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Geometric optics and boundary layers
for Nonlinear-Schrodinger Equations.

D. Chiron, F. Rousset*

Abstract

We justify supercritical geometric optics in small time for the defocusing semiclassical Non-
linear Schréodinger Equation for a large class of non-necessarily homogeneous nonlinearities. The
case of a half-space with Neumann boundary condition is also studied.

1 Introduction
We consider the nonlinear Schrédinger equation in Q € RY
ove 2
e~ +%Mﬁ—xyff(|\1ﬁ|2) —0, TRV x Q- C 1)

with an highly oscillating initial datum under the form

1
oo = U5 = o (265 ). )

where ¢f is real-valued. We are interested in the semiclassical limit ¢ — 0. The nonlinear
Schroédinger equation (1) appears, for instance, in optics, and also as a model for Bose-Einstein
condensates, with f(p) = p — 1, and the equation is termed Gross-Pitaevskii equation, or also
with f(p) = p? (see [13]). Some more complicated nonlinearities are also used especially in low
dimensions, see [12].

At first, let us focus on the case Q = R?. To guess the formal limit, when e goes to zero, it is
classical to use the Madelung transform, i.e to seek for a solution of (1) under the form

¥ =/ exp (%E).
E

By separating real and imaginary parts an by introducing u® = V¢*®, this allows to rewrite (1) as
an hydrodynamical system

op®+ V- (p°u’) =0
3)

2 5
ot + (- V) + V(1) = SV (2L,
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The system (3) is a compressible Euler equation with an additional term in the right-hand side
called quantum pressure. As e tends to 0, the quantum pressure is formally negligible and (3)
reduces to the (compressible) Euler equation

8tp+V-(pu) =0
(4)
du+ (u-V)u+V(f(p) =0.

The justification of this formal computation has received much interest recently. The case of analytic

data was solved in [7]. Then for data with Sobolev regularity and a defocusing nonlinearity, so that

(4) is hyperbolic, it was noticed by Grenier, [9], that it is more convenient to use the transformation
(>

U® = af exp (z%) (5)

and to allow the amplitude a® to be complex. By using an identification between C and R?, this
allows to rewrite (1) as

8ta5+u5-Va5+a—V~u€ = EJAa8
2 2

(6)

O + (u* - V)us + V(f(la*?)) =0,

where J is the matrix of complex multiplication by ¢:
0 —1
(1)

8ta+u~Va+gV-u:O

When ¢ = 0, we find the system

(7)
Oru+ (u-V)u+V(f(la?)) =0,

which is another form of (4), since then (p = |a|?,u) solves (4). The rigorous convergence of (6)
towards (7) provided the initial conditions suitably converge was rigorously performed by Grenier
[9] in the case f(p) = p (which corresponds to the cubic defocusing NLS). More precisely, it was
proven in [9] that there exists 7' > 0 independent of ¢ such that the solution of (6) is uniformly
bounded in H® on [0,7]. In terms of the unknown W¢ of (1), this gives that

sup sup H\IJE exp ( — if) HHS < 400
£€(0,1] [0,T7] €

for every s where (a,u = Vy) is the solution of (7). Furthermore, the justification of WKB
expansions under the form
m . .
v — (Zskak)e% = O(e™)es
k=0

for every m was performed in [9]. The main idea in the work of Grenier [9] is to use the symmetrizer

— M 1 1
S = diag (1,1, 4f’(\a|2)"“ ’4f/(|a\2))

2



of the hyperbolic system (7) to get H® energy estimates which are uniform in e for the singularly
perturbed system (6). The case of nonlinearities for which f” vanishes at zero (for instance the
case f(p) = p?) was left opened in [9]. The additional difficulty is that for such nonlinearities, the
system (7) is only weakly hyperbolic at a = 0 and in particular the symmetrizer S becomes singular
at a = 0.

In more recent works, see [19], [14], [1] it was proven that for every weak solution of (1) with
f(p)=p—1or f(p) = p, the limits as ¢ — 0

T2 —p—0 in L>([0,T],L?) eIm (U°VI) —pu—0  in L®([0,7],L},.) (8)

hold under some suitable assumption on the initial data. The approach used in these papers is
completely different, and relies on the modulated energy method introduced in [4]. The advantage
of this powerfull approach is that it allows to describe the limit of weak solutions and to handle
general nonlinearities once the existence of a global weak solution in the energy space for (1)
is known. Nevertheless, it does not give precise qualitative information on the solution of (1),
for example, it does not allow to prove that the solution remains smooth on an interval of time
independent of ¢ if the initial data are smooth or to justify WKB expansion up to arbitrary orders
in smooth norms.

In the work [2], the possibility of getting the same result as in [9] for pure power nonlinearities
f(p) = p° in the case 2 = R? was studied. It was first noticed that, thanks to the result of [15],
the system

0ta+Vg0-Va+gA90 =0

1 o ) 9)
Op + 5IVel” + f(lal") =0,

with the initial condition (a, gp) = (0107@0) € H® has a unique smooth maximal solution

/t=0
(a,) € C([0,T*[, H*(R?) x H*"1(R?)) for every s. It was then established:

Theorem 1 ([2]) Let d < 3, 0 € N* and initial data af, p§ = wo in H*® such that, for some
functions (pg,ag) € H*,
@b = aoll . = OC).

for every s > 0. Then, there exists T* > 0 such that (9) with f(p) = p° has a smooth mazximal
solution (a,p) € C([0,T*[, H>® x H*). Moreover, there exists T € (0,T*) independent of €, such
that the solution of (1), (2) remains smooth on [0,T] and verifies the estimate

e P
sup H‘I/ exp( ’LE)

) < +00, (10)
€€(0,1]

HLoo([o,T],Hs

where
o if o =1, then s € N is arbitrary,
e ifoc =2 and d =1, then one can take s = 2,
e ifo=2and 2 <d <3, then one can take s =1,

e if 0 > 3 then one can take s = o.



As emphasized in [2], in some cases, the global existence of smooth solutions is already known
for (1). For example, in the quintic case, 0 = 2, global existence is known for d < 3 (see [6] for
the difficult critical case d = 3), so that only the bound (10) is interesting. Nevertheless, Theorem
1 may be also applied to cases where (1) is H' super-critical (¢ > 3, d = 3 for example) and
hence the fact that it is possible to construct a smooth solution on a time interval independent of
¢ is already interesting. The main ingredient used in [2] is a subtle transformation of (1) into a
perturbation of a quasilinear symmetric hyperbolic system with non smooth coefficients when o > 2.

The first aim of this paper is to prove that the estimate (10) holds true for every s, every
dimension d and every nonlinearity f which satisfies the following assumption:

(A fec™®(0,+)), f(0)=0, >0 on (0,+c), In e N, f0)#£0.

Note that we allow f’ to vanish at the origin. The assumption (A) takes into account in
particular all the homogeneous polynomial nonlinearities f(p) = p° but also nonlinearities under
the form f(p) = p? + p°2 or ﬁp for example. Our result reads:

Theorem 2 We assume (A), and consider an initial data (2) with ¢j real-valued, ag, ¢ in H>
such that, for some real-valued functions (o, a0) € H*, we have for every s,

|ag — aol ;7. = O(e) and |65 = @0l o = OCe).

Then, there exists T* > 0 such that (7) with initial value (ao, o) has a unique smooth maximal
solution (a,p) € C([0,T*[,H>® x H*®). Moreover, there exists T € (0,T*] such that for every
e € (0,1), the solution W€ to (1)-(2) exists at least on [0,T] and satisfies for every s

< +00.
L>([0,T],H?)

sup

Ue exp ( — Ego)
£€(0,1] €

More precisely, there ezists ¢° = ¢ + Op(g) such that, for every s,

|

Let us give a few comments on the statement of Theorem 2.

At first, note that Theorem 2 contains a result of local existence of smooth solutions for (9)
in the case of non necessarily homogeneous nonlinearities satisfying (A). Since (a, Vi) solves a
compressible type Euler equation, the case of a homogeneous nonlinearity was studied in [15], and
we thus give an extension of this result to smooth non-linearities satisfying assumption (A). A
precise statement of our result with the required regularity of the initial data is given in Theorem
4 below. The new difficulty when f is not homogeneous is that the nonlinear symmetrization does
not seem to allow to transform the problem into a classical symmetric or symmetrizable hyperbolic
system with smooth coefficients.

The correction of order € that we have to add to the phase to get the estimate (11) is expected.
Indeed, a perturbation of order € in the phase modifies the amplitude at the leading order.

Our approach to prove Theorem 2 is completely different from the one of [2] and [9]. We do not
work any more on the system (6) or any reformulation of (1) into a perturbation of a quasilinear

= O(e). (11)
L>°([0,T],H?)

Ueexp (— ggos) —a




symmetric hyperbolic system, but directly on the NLS equation (1). Basically, we first prove the
linear stability for (1) in arbitrary Sobolev norms of highly oscillating solution of the form ae?/
and then use a fixed point argument to prove the nonlinear stability. The crucial estimate of linear
stability of highly oscillating solution is given in Lemma 1 and Theorem 3.

This actually allows to justify WKB expansions up to arbitrary orders (see Theorem 5). Since
we deal in this paper with sufficiently smooth and in particular bounded solutions, the assumption
(A) can be replaced by a local version where we assume that f’ > 0 on (0, 3) with 3 independent
of ¢ if the initial datum verifies |ag|? < 3. Indeed, since a° takes it values in the (weak) hyperbolic
region of the limit system (7), there still exists a local smooth solution of (7) defined on [0,7] for
some 71" > 0 and the stability argument leading to Theorem 2 still holds. Consequently, our result
can also be applied to nonlinearities like f(p) = p°* — p°2 for every o9 > o1 provided |ag|? < 8 < 1.
Note that when o9 is too large, the classical global existence result of weak solutions (see [8]) for
(1) is not valid and hence it does not seem possible to use the modulated energy method of [1], [14]
to investigate the semi-classical limit.

