the Laplacian. By applying εΛd to (21), we get

(

iε∂t + Lε
)

εΛdw = RϕεΛdw + εΛdF
ε + C + C4 (118)
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where C is defined as in (111) above with ∂t replaced by Λd and C4 is given by

C4 ≡ −ε3

2
[Λd,∆]w = −ε3

2

(

2
(

∂zp
)

∂zzw +
(

∂zzp
)

∂zw
)

.

Next, we can apply (106) to get

d

dt
N ε

+

(

εΛdw(t)
)

. N ε
+

(

εΛdw(t)
)

+ Xε(εΛdF
ε) + Xε(C) + ||C4||2H1

+
4

ε

∫

Ω
(εΛdw, aε)(iaε, C4) −

∫

Ω

(

iC4, R
♭
ϕ εΛdw

)

.

Since one can easily check that Xε(C) still satisfies the bounds (113), (114), (115), we obtain

d

dt
N ε

+

(

εΛdw(t)
)

. Y ε
+(w) + Xε(εΛdF

ε) + ||C4||2H1

+
4

ε

∫

Ω
(εΛdw, aε)(iaε, C4) −

∫

Ω

(

iC4, R
♭
ϕ εΛdw

)

.

Next, we note that
||C4||2H1 . ε6||w||2H3

and that

4

ε

∣

∣

∣

∫

Ω
(εΛdw, aε)(iaε, C4)

∣

∣

∣
.

4

ε

∫

Ω
ε|∂zw| |p(z)C4| . ε2N ε

+(w)
1

2

(

||p∂zzw||L2 + ||∂zw||L2

)

. N ε
+(w)

1

2 Y ε
+(w)

1

2 .

In a similar way, we also get

∣

∣

∣

∫

Ω

(

iC4, R
♭
ϕ εΛdw

)

∣

∣

∣
. ε||∂zw||L2 ||p C4||L2 . Y ε

+(w).

Consequently, we have proven that

d

dt
N ε

+

(

εΛdw(t)
)

. Y ε
+(w) + Xε(εΛdF

ε) + ε6||w||2H3 . (119)

To conclude, it remains to estimate ε6||w||2H3 . As usual, this is done thanks to the equation (19)
and the standard regularity result for elliptic equations. We rewrite (19) as the equation

ε2∆w = Gε, ∂zw(t, y, 0) = 0 (120)

where the source term enjoys the estimates

||Gε||2L2 . ε2||Λw||2L2 + ||w||2L2 + ||F ε||2L2 ,

||∇Gε||2L2 . ε2||∇Λw||2L2 + ||w||2H1 + ||∇F ε||2L2 .

Consequently, we get from (120) by standard elliptic regularity that

ε6||w||2H3 . Y ε
+(w) + ||F ε||2H1 . (121)
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By replacing this last estimate in (119), we finally obtain

d

dt
N ε

+

(

εΛdw(t)
)

. Y ε
+(w) + Xε(εΛdF

ε) + ||F ε||2H1 . (122)

To conclude, it suffices to sum the estimates (109), (116), (117) and (122) to get (108).

The estimate (108) is sufficient to prove the nonlinear stability stated in Theorem 6 for d ≤ 3.
Nevertheless, it is possible to prove by induction that for every s,

d

dt

(

∑

m≤s

N ε
+

(

(εΛ)mw
)

)

.
∑

m≤s

(

Xε
(

(εΛ)mF ε
)

+ N ε
+

(

(εΛ)mw
)

)

.

Nonlinear stability.

Thanks to (108) and Gronwall inequality, we get for 0 ≤ T ≤ Tm,where Tm is the existence time of
the approximate solution given by Lemma 4,

sup
[0,T ]

Y ε
+(w) . Y ε

+(0) + TeγT sup
[0,T ]

(

Xε(F ε) + Xε(εΛF ε)
)

for some γ > 0 independent of ε. Combining this last estimate with (121), we get

sup
[0,T ]

Zε
+(w) ≤ CTm

(

Y ε
+(0) + sup

[0,T ]

(

Xε(F ε) + Xε(εΛF ε)
))

, (123)

with
Zε

+(w) ≡ Y ε
+(w) + ε6||w||2H3 .