Finally, the last advantage of our approach is that it can be easily generalized to the case of a
domain with boundary and to non-zero condition at infinity. This will be the aim of the second
part of the paper. We shall restrict ourself to a physical case, the Gross-Pitaevskii equation, i.e.
f(p) = p— 1. The generalization to more general nonlinearities satisfying an assumption like (.A)
is rather straightforward. This simplifying assumption is only made to avoid the multiplication of
difficulties. Again to avoid too many technicalities, we restrict ourselves to the simplest domain
Q= Ri = R%! x (0, +00). For z € R‘ff_, we shall use the notation = = (y,2), y € R4™! 2 > 0. We
add to (1) the Neumann boundary condition

9, U5 (t,y,0) = 0. (12)

We also impose the following condition at infinity

00‘2 00 |

L (13)

2e

Ue(t,x) ~ exp ( —it
that we can write in hydrodynamical variables
|\Ifs(t,a:)‘2 — 1, u®(t,x) — u™, |z| — 400,

where u®° is a constant vector. This condition appears naturally when we study a moving obstacle
in the fluid. Indeed, if we start from (1) with the Neumann boundary condition on an obstacle
moving at constant velocity and fluid at rest at infinity, then we can use the Galilean invariance of
(1) to transform the problem into the study of (1) in a fixed domain but with the condition (13)
at infinity.

This problem with such boundary conditions is physically meaningfull since it can be used to
describe superfluids past an obstacle (we refer to [16] for example). The semiclassical limit ¢ tends
to zero was already studied in [14] by using the modulated energy method. The limit (8) was proven
with (p,u) the solution of the compressible Euler equation with boundary condition u - n o0 =0, n
being the normal to the boundary. Note that the result of [14] is restricted to the two-dimensional
case only in order to have a global solution in the energy space of (1). By using more recent results
on the Cauchy problem, [3], one can also get the result in the three-dimensional case at least when
u® = 0. Our aim here is to give a more precise description of the convergence which takes into



account boundary layers. More precisely, since the solution of the Euler system (9) cannot match
the Neumann boundary condition d.a(t,y,0) = 0, a boundary layer of weak amplitude ¢ and of

size € appears. They are formally described for example in [16]. WKB expansions ¥ = a%¢’ % are
thus to be seek under the form

+Z ( (t,x) + A (t,y, = )), ¢°+§:e’“< (t,x) + ®*(t,y, = )) (14)

k=1

where the profiles A*(t,y, Z), ®*(t,y,Z) are exponentially decreasing in the Z variable and are
chosen such that

9.ak (t,y,0) + 07 AF L (t,y,0) =0,  8,¢"(t,y,0) + 97" L(t,y,0) =0

so that the approximate WKB expansion ¥WAEB = ¢ exp (%gps ) matches the Neumann boundary
condition (12). Our result (Theorem 6) is that under suitable assumptions on the initial conditions,
we have the nonlinear stability of WKB expansions: in particular we have the existence of a smooth
solution for (1), (12), (13) on a time interval independent of ¢ and the estimate

W= — af 0 e (15)

Note that it is necessary to incorporate the boundary layer ¢A! in order to get (15) since its gra-
dient has amplitude one in L*>°. The case of Dirichlet boundary condition which is also physically
meaningfull, we again refer to [16], seems more complicated to handle as often in boundary layer
theory in fluid mechanics since the boundary layers involved have amplitude one. This is left for
future work.

The paper is organized as follows. In section 2, we prove the linear stability in H® of an
approximate WKB solution of (1) under the form aexp (2%5) in the case @ = R?. This is the
crucial part towards the proof of Theorem 2. Next in section 3, we give the construction of a
WKB expansion up to arbitrary order and give the proof of the local existence of smooth solution
for the compressible Euler equation with a pressure law satisfying (A). In section 4, we give the
justification of WKB expansions at every order and recover Theorem 2 as a particular case. This
part uses in a classical way the linear stability result and a fixed point argument. Finally, in section
5, we study the problem in the half-space with Neumann boundary condition.

2 Linear Stability

In this section, we consider a smooth WKB approximate solution ¥* = af exp (z%g) of (1) such
that

€

NLS(¥) = R exp (i), (16)

where

2
NLS(T) = icd, T + %A\If —Tf(T[).



Moreover, we also set
— € 1 €12 €12
Ry =0 + 5|9 + 7o) (1)
1

R, = 0a® + V¢© - Va© + 3 a®Ap®, (18)

so that )
R = —a°Ry, +icR, + % Adt.

Looking for an exact solution of (1) under the form

V=0t we's = (0 +w)e' =,

we find that w solves the nonlinear Schrodinger equation
ie(atw ot Vw + %w v u) + ;Aw — 2w, a®) f(|a*})af = Rpw — RE + Q°(w),  (19)
where (-, ) stands for the real scalar product in C ~ R?, with
u® = Ve*
and the nonlinear term Q°(w) is defined by
Q°(w) = (a + w)( £(la® +wP) - £(1a?) ~ 2w, a) /(0" )a’. (20)

Of course, R® will be very small and R, (and R,) are to be thought small (at least O(e)) for
applications to nonlinear stability results. Nevertheless, in this section the exact form of these
terms is not important. The way to construct an accurate WKB solution ¥ will be explained in
the next section.

Remark 1 If we work with a non-linearity f such that f(A?) = 0 for some A € R, we can impose
a non-zero condition at infinity such as ag € A+ H* and Vg € U™ + H* for some constant
vector U® € R%. Since we can still look for the perturbation w in H®, this does not affect the
proofs.

Since we expect the correction term w to be small, we shall only consider in this section the

linearized equation
ow

ot

where the linear operator L¢ is defined as

ie—— + L5w = R,w + F°, xR, (21)

[\

€

L5 (w) = EAw +icu® - Vw + %wv ~uf —2f(|a®*)(w, a®)a’.

In this section, F*© is considered as a given source term. Of course, for the proof of Theorem 2, we
shall apply the result of this section to

Ff = —R° 4 Q°(w). (22)



Furthermore, let us emphasize that at this stage, R, is seen as a multiplicative operator with no
link with the vector field u® appearing in £°, even though we will use this lemma with ©®* = V°©.
We notice that L¢ is formally self-adjoint, but only the first and last term give rise to a nonnegative
quadratic functional. Indeed, the quadratic form (in H!) associated to the operator

2
Stw= —%Aw + 2f'(|a®|*)(w, a®)a®

is, since f’ >0,

1
/ (w, 8 w) = —/ 2 Vw|* + 4f'(|a*) (w, a®)* > 0.
Rd 2 Rd

It is then natural to consider the (squared) norm / (w,S8%(w)) as a good energy for the linearized
Rd
equation (21). Consequently, we introduce the weighted norm

1
N (w) = 5/ e|Vwl® +4f'(|o* ) (w, a*)? + Ke?|w]®
Rd
for every K > 0 (K will be chosen sufficiently large only in the next subsection).

Our first result of this section is a linear stability result in the energy norm N¢(w).
Lemma 1 Assume that v® : [0,T] x R — R? and a® : [0,T] x R? — C are smooth and such that
_ 2
M= HVIUEHLOO([O,T]de) +[|Va(V - UE)HLOO([O,T]XRUZ) +||la°] HLOO([O,T]x]Rd) < F00.

Let w € CY([0,T], H?) be a solution of (21). Then, there exists Cp depending only on d, f and M
such that for every e € (0, 1], the solution w of (21) satisfies the energy estimate

GV (w(0) = Car (14 LR o+ 2RO e + RO ) Vo () (23

dt
4
1O = | =f (6w, a%)(a",iF7) +/ (eAw, iF?).
Rd € Rd
Note that it is very easy to get from (23) and the Gronwall inequality a classical estimate of
linear stability. Indeed, assuming that Ry = Opec((o,7],1)(€) and Ry, = OLOQ([O,TLWLOQ)(EQ) (which
is true if (af, ¢°) come from the WKB method), we infer from a crude estimate for the two last
terms in (23) that for 0 <¢ < T,
d

@Ns (w(t)) < CNE(w(t)) 4 ELZHFE(t)HZu

which gives for 0 <t < T

t
N (w(t)) < e (Nf(w(o)) + 5_12 /O [Fcal dT),

which is a more classical result of linear stability in the energy norm N¢(w) since the amplification
rate C' is independent of €. Nevertheless, to get H® estimates and the best nonlinear results as
possible, it is important to have the special structure of the two last terms in (23).

Modulated linearized functionals like N¢ were also used in asymptotic problems in fluid me-
chanics, see [10] for example.



2.1 Proof of Lemma 1

The norms L>®, W1 L2 .. always stand for the norms in the x variable. At first, since S¢
is self adjoint, we have

d

7 (S*w,w) = / 2(S5w, dyw) + 20, [f'(|a°|*)] (w, a®)? + 4f'(|a®|*) (w, a®) (w, Opa®).  (24)
R4 R4

Next, we use (21) to express dyw as

(. - 1 - 1 T .
8tw:——8w—(u -Vw+—wV~u)——R<pw——F

€ 2 € €

to get

€ 52 1(| €2 E\NE o ,E 1 € i i €
2 [ (SFw,dw) =2 (—Aw—Qf(|a|)(w,a)a,u-Vw+—wV~u+—R<pw+—F>.(25)
Rd Rd 2 2 9 9

We shall now estimate the various terms in the right-hand side of (25). Integrating by parts, we
get

/ (52Aw,1R¢w) = —5/ (Vw,inR@
R4 € Rd
e|VRy| oo |w] 2| Vw2

IN

IN

1

B | Ry lyyi.o0 N (w).

Note that we have used that R, is real-valued and thus that
(Vw,iR,Vw) =0

for the first equality. We also easily obtain by integration by parts that

/]Rd (52Aw,wv . ue)

IN

C(HV | o + [ VV ua)HLw) (€2HWH§ +€2HwHi2)
< CuNe(w).

In the proof, Cys is a harmless number which changes from line to line and which depends only on
M. In particular, it is independent of . Moreover, we can also write for k=1,--- ,d,

/(82wu5'Vw) = —/ ua-VM—/(a Opu® -V
kk® - kW, OLU w)
Rd Rd 2

2
= / —|akw‘ V-u® — / (8kw, Okus : Vw)
Rd 2 Rd

and hence, we immediately infer

/Rd (EQAw,us : Vw) < CyNe(w).



Furthermore, from the inequality 2ab < a? + b2, there holds
2 [ PP (@ iRw) < SR [ () w00 el
< DR [ 7l P + 2l
< RN (w) (26)

Consequently, we can replace (25) in (24) and use the above estimates to get

d

& oo (Sw,w) = /Rd 4f/(|a5|2)(w,a5)<(w,8ta5) — (v Vw + %wv . us,a5)> (27)

12 [ alf e P w.a)? + B,
R
where F; satisfies the estimate
1 1 _
B < (14 MR + S )V @ &
4
2 [P @ i)+ [ (i)
€ JRrd Rd
To estimate the first integral in the right hand side of (27), we use the equation (18) to get
1(| €12 € € € 1 € &
[ £l P, 0) ((0.00) = (o Voot JuV ot a?))
Rd 2
=4 [ PP w0) (0. R) = 0 - ) = (0,0 )

_4/f\a5| w, 0% (w, By) —2/f\a5\ V((w,a°)? —4/f\a5\ (0,02 V - uf
— o [ 1 ><w,a€><w,Ra>+2/Rd<w,af>2uf-v £ )] =2 [ 00V

To get the last line, we have integrated by parts the second integral. Note that the last term is
C

bounded by CyyN¢(w), and, as for (26), that the first integral is bounded by —&|Rq| g N¢(w).
€

Consequently, we can replace the above identity in (27) to get

% (st,w) = /Rd 2(w, a®)? (8,5 +u® - V)f/(\a5|2) +E+FEy=:1+FEi+ Es, (29)
where Fs is such that
1 €
Ey < O (14 <[ Bal o ) N¥(w). (30)

To estimate I, we use again the equation (18) which gives

1
—=a®V- ue,cf)

<8t+u5-v>f,(‘a€| )—2f”(|a5\ )( Ora® + u® )_Qf”(| | )( a3

10



and hence we find
1<c / a2 |£(|af1?)| (w, af)? + 4 / @11 (10 2)] (w,a°)? | Ral.
Rd Rd

To conclude, we shall use the assumption (A). By defining n € N* the first integer such that
f (")(O) % 0, we see from Taylor expansion that

f'(p) = " talp) (31)
for some smooth positive function ¢ on [0, +00). In particular, since ¢ > 0, we have
pf"(p) 7(p) _ oo
p— =n—1+p € C*™([0,+00)),
f'(p) a(p) ( )
which implies
10" (p)] < Cuef'(p) for 0<p< M. (32)

This yields
/ a1 (|a)|(w, a%)? < CM/ (w,a%)?f'(|a"]?) < CarN® (w),
R4 Rd

where, again, Cjs depends only on M. In a similar way, we also obtain

[ a Pl 10 Pl Bl < Bl [Tl [(0,0%)] - Ja* ()
]Rd

R |

CM € (| 4€|2

< THRGHLOO (E‘WD (w,a®)\/ f'(|a%]?)

R4

C

< DL Ry N (),

Consequently, we have proven that
1
1< Oy (14 2| Bal| oo ) V¥ (). (33)

To get the result of Lemma 1, it remains to perform the L? estimate. Taking the L? scalar product
of (21) with iw and using that

1 1
(w,ua-Vw—l—in'uE) = §v- (Jw|*uf),

we get
d 52 2 € - 11 A4€|2 [ [
%(?ku[?) = /]Rd E(F 7Zw) +2€/Rdf (|a | )(w7a )((Z 7Zw)'

Note that we have once again used that R, is real-valued and hence that (R,w,iw) = 0. The first
integral is clearly bounded by N¢(w) + HF € H ;2 Whereas for the second one, we have

[ 22 (e P < Car [ (10" + Hful) < Cuu N7 (o).

As a consequence, we get

d /€2
o (Fhlze) < onrNew) + |77 (34)

Finally, we can collect (28), (29), (30), (33) and (34) to get (23). This completes the proof. [

11



2.2 Higher order estimates

Since our final aim is to prove Theorem 2 by a fixed point argument, we also need to have
H? estimates for s sufficiently large for the solution of the linear equation (21). This is the aim
of the following. Note that the term —2(w,a®)f’(|a®|?)a® in (19) can be seen as a singular term
with variable coefficients. Consequently, a crude way to get H® estimates is to apply /92 to
the equation, the weight £/®! being used to compensate the singular commutator when we take the
derivative of (19), and then to apply Lemma 1 to the resulting equation. Nevertheless, it is possible
to avoid the loss of ¢l®l with more work by using more clever higher order modulated functionals.
We set Nf = N° and, if s € N, s > 2, we define the following weighted norm, where o € N? are
multi-indices

Niw) = Y Ne0w) + K[Re wlbes (35)
|a\<s 1
= 5Vl 2 3 [ PO 00 + Kol + [Re wlf).
la|<s—1

In this section, we shall use that
af =a’ +¢ead”
with a real-valued and

sup [a"| Lo (0,77, wsi) < C.
€€(0,1]

Note that this allows to write
f'(la® ) (0w, / f'(la*)(a")*[Re °w[* — Ce?|Re 0w 7.
R4
and hence by choosing K sufficiently large (K > C) we get the lower bound
2
S(w) > 5 > N (Bw)+ ) / f'(1a?)(a®)?|Re 0%w|? da (36)
la|<s—1 |a|<s—1
Note that we also have the equivalence of norms:
2 2 2
[l < 5 Ne(w),  Niw) < Ol + [Re s, (37)
The main result of this section is:
Theorem 3 Let 0 < T < oo, s € N*, f satisfying (A) and w € C1([0,T], H*) a solution of (21)
with u® : [0,T] x RY — R? and af : [0,T] x R* — C such that

M= sup <Hu€HLOO([O,T},WSH»OO(Rd)) + HasHLoo([O,T},Ww(Rd))) < too.
Assume finally that, for some a® € L*([0, T], W*>°(R%)) real-valued, a® writes

a = a® + Oys (€) (38)
uniformly on [0,T]. Then, there exists C, depending only on d, f and M, such that

d

V(1) = €14 LR o 5| R s ) N ) +CIF Ol S i PO
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Remark 2 In view of (38), a® is real up to O(e), hence, in the integral in the right-hand side of
(23), the real and imaginary parts of F© do not play the same role. This explains that the estimate
is better for Re F¢ than for Im F°. As a matter of fact, for s = 1, Theorem 3 follows immediately
from Lemma 1 and (38).

2.3 Proof of Theorem 3

We estimate separately the two terms in NS (w), when s > 2 (otherwise, the result follows from
Lemma 1 as we have seen). Let us set

S(w) = [Re w3 .
Note that we have
S(w) < NE(w). (39)

In the proof, C' is a constant depending only on d, f and M.
We shall first prove that

d 1 C
Z5(w) < O (14 55| Rollyose ) NE (w) + O F¥[[s 4+ S5 1m ¥ (40)

For a € N?, we have
0, (9°w) +u° - V(9%w) = %A(aaw) = éaaFé = gaa (Ryw) (41)
2o (P (o) w)a) — [0 - Vw5 0" (Y ).
Next, by taking the real part of (41), we get
0.0 Re w) +u V(0 Rew) = [0 - V]Re w— 2 0" (Re wV ) + R?
where
R = Re(‘SA@"w) — L07FF — Lo (Ryw) — 20%(f/(1a°) 0, w)a) ). (42)

By using (38), we have
Im 0%a® = O(e), Vv, [7| < o

and
(8845, 07w)| < CM(\Re | + s|a%w|) (43)

for every 3, 7. Consequently, we immediately obtain for every «, |a| < s —2,

| Ryl wrs—1. 1
IR N2 < C(Ellwlle + “"annm_z + |Re w]grs-2 + EHwHHs—2) + —[Im F] e
R 5§—2,00 1 1
< 0(1 + ”“"”?722)1\[;(@0)% + < [tm F e,

13



Consequently, the standard L? energy estimate for (42) gives
%HRe 0 w|2, < 0(1 + HR@‘L#)NSE(@U) + é_i? [T e |2, s
Note that we have used that
/Rd (u -V (8°Re w), 8" Re w) - —% /Rd(v - u¥)|9°Re wl?.
Consequently, (40) is proven.

The next step is to estimate N(0%w) for |a| < s — 1. By applying 0° to (21), we get

. 0(0%w)
e,

+ L5(0°w) = Rpd™w + F*, (44)

where )
F¢=C*+ D"+ 0F° +[0*, R,]w,

with
¢ = 20°(f(la* ot (w,a)) — 27 (10 B) (0w, a)a,
DY = —is[aa,ug . V]w — %E[aa, V- us]w.