Thanks to this a priori estimate, one can easily prove by standard fixed point argument the existence
of a unique solution of (19) with the neumann condition ∂zw|z=0 = 0 on some interval of time
[0, T ε] ⊂ [0, Tm] such that Zε

+(w) remains finite.
By using that w/t=0 = 0 and the equation to compute the time derivative, we find

Y ε
+(w)/t=0 = N ε

+(ε∂tw)/t=0 ≤ CTmε2m.

Moreover, using that F ε = εmRε + Qε, we have thanks to (86) that

sup
[0,Tm]

(

Xε
+(Rε) + Xε

+(ΛRε)
)

≤ CTmε2m−1.

Inserting this into (123) yields, for 0 ≤ t ≤ T ε,

sup
[0,T ]

Zε
+(w) ≤ KTmε2m−1 + CTm sup

[0,T ]

(

Xε(Qε) + Xε(εΛQε)
)

. (124)

We can thus define τ ε ∈ (0, Tm] as the maximal time such that the solution w of (19) satisfies
Zε

+(w(t)) ≤ 2KTmε2m−1 on [0, τ ε]. As in the proof of Theorem 5, we shall prove that for ε sufficiently
small, we have τ ε = Tm. Here, the expression of Qε(w) is given by

Qε(w) = aε|w|2 + 2(w, aε)w + w|w|2.
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To conclude, we need to bound the right hand side of (124). To estimate the nonlinear term, we
use that for d ≤ 3, we have

||w||2L∞ . ||∇2w|| ||w||H1 ,

which gives

||w||2L∞ .
Zε

+(w)

ε4
. ε2m−5 ∀t ∈ [0, τ ε).

We shall take m such that 2m > 5 in order to get ||w||L∞ ≤ 1 for t ∈ [0, τ ε). This implies

||Qε||2H1 .
(

||w||2L∞ + ||w||4L∞

)

||w||2H1 .
Zε

+(w)2

ε6
.

Next, since H1(Rd) ⊂ L4 for d ≤ 3, we also have

||Qε||2L2

ε2
.

||w||4H1

ε2
(1 + ||w||2L∞) .

Zε
+(w)2

ε6
.

Consequently, we have already proven that

Xε(Qε) .
Zε

+(w)2

ε6
. (125)

Next, we evaluate Xε(εΛQε). At first, we write

ε2||ΛQε||2H1 . ε2||Λw||2H1

(

||w||2L∞ + ||w||4L∞

)

+ ε2||Λw||2L4 ||∇w||2L4

(

1 + ||w||2L∞)

and by using for d ≤ 3, the Sobolev embedding H1 ⊂ L4 and the Gagliardo-Nirenberg inequality

||∇f ||2L4 . ||f ||
1

2

H1 ||∇2f ||
3

2

L2,

we get for 0 ≤ t ≤ τ ε:

ε2||ΛQε||2H1 .
Zε

+(w)2

ε4
+ ε2||∇w||2H1 ||w||

1

2

H1 ||∇2w||
3

2

L2 .
Zε

+(w)2

ε6
.

Finally, by similar arguments, we also have

||εΛQε||2L2

ε2
. ||Λw||

1

2

L4 ||w||
1

2

L4 . ||Λw||2H1 ||w||2H1 .
Zε

+(w)2

ε6
.

We have thus proven that

Xε(εΛQε) .
Zε

+(w)2

ε6
. (126)

Consequently, inserting (125), (126) into (124), we get

sup
[0,τε]

Zε
+(w) ≤ KTmε2m−1 + CTm sup

[0,τε]

Zε
+(w)2

ε6
≤ KTmε2m−1 + 2KTmCTmε2m−7 sup

[0,τε]
Zε

+(w).

By choosing m ≥ 4, this allows to get for ε sufficiently small that τ ε = Tm and that

sup
[0,Tm]

Zε
+(w) ≤ Cε2m−1.

Finally, the estimate (98) follows by Sobolev embedding. This ends the proof of Theorem 6. �
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A A Lemma about composition in Sobolev spaces

During the proof of Lemma 3, we have used a result about composition in Sobolev spaces. This
result is very standard when h does not depend on x (see, for instance, [18]).