To estimate N¢(0%w), we shall use Lemma 1. Towards this, we need to estimate the commutators
in the right hand side of (44). For |a| < s — 1, the following estimates hold for C* and D*:

2 <g

[10% Belwly < O Relliyeme ol < 51 Rolljyee NS (), (45)

ID°5 < Cfwly. < CNE(w), (46)
|Gif'(1a*?)2a%, D) |7, < C*N(w), (47)
leo (7 < ONg(w), (48)

|(ia®,C™)|7. < C2NE(w). (49)

The estimates (45) and (46) follow easily from (37). For (47), we note that

é(iaE,Do‘) = — (as, [0%, u® - V]w) — %(as, [0%,V - us]w)
-y ( ° > (0" ) - (@ VO w) - L 3 < ° )aa—v(v.uff)(as,mw)

since u® is real. Next, we can use (38) and (43) again. In particular, in the above expansion, the
terms (a,07w) are bounded in L? by S(w) + e|w|%,-, and thus by N¢(w). Similarly, the terms
(a®, VOTw) are bounded in L? by N¢(w) if [y| < s — 3. Consequently, we get

G e Prra D) < 0( 3 [ FllaPIotw.a) + Ni(w) < CNi(w),
8l=s—1"F

14



which yields (47). Next, we turn to C%. The Leibnitz formula gives

= > x [ (la"P)](0%w,0%a) o e, (50)
a<a,

G4+ B8+A+pu=a

where * is a real coefficient depending only on @&, 3, A and u. Since |a| < |a| —1 < s — 2, we can
use again (38) through (43) to get that

ez < C(S(w) + 2 fulh: ) < ONE(w),

Since (ia®, 0"a®) = O(e) thanks to (38), we also get (49). For the H! norm, the same argument
yields

el < OB+ 2uliy + 3 [ | @ %)),
=s—1,
|ﬁ|1|/\+u|=1

To estimate the last sum, we first consider the terms with 3 = 0. They are always bounded by
¢ [ 1500 ) + 1o PLs (o)) (07.)
with |y| = s — 1 and hence, thanks to (32), they are bounded by
c/ F(1°2) (07w, a°)?
Rd

and hence by N:(w). Next, we consider the terms with |3| = 1. Since then A = o = 0, we have to
estimate terms like

T:/ P11 2) (07w, 8%a°) e
Rd

By using again (38) and (43), we get
T<C [ Flla Pl Re 07f + Ceulfy. s
R4

and hence, by using (36), we finally obain
T < CNZ(w).
Consequently, (48) is proven. This ends the estimates of the commutators.

We are now able to establish:

d 1 1
L) < 0 (14 1R s + 2Rl e ) N2 )

C
1F e + o P

15



Indeed, from Lemma 1, we deduce

d oo 1 1 1 ! na
DN (o) <0 (14 L Rolynm + LRl + SRl )V (00)

dt
+ | Fe))2, +§/R F'(a°2)(0°w, a%) (i, F¥) —/Rd(igmaw,ﬁs). (52)

To estimate the right-hand side of (52), we first estimate HF EH;. Combining (45) and (46) with
(48), we infer

- 1
152130 < 7= s+ C (14 SRl ) NE 0. (53)
Next, we turn to the term
2 [ )0, a) i ) = / F(1a P)(0%w, a%) (ia?,C* + D + 0°F* + [0°, Rylw),
Rd

which splits as four integrals. For the first one, by (49) and Cauchy-Schwarz:
4 1
-/ f’(laE\Q)(a‘”w,as)(iaE,C“) <o [ 1) orw.e)?)’ Niw)? < N3 (w).

For the second one, we use (47) and Cauchy-Schwarz, which gives
/ F1(1a%12) 2 (0%w, a%) (i f'(Ja*|?) 2a®, DY) < ONZ(w).

For the third integral, we simply write, using once again (38)

]' - £ o 1> 1 C 1>
Yo 928 | < O s + S i

[ ot

which yields by Cauchy-Schwarz

2 [ 7 P00 a5 F) < ONEw) + P+ S P

Hs—1°

Finally, for the fourth integral, we have by (45)
4 C
2 [P0 e i 0% Rf) < SRy s N (),
€ JRrd

By summing these estimates, we find

4 5 fo' EN(:,E TE 1 € €
Z/Rd /(10" P) (@, 0°) (i, F¥) < C(1+ 2| Ryl s ) NE () + C| ¥

ot F QHImFai

Hs—1°
(54)
Finally, we handle the term
—/ (ieAd*w, 13'5) = —/ (ieA0%w,C* + D* + 9*F* + [0%, Rylw).
Rd Rd
By using an integration by parts, we have

- [ ea0m ) < e + 10+ 0 Rl + | L + N )

1
< 1P + O (1 SR s ) V2 ()

thanks to (45), (46) and (48). Consequently, we can collect the last estimate and (52), (53), (54)
to get (51). This ends the proof of Theorem 3.
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3 Construction of WKB expansions

In this section, we construct an approximate solution of (1) using a WKB expansion. The first
step is to prove the local existence of smooth solutions of the limit hydrodynamical system.

3.1 Well-posedness of the limit system

We consider the system

&a—i—u-Va—l—%aV-u:O
(55)

8tu—|—u-Vu—|—V(f(a2)) =0,

which is only weakly hyperbolic, with the pressure law f satisfying assumption (A) and the initial
condition (a,u)—o = (ao, uo)-

Theorem 4 Assume that f satisfies (A) and let s > 2+ d/2. Then, for every initial conditions
(ap,up) € H® x H® with ag € R, there exists T > 0 and a unique solution (a,u) of (55) such that
(a,u) € C([0,T), H*" x H*) NC([0,T], H*~2 x H*™1).

Let us remark that if n = 1, then f/(0) > 0 and thus f/ > 0 in [0, +00) (by (A)). In this case,

(55) is symmetrizable (with the symmetrizer S = diag(1, ; f,%ag),..., 1 f,%a2)) used in [9]) and the

local existence and uniqueness for (55) follows easily.

Proof of Theorem 4.

The first step is to rewrite the system by using more convenient unknowns. At first, we notice that
thanks to (A), we can write f under the form

Fp) = p"f(p),
with f smooth on [0, +00) and such that f(0) # 0. Next, since we have by assumption f(0) =0
and f’(p) > 0 for p # 0, we also have that f(p) > 0 for p > 0. This implies that f(p) > 0 for p > 0.
This allows to define a smooth function A on R by

~ a1
h(a) = a[f(a®)] 2. (56)
Note that h(a) # 0 for a # 0. It is usefull to notice that we can also write h under the form

h(a) = sgn(a) f(a?)?

and hence that we have
h(a)® = f(a?), acR.
Furthermore, since f/ > 0 and f(0) > 0 in (0, 400), we deduce that h'(a) > 0 for a # 0 and that

h'(0) = [f(0)] 2 > 0, so that h' > 0 on R. Thus h is a smooth diffeomorphism from R to h(R). In
particular, this allows to define a smooth positive function ¢ on h(R) such that

%ah’(a) —h(a)c(h(a), VaeR.
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With this definition, (h,u), with A = h(a), solves the system

Oh+u-Vh+he(h)V-u=0
(57)
8tu+u~Vu—|—V(h2") =0.

Since a is in H® if and only if A is in H?®, we shall prove local existence of smooth solution for the
weakly hyperbolic system (57). As we shall see below, the nonlinear symmetrization method of
[15] does not allow to reduce (57) to a symmetric or symmetrizable system with smooth coefficients
except in the case where c¢(h) = ¢(h™) for some smooth map ¢. Nevertheless, it will be still possible
to use the same idea to prove the existence of an energy estimate with loss for the system (57).
When we are in such a situation, the simplest way to construct a solution is to use the vanishing
viscosity method. Indeed, this approximation method allows to preserve the nonlinear energy
estimate verified by (57). We thus consider for € > 0 the system

Othe + tue - Vhe + hee(he)V - ue = € Ahe
(58)
Otte + ue - Vue + V(") = € Aue.

The local existence of smooth solutions for this parabolic system is very easy to obtain. Moreover,
we note that h. remains nonnegative if the initial datum (h¢);—o is nonnegative. In the following,
we shall only prove an H® energy estimate independent of € for this system which ensures that the
solution remains smooth on an interval of time independent of €. The final step which consists in
using the uniform bounds to pass to the limit when e goes to zero to get a solution of (57) is very
classical and hence will not be detailled. In the proof of the energy estimates, we shall omit the
subscript € for notational convenience.

As in the work of [15], we introduce the unknown H = h" = o™ f (aQ)%. Note that by definition
of h, H is in H® as soon as a is in H*. We get for (H,u) the system

O H 4u-VH+nHce(h)V -u=enh" 'Ah = e (AH —n(n— 1)h”_2\Vh|2>
(59)
ou +u-Vu + 2HVH = e Au.

Note that it does not seem possible to get a classical hyperbolic symmetric system (in the case
e = 0) involving only H and wu as in the case of homogeneous pressure laws considered in [15].
Indeed, the coefficient c¢(h) = ¢(H %) is not (in general) a smooth function of H. Nevertheless, it
will be possible to prove that the system with unknowns (h, H,u) though only weakly hyperbolic
(when € = 0) satisfies an energy estimate. We notice that the symmetrizer

S = diag(l, gC(h)Id)v

which is positive since ¢(h) is positive, symmetrizes the first order part of (59). We shall first
perform an H® energy estimate (s > 2+d/2) on (59) but we have to track carefully the dependence
on h in the energy estimates.

To prove our H® energy estimate, we shall make an extensive use of the following classical (see
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[18] for example) tame estimates

79l < Co (1N e gl o+ 15 el o)

(60)
|0°(£9) = 190l 2 < Cuc (17 e gl e + 191Nl s ).l <. (61)
[F @l < Ol o) @+l o) (62)

if I is smooth and such that F'(0) = 0.
At first, we notice that (0“H,0%u) for |a| < s solves the system

0,0°H +u-VOH + ne(h) (V- u)0°H = e (AOO‘H ~n(n —1)8%(h"2|Vh|?)

—[0%u] - VH —n[0% He(h)]V - u

0:0%u +u-V0o*u + 2HVO*H = e A0%u — [0%,u] - Vu — [0%, 2H]|VH.

By using (61) to estimate in L? the commutators in the right hand-side, we get in a classical way
by integration by parts

il o 7|2 E o, |2 7|2 E o, |2
dt[Q/Rd 0 H? + 2 e(h) o ul?] +6/Rd\va HP? 4 5 o(h) [V

(63
< Co([[ ()l ) IV + € 4+ €D+ R,

where V = (H,u), Cj is a non-decreasing function depending only on f, s and d, and
6 —

= n /R (OH) [0, Ho())(V - u),

Do = _ﬁ/ ¢ () ((Vh- V)0) - 8% — nln — 1)/ 0% (h"~2|Vh|?) 07 H,
2 Rd ]Rd
n

Ro=" / ¢ (h)Ouh|0"ul2.
4 Rd

We have singled out the three terms above since they are the ones involving h which must be
estimated with care. Note that the estimate of C* will be crucial since this term involves high order
derivatives of h. Next, we can integrate (63) in time, sum the estimates for |a| < s and use that

c(h) > 0, hence nc(h)/2 > m to obtain
t
V@)l + e /0 [VV ()l dr (64)
t
< Cy(Ihlz==) (IV () Iy« + /O Co (1 w)(D)lw1.) IV () +C(7) + €D(7) + R() dr ).
with

C= an, D= ZDO‘, R = ZRO‘.

la|<s |a|<s

|| <s
Estimate for C. We claim that

¢ < Collh,wlwroe) (IV I + Il ).
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The crucial point is that this estimate only involves the H*~! norm of h. This will allow to conclude
by using that for the first equation in (59), the H*~! norm of h is controlled by the H* norm of u.

By using the commutator estimate (61), we have

C

IA

ClH e (1) 1 -l + 9 (He() 1< |V - ul 1)

Co(Ihywlwroe) (IV I + 1H s LHe() 1)

IN

To estimate the last term, we use that H = h", which yields h0; H = nH0;h, thus
0i((He(h)) = c(h)o:H + ¢ () HOth = e(h)d,H + %c/(h)h&-H.
Consequently, by (60), (62), we get
[He(h) e < Cle(h)VH s + Cl AV H geos < Co(1(hw)lwoe) (I + [zt )
and (65) follows.

Estimate for D. The term D involves derivatives of u of order < s + 1, and we shall use the
energy dissipation in (63). We prove that

1
Cillhlz=) €D < 5 e IVV . + ¢ Colhlhyn) (IV e + IV R ). (66)
We have, on the one hand,
‘/Rd ¢ (h)Vh-Voru- 3%‘ < Co([blwre) [Vul s |ulmrs < Collhlw o) IVV | as [V ] s

On the other hand, for the second term (which vanishes if n = 1), after one integration by parts
when |a| > 0, we get

IN

n(n—1)| /Rd o (W VHE) 0O H| < CIVH|ps |02V AP e

IN

Co(lhlwr.00) [VH | s [VR] =1,
and if @« =0, since H = h™ and s > 1,

n

_ —1
n(n—l)‘/Rd h" 2\Vh|2H‘ =— /Rd \VH|?> < C|H|%s.

Consequently,

eD < e Colllwr) [VV iz (IV = + [9hlgr1 ) + € CIV I,

and (66) follows from the standard inequality, for a, b, § > 0, ab < fa® + %.
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Estimate for R. We prove that
1
Ci(lhlz=)R = 5 € IVV 7 + Coll(hy w) lyroe) |V [ (67)

By using the first equation in (58) for A and an integration by parts, we find, as for the first
term in D,

RT < Coll(h ) VT + € [ ¢anoraf
n n
< Coll(h ) IV = ¢ [ (TR V)0 -0%u= e [ (o)Vh? ouf
R4 Rd
<

Coll(h )lwre) (IV s + €[VV s IV )
Then, (66) follows as above from the inequality ab < fa? + %.

Summing (65), (66) and (67), inserting this into (64) and cancelling the terms € |VV|%., we
infer

V(O < CL(Ia@l) (1V ).
t
+ [ o)) IV + 10y + VA s | ) (68)

To close the estimate, it remains to evaluate |A|3,,—, and € f(f |[Vh|3.—1. We use the standard H**!
estimate for the convection diffusion equation (58) which yields, as for (63), for |a| < s —1,

drl
G5 [one] +e [ 10 < ol ) (el + Dol ).

Summing for |a| < s — 1 and integrating in time, this yields
1 2 ! 2
3O+ e [ VA dr

1 t
< 5 IO + /0 Co(| ()@ 1) (IV O + 1A Fyms ) . (69)
Finally, we can combine (68) and (69), to get
IV () + 1A

t
< Coll () e ooey) (VOB + OB+ [ IV + s dr). (70

Since H*~! is embedded in W1 for s > 24 d/2, we easily get by classical continuation arguments
and the Gronwall lemma that the solution of (58) is defined on an interval of time [0, 7") independent
of €. Finally, (70) provides a uniform bound for (h, H,u) in H*~! x H® x H*, which allows to prove
in a classical way that (he,u.) converges towards a solution of (57). This ends the proof of the
existence of solution.

To prove the uniqueness, it suffices to use the same method as above and perform an L? energy
estimate on the system satisfied by hy — ho,u1 — us, Hy — Hs. This is left to the reader.
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3.2 WKB expansions

We now turn to the construction of WKB expansions up to arbitrary order. Let us first notice
that in Theorem 4, if the initial datum (ag,up) is in H* x H, then the solution (a,u) is in
CO([0,T], H5=1 x H®) for every s > 2+ d/2, with T independent of s > 2 + d/2. In other words,
the existence time of the maximal solution in H> x H* is positive. This fact follows easily from
(70) and the Gronwall inequality (since H*~! c W1),

Lemma 2 Consider ¥§ = ag £i96/e with ag € H*®, o5 € H*™ and that for some m € N, there exists
an erpansion

m
ag = Zskalg +e™tlas,  of = Zs ob 4 em s (71)
with af € R, alg, golg € H®, satisfying, for every s,
sup (Ja5ly + lel) <+ (™
€

Let us denote 0 < T* < 400 the existence time of the mazimal smooth (i.e. H® x H*) solution
(a®, %) for (55) with the initial condition (a3,y)). Then, there exists an approzimate smooth
solution of (1) on [0,T*) under the form W% = ae*"/¢ | with af,p* € H® and o complez-valued,
solving

390
(la**) + \VSO * = R}
(73)
Oa® . . at €
. ZACE — —JAGE = R™
8t+(Vg0)Va+2 ® 2Ja R,
with the initial condition (aa, goe)/tzo = (ag, @8), and where, for every s and 0 <T < T%*,
sup (|82 o + | B2 7o) < Core™2. (74)
0,7]
Finally, for 0 < T < T*, a° verifies (38): a® — a® = O(¢) in L>([0, T], W°).
Note that ¥? is indeed an approximate solution of (1) since
8\11(1 2 £
e Ty Z SAW — (| 0[?) = (—iERT +a€R$) exp (i2-).
€
By using the notation of section 2, we have R® = —ieRy" + a* R, hence
sup || B 7. < Cue™ ™, (75)
[0,7]
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Proof.

As in [9], we look for expansions
m
af = ngak 4 emtlgmtl o = 25 o 4 el gmtl

This yields that (a’, ¢") solves the nonlinear system

9¢° 0 012 _
1 (aP) + 51960 =
(76)
da 0
A =
vy + (Vg?) - va" + LA’ =0,
which is just (9), and that for 1 < k < m, (a¥, ¢*) solves the linear system
0
O Lo (), at) + V- T = st
(77)
Ha k
- + (V¢?) - Va" + Va - V" + & A(p + & Ago = Sk,

where the source terms (Sff,, S¥) depend only on (a’, ¢/)g<j<k—1, and S¥ is complex-valued.

We first solve (76) (that is (9)) with the initial condition 90(/)t:0 = 9, a(/)tzo = a). By introducing
u? = V¢ and by taking the gradient of the first equation of (76), we find

0
Otao—i-uO-VaO—l—%V'uO:O
(78)

o’ +ul - Vb + V(f((a0)2)) =0,
which is the compressible Euler type equation considered in the previous section. By using Theorem

4, we get the existence of a smooth solution (a%,u’) € H*~! x H* for every s on [0,T*) (with T*
independent of s), with a” real-valued. Finally, to get ¢V, it is natural to set

St) = @) = [ (1) + 3 WP ()

and the same argument as in [2] yields u® = V.
We now turn to the resolution of (77). We solve it with the initial condition (¥, a") Ji=0 =

(goo, ao) By introducing again u* = V¥, we can take the gradient in the first line of (77) to get
k0 ko, @ ko ok o, 0 k
Oa”+u -Va"+ =V -u"+u"-Va + =V -u =9,
2 2 (79)
opul +u® - VP + v (a, f/((aO)Z)ak) +uP . Vul = VSZ;.
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Again, since f’ ((aO)Z) can vanish, the symmetrization of this linear hyperbolic system requires
some care. We thus set

)2 ak if n is odd
’ 1
\/§a0(f ((((1‘3(;% ))Qak if n is even.

Note that in both cases, we have
FR(t,2) = V2 g(a®)a”

with g smooth. Indeed, as we have seen, we can write f/(p) = p"~
and we have in both cases :

Lq(p) with g smooth and positive,

[N

9(a”) = (a®)" " (a((a”)?))

This is the natural generalization of the change of unknown used in [2]. Then, thanks to the

(80)

equation on a’, we get for (F*, u*) the system
1 Fk 0,.(,0
OFF +u’ VFF 4 7 a’g(a®)\V - +V2g(a®)u” - Va® + - (1 + %)V u® = v2g(a")S¥
g(a

1
ok +u® - Vb + 7 V(a'g(a), Fk') +uf . Vb = VSZZ.

%

0./(40
Note that the coeflicient ag‘?a((?)) is smooth even when a” vanishes since g is under the form (80).