Lemma 5 Let R > 0, s ∈ N and h = h(x,w) ∈ Cs+1(Rd × R
2, R), satisfying h(x, 0) = 0 for all

x ∈ R
d. Assume moreover

A ≡ sup
{∣

∣

∣

∣∂α
x ∂β

wh
∣

∣

∣

∣

L∞(Rd×BR)
, α ∈ N

d, β ∈ N
2, |α| ≤ s, |α| + |β| ≤ s + 1

}

< +∞.

Then, there exists C, depending only on A, s and R, such that, for any w ∈ Hs(Rd) satisfying
|w|L∞(Rd) ≤ R, we have h

(

x,w(x)
)

∈ Hs(Rd) and

∣

∣

∣

∣h
(

x,w(x)
)∣

∣

∣

∣

Hs ≤ C
∣

∣

∣

∣w
∣

∣

∣

∣

Hs .

Proof. The proof is by induction on s ∈ N and relies on the Gagliardo-Nirenberg inequality. If
s = 0, it suffices to notice that since h(x, 0) = 0, then for w ∈ BR,

|h(x,w)| ≤ A|w|.

Assume then the result for s − 1 ∈ N. Let µ ∈ N
d with |µ| = s. One has easily

∂µ
(

h(x,w(x))
)

=
∑

∗
(

∂α
x ∂β+γ

w h
)(

x,w(x)
)(

∂βw1

)p(
∂γw2

)q
,

where α ∈ N
d, α ≤ µ, β, γ ∈ N

2, p, q ∈ N
∗ depend on β and γ, |α| + p|β| + q|γ| = s, and ∗ is

a coefficient depending only on µ, α, β and γ. Furthermore, since w ∈ Hs ∩ L∞, the Gagliardo-
Nirenberg inequality yields, for 1 ≤ k ≤ s,

∣

∣

∣

∣w
∣

∣

∣

∣

W k,2s
k
≤ Ck,s

∣

∣

∣

∣w
∣

∣

∣

∣

k
s

Hs

∣

∣

∣

∣w
∣

∣

∣

∣

1− k
s

L∞ .

As a consequence, by interpolation, if w ∈ Hs ∩L∞ and
∣

∣

∣

∣w
∣

∣

∣

∣

L∞ ≤ R, then for γ ∈ N
d, |γ| ≤ s, and

2 ≤ p ≤ 2s
|γ| ,

∣

∣

∣

∣∂γw
∣

∣

∣

∣

Lp ≤ Cs,p,R

∣

∣

∣

∣w
∣

∣

∣

∣

2

p

Hs .

Therefore, in view of |α| + p|β| + q|γ| = s, by Hölder inequality, we can estimate the terms in
∂µ

(

h(x,w(x))
)

for which α 6= µ (thus |α| < s) as

∣

∣

∣

∣

(

∂α
x ∂β+γ

w h
)(

x,w(x)
)(

∂βw1

)p(
∂γw2

)q∣
∣

∣

∣

L2 ≤ A
∣

∣

∣

∣∂βw1

∣

∣

∣

∣

p

L
2

s−|α|
|β|

∣

∣

∣

∣∂γw2

∣

∣

∣

∣

q

L
2

s−|α|
|γ|

≤ Cs,p,RA
∣

∣

∣

∣w
∣

∣

∣

∣

Hs .

For the term for which α = µ, we note that since h(x, 0) = 0 for x ∈ R
d, then (∂α

x h)(x, 0) = 0 for
any x ∈ R

d, so that if w ∈ BR ⊂ R
2,

∣

∣(∂α
x h)(x,w)

∣

∣ ≤ A|w|,
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which implies
∣

∣

∣

∣(∂α
x h)

(

x,w(x)
)
∣

∣

∣

∣

L2 ≤ A
∣

∣

∣

∣w
∣

∣

∣

∣

L2 ≤ A
∣

∣

∣

∣w
∣

∣

∣

∣

Hs .

Combining these two estimates gives

∣

∣

∣

∣∂µ
(

h(x,w(x))
)∣

∣

∣

∣

L2 ≤ Cs,p,RA
∣

∣

∣

∣w
∣

∣

∣

∣

Hs

and the proof of the Lemma is complete. �
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