We have obtained a linear symmetric hyperbolic system with a zero order term and a source term
S* depending only on (a’, ¢?) for 0 < j < k under the form

d
) FE
k J 17k k _ ck k __
U +ZIA(t,x)aJU + L(t,2)U* =8F, U _<uk >
J:

where A7(t,z) are smooth, real and symmetric and the matrix L is smooth. By the classical theory,
there exists, on [0,7%), a smooth solution (F¥ u*) in H>* x H*> of this system. Once u* is built,
we get a® by solving the transport equation for a* which is given by the first line of (79). Finally,
we deduce the phase ¢* by integrating in time the first line of (77). We obtain

t
Ptw) = @)~ [ (2710 + Vi ol = ) (rai

Finally, we choose in a similar way (a™*!,¢™*1) that solve (77) with the initial condition
(am“, <pm+1) =0 = (aS, cp(e)). Because of the assumption (72), we find that they are also uniformly

bounded in H*~! x H* with respect to . This concludes the proof of Lemma 2. O

4 Nonlinear stability

In this section, we give the proof of Theorem 2. We shall actually prove directly a more precise
version which states the existence of a WKB expansion to any order.
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Theorem 5 Consider Vg = age’%/s with aj € H™, o5 € H* and that for some m € N, there
exists an expansion (71) as in Lemma 2. We assume (A) and let (a®, p°) be the smooth approximate
solution given by Lemma 2 which is smooth on [0,T*). Then,

e if m =0, there exists eg > 0 and T € (0,T*) such that for every e € (0,eq], the solution of (1)
with initial data U remains smooth on [0,T] and satisfies for every s € N, the estimate

< Cse.

H\IIE exp ( — zgos) —a®
€ Lo ([0,T),H*)

o if m > 1, for every T' € (0,7%), there exists eo(T) > 0 such that for every ¢ € (0,0(T)], the
solution of (1) with initial data V§ remains smooth on [0,T] and satisfies for every s € N, the
estimate

Note that Theorem 2 is actually the special case m = 0 in Theorem 5.

5 < Cs,TEerl'

L>=([0,T],H?)

Ueexp (— ég@s) —a

Proof of Theorem 5.

Let s > d/2. We take (a®, ¢®) the approximate solutions given by Lemma 2 and look for the
solution of (1) under the form W& = (a® + w)e’?" /2. We get for w the equation (21) with F© given
by (22) and the initial condition w/_q = 0. For s > d/2, and every € > 0, this semilinear equation
is locally well-posed in H®: we get very easily that there exists for some 7° > 0 a unique maximal
solution w € C([0,7¢), H®) of (21) (see [5] for example). We shall prove that 7¢ is bounded from
below by some T" > 0 if m = 0, and that 7 > T for every T € (0,7*) for ¢ sufficiently small if
m > 1. Let us define

¢ =sup {r € (0,T%), Vt € [0,7], 2NE(w(t)) < 2™}
Note that 7 > 0 since w(0) = 0 and that by Sobolev embedding, we have, for t < 7¢,
[w(®)] o < K272NE (w(t)) < K222 < K2,
for some K independent of ¢.
We will apply Theorem 3 with F© given by (22). To estimate F¢, we use the following lemma:

Lemma 3 Let R > 0, s > d/2 and w such that HwHLoo < R, and F* given by (22). Then, for a
constant C depending only on Hae(t)stﬁ,m and R, we have

1
17 + 5 [

N: Ni(w)
< CeP™H 4 CEP™NE (w) + c{ - w) ( - Ef”)> }Nﬁ(w).

We postpone the proof of Lemma 3 to the end of the section. We can first easily end the proof
of Theorem 5. Notice first that, by definition of ¥%, we have

R, =R™+ %Aae = Ok (€™Y) + O (e) = O (),
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for every k, uniformly for 0 < ¢ < T, hence
1
Rl <

Applying Theorem 3 and Lemma 3 with R = K, we infer that for 0 < ¢ < 7°,

NE (w(t)) < O™ 4 O™ NE (),

which gives immediately, since w/,—y = 0, that

2m—+4
s 5

NE (w(t)) < C€2m+4 (€C€2mt . 1> < %
in the following cases:

o for m=0,0<t<T with 0 <T < T sufficiently small independent of ¢,

e form>1,T € (0,T*) is arbitrary, 0 < ¢t < T and ¢ < go(T") with e¢(7T) sufficiently small.

As a consequence, 7¢ > T as desired and

HwHLOO([O,TLHS(Rd)) S CS,TEm—H.

It remains to prove Lemma 3.

Proof of Lemma 3.
We recall that F* is given by
Fé = B4+ Q(w) = B + (0 + ) (£ +wP) = f(aP)) = 2(w,0) /(o P)a.
As a first try, we could use the rough estimate
Q*(w)=O(wl®)  as w0,
which would lead to
SN,

1 C
@ + S Im @7 s < Sl < &

which does not allow to conclude in the proof of Theorem 5 for m = 0 and does not give the sharp
result for the existence time if m = 1. To get the refined estimate of Lemma 3, the idea is then to
use a Taylor expansion for ° w.r.t. w up to second order, and write

Q% (w) = |w*f'(|a®[*)a® + 2f'(|a°[*) (w, a%)w + 2a° f(|a|*)(w, a%)? + G* (2, w),
so that for fixed x, we have as w — 0,
G (z,w) = O(jw]*).

We turn now to estimate each term in F*°.
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Estimate for R® =ieR;' — Rj'a®. Thanks to (75), we have

R < oemet

Moreover, since R} is real-valued and since, from (38), Ima® = Ows.=(¢), we also have

Sl < cem

thanks to (74). We have thus proven that

IR e+ 5 1 R

Estimate for G°(x,w). The estimate relies on Lemma 5 in the appendix. Indeed, it is clear from
the Taylor formula that G* may be written under the form

(Rew)2h11 (z,w(z)) + (Rew) (Imw) hs (2, w(z)) + (Imw)2h22 (z,w(z)),

where h117 h12, h22 : ]Rd x C — C are of class C* and Vx € Rd, hu(x, 0) = hlg(x, 0) = hQQ(JJ,O) =
0. Moreover, hiy, his and hgo verify the hypothesis of Lemma 5 in the Appendix since a® €
Le°([0,T], W#=). As a consequence, if HwHLoo <R,

1670 - < Cllolle

which implies

+ S0 G w) s = Z16 (@ w@) [ < SN W)

|G (2, w(@)) |,

The estimate for the quadratic terms in Q°(w) will rely crucially on the fact that a® is real to
first order and that (w,a®) is estimated in H¥~! by N¢(w) and not just by e 2N¢(w).

Estimate for F{ = |w|®f'(|a®|?)a®. We have

C
|75 [ < SN ()2,

and in view of (38), Im a® = O s.<(g), thus

C
< Ol |[fes < gNE (w).

1
Ll

Estimate for F§ = 2f'(|a°|?)(w, a®)w. We begin with the rough estimate

C

|55 < Nz ().
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Moreover, one has )
£/ (Ja* ) (w, a%) || zyaes < ON (w). (81)

Indeed, let y € N¢ with |u| < s — 1. Then,

M (f'(|a* ) (w,a%)) = > x P[f(1a°])] (0w, 8%a%),

a+B4+A=p

where x is a coefficient depending only on «, 8 and A. Since |p| < s — 1, the terms (0%w, d%a®) are
bounded in L? by Z(w)% + e|w| gs-2 as soon as |a| < s — 2. The term in the sum with || =s—1
(hence p = a and B = X = 0) is f'(|a®|?)(8"w,a®) is bounded in L* by N°(0"w). Hence, (81)
follows.

As a consequence, by (60) and Sobolev embedding, we obtain

106 2 s < Collol e (15007200 s+ ] ) < SNEC,

Consequently,
C 9

1
175 ]+ 5 1 5 e

Estimate for F§ = 2a° f"(|a®|*)(w, a®)?. We find as for Ff
2 C
IB51 < Svacwp,

and once again in view of (38),

1 2 4 c 2
We conclude the proof of Lemma 3 summing these estimates. O

5 Geometric optics in a half-space

In this section, we consider the Gross-Pitaevskii equation in a half-space in dimension d < 3

2
GP(¥°) = ic0, U° + %A\Iﬁ — TP —1) =0, xeRE =R x(0,4+00). (82)

We consider the Neumann boundary condition (12) on the boundary and the condition (13) at
infinity, that is

7

0w owe '
= 0 and exp (%\uoo\Qt——uoo-x>\I/5—>1 |z| — 400
£ 5

on jor: Oz J2=0 -

by using the notation = = (y,z) € R%! x (0, +00).
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5.1 Construction of the WKB expansion

In this section, we shall consider a smooth solution (a,u), with a real-valued, of
1
ora + u-Va+§aV-u:0

Ou+u - Vu+ V(a*) =0,
with the boundary condition ug4(t,y,0) = 0 and the condition at infinity
u(t,x) — u™, a(t,z) — 1 when |z| — +oo.

Since we look for a real-valued, the resolution of this system is made in [14] (Theorem 2). Given
s € N* if the initial datum ag is positive and (ag — 1, up —u>°) € H?®, and under some compatibility
conditions for (ag, ug) on the boundary 6Ri of sufficiently high order on the initial data, there exists
Ty € (0,+00) and a solution (a,u) on [0, Tp] with (a—1,u—u>) € C°([0, Ty], H*)NC ([0, Ty], H*™1),
such that

a(t,z) > a >0, Vtel0,Ty], Vo e RTL (84)

for some a > 0. We also define the phase ¢ by

olt,2) = (o) - | (S laf = 1) ()

In view of the condition (13) at infinity, ¢ is not in H* but ¢(t,.) — u™ -z + £|u™|? € H*. As we
have seen and as in [2], u = V.

The aim of this subsection is to prove the existence of WKB expansion (which involves boundary
layers since the solution of (83) does not match the Neumann boundary condition (12)) up to
arbitrary orders for (82), (12), (13) starting from a smooth (a, ) which verifies (84).

We define the set of boundary layer profiles S, as

Serp = {A(t,y, 7)€ HORy xR©“IxRY), Yk, a,l, 3y>0, |0F0005A] < Cray exp(—'yZ)}.

Lemma 4 Let s € N and m € N* be fized. Then, there exists a smooth function U™ = afel’= on
[0, T},,] verifying the Neumann condition (12) and the condition (13) at infinity and such that ¥*™
is an approzimate solution of (82) on [0,T),]:

GP(U*™) = e™R%e' T, (85)
where R® can be written under the form

R = —a* (REV™ () + R (9, 2) ) +i (BRI (t2) + R (1, ). (86)
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with prm’m, RIS™ smooth and uniformly bounded in H® and RZ’m(t,y, Z), R?p’m(t,y, Z) € Seap.
Moreover, af is real-valued and a®, ©° have smooth expansions under the form

¢ = (t,z) + A¥(t mAm(t y, = 87
a a+Z “(ab (k) + ARy, D)) + A (k. D), (87)
m—1 5

5 k k mgm
= (t, D" (¢t d"(t,y,—). 88
0 ¢+le( 7) + 0 (t,y, 5)) + 0" (t,y, ) (83)

The boundary layer profiles A¥(t,y, Z), ®*(t,y, Z) belong to Sexp and are such that
8ZA1(t7y70) = _8za(t7y70)7 82@1(t7y70) = - z@(tayao)a
) Ak _ k-1 k _ k—1

zA%(t,y,0) = =0.a" " (t,9,0),  072"(t,y,0) = —0.¢" " (t,9,0) V2<k<m. (89)

Proof.

Since V™ = af exp (i%s), we want to solve approximately

1 2
—a (8t<p5 + §\Vg05\2 + |a®]* — 1) + zs(@ta + V¢© - Va® —I— a*Ap© ) + %Aas =0. (90)

Since, in this section, we are looking for a® real-valued, we can spht the system (90) into

1
oa® + Vo© - Va® + 3 a*Ap® =0

, for t>0, z€R?:. (91)
€
D"+ Ve 4 (@ —1= 5 20
Note that in this section, the division by a® in the right-hand side of the second equation of (91) is
not a problem since a® = a verifies (84) and hence does not vanish.
We thus plug the expansions (87), (88) in (91) and we cancel the powers of €. To separate
interior and boundary layer terms, we use the general theory of [11]. In particular, we use that for

every smooth function f and V € Sz, we have the expansion

f(ult2) +V(ty.2/e)) = £ (ult.2) + £ (ult.9,0) + V(v 2/6) ) = £ (ult,y,0)) +<R.

where R € S,zp. This yields that the boundary layer part of f(u(t,z) 4+ V(t,y,z/¢)) is given by
f(u(t, y,0) + V(t,y, z/a)) - f(u(t, Y, 0)) In the following, we use the notation W}, = W (t,y,0) for
every W (t,x). At first, the e~! term in the equation only gives

apdz7P =0

and hence we have ®! = 0, since a;, > o > 0 and ®! € Seqzp- Note that this is coherent with the
fact that ug(t,y, 0) = (Ozgo) = 0 so that we do not need a boundary layer to correct the boundary
condition. The € term gives, as expected,
Orp + §WSD‘2 +a?=1=0
) for t>0, ze€ Ri (92)
8ta+Vg0-Va+§aAg0:O
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for the interior part, and for the boundary layer terms, for (t,y) € RT x R4~1,
ap0z79% = —(0,0), 07A =0 for Z >0, (93)

since (9,¢)p = ug(t,y,0) = 0. Consequently, we also find ®? = 0. Next, the order ¢ gives

1
da' + V- Va' + Vo' -Va + §(aAg01 +a'Ap) =0
for ¢t >0, xeRi

o' +2aa' + Vo Vel =0
in the interior and for the boundary layer terms
1 1
S0zzA" = A! (8tg0 + 51Vl +a? - 1) + 202 Al = 242 A1
b for Z>0,  (94)
aydz 7P = G°

where G® € S, depends only on (a, A',a') and (¢, ¢'). Consequently, the boundary layer A! is
given by

Al = (aza)be—QabZ
2ay,

in order to match (89). Finally, the e¥, k > 2 terms give

Oe” +2aak + ViV = Sk
. for t >0, zeRL (95)

k k E L OA Kk, @ k
0a” + Vo -Va”+Va -V +§A4p —I—EA@:S(I

and
8zzAk = 4agAk =+ Fk
for Z >0, (96)
Dz 70" = GF

where SZZ and S¥ depend only on (a,¢) and (a?, ') 1<j<k—1; F* € Sezp depends only on (a,¢),
(a7, AT, ‘I)j)1§j§k—1 and ®; and GF € Sezp depends on (a, @), (a’, @7, A7, ‘Pj)1§j§k;—1- Therefore,
if we want to solve by induction these equations, one has to determine first ®*, then (ak, <pk) and
finally A*.

To solve the cascade of equations by induction, we first determine (a',¢'). As before, we
notice that (a',u! = V') solves a symmetrizable hyperbolic system (there is no problem with
the vacuum since we are in the same situation as in [9]). Since the condition at infinity is already
absorbed by (a, ¢), one can look for (a!,u') in H*. Moreover, we solve the system in R? with the
boundary condition u}(t,y,0) = 0 which is needed in order to match (89) since we have already
found that ®2 = 0. The existence of a smooth solution for this linear system with the boundary
condition ul(¢,y,0) = 0 which is maximal dissipative and an initial condition satisfying suitable
compatibility conditions can be obtained by the classical theory [17]. Then, one finds ' by the
formula

t
1 xTr) = 1.’1}'— aal U'Ul T, T.
o (t.x) = oh(a) /0(2 b (rz) d
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Furthermore, since F? € S.;p and a, > o > 0, the first equation in (96) (with & = 2) has a unique
solution A% € S,;,. We have therefore found (at, A, o!, @1, A% &2).

We now proceed by induction. Assume that, for some m > 2, we have determined (a’, J1<j<m—1
and (A7, ®7)1<j<m. Then, we wish to solve (95) and (96) with k = m + 1. Since G™*! is already
determined and G™'! € S.,,, the differential equation 97z®™"! = G™*! has a unique solution in

Seqp and
+00 Gm+1(t y C)
8ﬂﬂ“u%Z:—/ S N6 g
( ) Z ab(tv y)
This determines the boundary condition for u™*! = V™1, Indeed, to match (89) we shall need
to impose

oo gml(t,y, Q)

?ﬁ“@%@z@wm%ﬁ%m:‘@ﬁmwm%mzA an(t,y)

¢, (97
which is non-zero in general. We then solve (96) in the following way: (a™*!, ™+l = Vet
still solves a linear symmetrizable hyperbolic system, with source terms SZ‘“ and S™*! already
known, with the maximal dissipative boundary condition (97). It has then a smooth solution by
the above mentionned theory. Then, we recover ¢*! as usual by

t
"t 2) = et (2) +/ (SZZfH —2aa™ — - (7, 2) dr.
0

Finally, the first equation in (96) (with k = m + 1) is a linear ODE for A™*! with source term
Fmtl ¢ Serzp now determined, for which we can write down explicitly the unique exponentially
decreasing solution satisfying 97 A*(t,y,0) = —0.a"(t,y,0).

Consequently, we have constructed an approximate solution of (91) such that

1 ; _
oa® + V© - Va® + 3 a*Ap® =" (RSt ) + € LR (t,y, z/e))

G 1 12 €)2 E2Aa€ m int,m b,m
Op® + 5 [V P+ (a) =1 = = (ta) + e (RYW(t2) + R (ty, 2/e)),

where RI™™(t, z), prnt’m(t, x) are smooth bounded functions and R™, Rfa’m € Sexp. We can thus
write the error R° in the GP equation as

R (t,x) = sm( —a (Rfont’m(t, x) + Rfa’m(t, Y, z/e)) + i(&Rint’m(t, x) + RZ’m(t, Y, z/z-:)))

This ends the proof of Lemma 4. O

5.2 Validity of the WKB expansion
We shall now prove the stability of the WKB expansion built in Lemma 4.

Theorem 6 Let U™ = ¢%¢'= o WKB expansion defined on [0,T,,] given by Lemma 4. Then for
d < 3 and m > 4 there exists a unique smooth solution W& also defined on [0,T,,] of (82), (12),

(13) such that o = \IJ%ZO. Moreover, we have the estimate

e 957 — 0¥ g + ¥ UCTE — 0 yaqua) < O™ E, Vi€ [0, T
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and in particular

£
i
€

|wee — (a+eA) HWI"X’(Ri) < Oy, max{e, sm*%}. (98)

Remark 3 For simplicity, we have restricted ourselves to dimension d < 3. Note however that it
is possible to get H® estimates for every s. By contrast with Theorem 2, we emphasize that the
initial condition in Theorem 6 is exactly the WKB approximate solution %™, In particular, this
initial datum has to verify some compatibility condition on the boundary.

Proof.

As in the proof of Theorem 5, we set

a2
Pe = PU»" L e

and we study the equation for w i.e. (19). Note that we are now seeking for w which tends to
zero at infinity since the boundary condition at infinity is already absorbed in the WKB expansion.
Again the first step is to get estimates for the linear equation (21) in Q with the Neumann boundary
condition

o,w(t,y,0) =0. (99)

As we can check in the proof of Lemma 1, in all the integration by parts that are performed, the
boundary terms vanish due to the Neumann boundary condition or the fact that uj(t,y,0) = 0,
and hence the proof of the L? stability will be almost the same as the one in the whole space.
Nevertheless, we have to pay attention to the presence of boundary layer terms in the coefficients.
At first, we note that since ®! = 0 and ®2 = 0 in the WKB expansion, we still have that M (which
is defined in Lemma 1) is independent of €. Indeed, for the worse term which is V(V - uf), we have

V(V ) = 072729 + VA@ + O (¢).

Next, keeping the definitions of R, and R, given in (17), (18) and by construction of the WKB
expansion, we have

|Ra|pe < Ce™. (100)
Nevertheless, again by construction of the WKB expansion, we only have

e Aaf

R =R+ 5=

and due to the presence of boundary layers in a®, we can split R, into
2 pi b z
Rlp =€ chnt(ta Y, Z) + ngp(t? Y, g)¢ (101)

where RZ" is smooth and bounded whereas RL’O € Sezp and we see that €||prH e = O(e),
€ ||VREQH oo = O(1), hence the estimate (23) of Lemma 1 would be useless. Moreover, the fact
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that RL’O belongs to Seyp does not seem to improve the estimates. The way to overcome this diffi-
culty seems to incorporate this new singular term into the functional. Let us define the operator

2
Siw= —%Aw + 2(w,a%)a® + EREO’U),

our weighted norm in this section will be

1
NS (w) = /Q ((S5w,w) + K 22 [w]?) do = 5/9 (2Vwf? + 4w, a%)? + 22 R, [w]? + 2K %[uwf?) da.

Note that R, has no sign, nevertheless, N (w) can be bounded from below by a weighted H ! norm
if K is chosen sufficiently large. Indeed, since pr belongs to Sz, we can write

25‘ / Rfa |w|2daz‘ < CE/ e |w|?dx
Q Q
and then use the one-dimensional Sobolev inequality

it <o [t ora)’ ([ oecs.ora)’

+

to get

e / e Jwf? < Celwl 2 [Vul / ¢ % dz < O Jul 2 [Vl 2. (102)
Q

R4

In particular, we have proven that
2| /QRZ) jwf do| < O fu 2 [V . (103)
This yields thanks to the Young inequality
25( /QR'; |w|2d:1:‘ < %E2||Vw||%2 + Ce* w2 (104)
where C' is independent of €. Consequently, if K is chosen such that 2K > C, we get
N% (w) > Cy (52”10”%{1 +/Q(w,a€)2dx), Co > 0.

Note that in this section, we have
a® =a+ 0(¢)
with a > «, this finally yields that N5 (w) is equivalent to the weighted norm
NE(w) ~ 2wl + [Re w]za. (105)

The first step in the proof of Theorem 6 is to prove the equivalent of Lemma 1. We shall prove
the estimate

DN (b)) < ONE (w(t) (106)

dt
4
PR+ [ 2wy F) - [ Gedw F) - [ 65 Ryw)
0e Q 9)

where C' is independent of ¢.
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Proof of (106).

The proof follows the same lines as the proof of Lemma 1. At first, since S is self adjoint, we have
%/ﬂ (Siw,w) do = /Q (2(Siw, dw) + 4(w, a®)(w, Opa®) + 2 &,Rfa \w\Q) dx.
Since 8tRL’0 € Seup, we can still use (102) to get
% /QatRfa lw|? < ONE (w).

Next, as in the proof of Lemma 1, we use (21) to express dyw as

j 1 g2 Rint Fe
8tw:—38iw—(ua'Vw—i-—wV-ua)—i P — L
€ 2 € €
to get
iz-:QRZD”t e

2/ (8tw,8iw)dac:2/ (— (uE-Vw—i—le-uE) — w—i—,Siw)da:. (107)
Q Q 2 3

€

Moreover, since RZD”t and RL’D are real, we have the cancellation

/Q(z'Rf;,)”tw, Rz)w) dx = 0.
Therefore, the only terms in the right-hand side of (107) which are not present in (25) are
— Jo(iF®, R w) and 1
I:—Q/ <UE~V1U—|-—U)V'UE,ERE&U)).
Q 2

To estimate Z, we note that we have a bound on the second term by using again (102). It remains
to estimate the first term. Integrating by parts and using that u5(¢,y,0) = 0, we get

—2/ (uE-Vw,ERZw) :E/V' (Riu€)|w|2:/V-ussR?p\wF—i—/sus-VRl; lw|?.
Q Q Q Q

Again, the first term can be bounded thanks to (102). For the second one, we first notice that since
ug(t,y,0) = 0 and pr € Seyp, We have
0z
€ !us . VRL’O! < Cs(\vyRm + \z@zRL’OD < (Cee™ =
This finally yields
I < CN%(w)

thanks to a new use of (102).

The end of the proof of (106) is then exactly the same as the proof of Lemma 1, since all
the integration by parts do not create boundary terms either because of the Neumann boundary
condition or because u vanishes on the boundary.
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Higher order estimates.

The estimates of higher order derivatives are more involved than in the whole space. There are
two main reasons. The first one is that there is a new singular term stpw which creates bad terms
when we take the derivatives of the equation. The second reason is that to recover estimates on the
normal derivatives, we need to use the equation which gives in particular that 202 behaves like £0;
and V. This anisotropy in the weights does not seem to allow to construct high order functionals
like N&(w) which allows to get H*® estimates without additional loss of €. Let us use the notation

A= (Ao, Ag) = (8, Y, p(2)0.)"

where the weight p(z) is given by p(z) = z/(1 + z). Note that we can apply A to the equation
since Aw still satisfies the Neumann boundary condition. The use of A is classical in hyperbolic
characteristic initial boundary value problems (see [17] for example) The weighted norm that we
shall estimate is

Yi(w) = NS (w) + NS (eAw).

In dimension d < 3, this is sufficient to get the nonlinear stability. We shall see in the proof why
the use of Ay is necessary.
We shall prove that
d

—Yi(w) < C(Yj(w) +XE(F) + XE(EAFE)) (108)

for some C' > 0 independent of € where we have set

|F[7 | m F[7
+—

XE(F) = |Fl3n + -

Proof of (108).

As a preliminary, we shall rewrite (106) in a more convenient form. We can use that a® = a + O(e)
with a real, perform an integration by parts and use (102) to get from (106) that

%Ni(w(t)) < ONE(w(t) + X5 (FF) (109)

where

|17 | FeI2a

XE(FE) = ||FEH§{1 + 2

€
To prove (108), we start with the estimate of N (ed;w). When we apply €0; to (21), we find
(z’&‘@t + cs)aatw = R, 0w+ e, F* +C (110)
where the commutator C can be splitted into

C=C1+Ca+C3 (111)
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with
C = 5(8tR¢)w,
Co = 25((&@5, w)a® + (a°, w)@tas),
Cy = —ie? (8tu5 -Vw + %@(V “ut) w).

Consequently, we can apply (109) to (110) with the new source term £9; F° + C to get

%Ni(s&tw(t)) <  CNi(e0w(t)) + X°(e0,F°) + X°(C). (112)

Thus it remains to estimate X°(C). Let us begin with X¢(C;). Thanks to the expansion (101), we
easily get

X°(C1) £ Ni(w) +/Q‘8tRZ)|2 54\w\2 —|—54|Vw|2) +g4‘V8tRL’0‘2 lw|?
< Niw). (113)

Note that we could have a better estimate by using that RL’O € Sezp and (102). Next, we turn to
the estimate of X°(Cz2). By using that a® = a + O(e) with a real, we find

X*(Ca) £ N5 (w) +elRe wl3a + 2 Vuol3e $ N°(w). (114)

Note that the above estimate was sharp. This is for the estimate of this commutator Cy that we
had to chose the weight ¢ in front of the time derivative. Finally, we estimate X¢(C3) using that
Oyuj; vanishes on the boundary which implies that

|Opug| < p(2).
Thanks to this remark, we find
X(Cs) S N (w) + ' VAw]S: < YE(w). (115)

Note that this is for the control of this commutator that we are obliged to add the vector field
p(2)0, in the definition of the functional space. Consequently, the combination of (112), (113),
(114) and (115) gives

%Ni(gatw(t)) < YE(w(t)) + X(0,F°). (116)

The estimate of eV w follows exactly the same lines, and we also find

ENT(EVyu) £ YE(wln) + XV, F). (117)

The estimate of eAgw = ep(z)0,w requires some additional work since the vector field A; does not
commute with the Laplacian. By applying Ay to (21), we get

(ie@t + cf) eAgw = Roehgw + eAgF* + C + C4 (118)
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where C is defined as in (111) above with 9; replaced by Ay and C4 is given by

3 53

S8 Alw = == (2(0:p) Dz + (9:2p) D).

G=-3 2

Next, we can apply (106) to get

d
ENi (z-:Adw(t)) < N§ (sAdw(t)) + X°(eAgF°)+ X°(C) + ||C4H§{1
4

+—/(5Adw,a5)(ia5,C4) —/ (iC4,R?p sAdw).

€Ja Q

Since one can easily check that X¢(C) still satisfies the bounds (113), (114), (115), we obtain
d

= NE(eAqw(t)) S Yi(w) + X*(eAaF?) + [CalFp

dt
4
+—/(€Adw7a5)(ia57(}4) —/ (iC4,REO EAd’u}).
€ Ja Q
Next, we note that
[Calfn S e8lwlfps

~

and that

4 . 4 SN
| [hawat)iat e £ 2 [ ol ipCi] £ N ) (Ipdiewlse + [oula)
elJa €Ja

S Nf(w)2Yi(w)2.

[SIE

In a similar way, we also get

| [ (e B etaw)| < elouulie InCalle 5 Ve w).
Q

Consequently, we have proven that

d
N5 (EAqu(t)) Vi (w) + X7 (AaF?) + . (119)

To conclude, it remains to estimate e%|w|3,5. As usual, this is done thanks to the equation (19)
and the standard regularity result for elliptic equations. We rewrite (19) as the equation

2Aw =G, dw(t,y,0) =0 (120)
where the source term enjoys the estimates

1G> < €[ AwlZs + JwlZz + 1FeIL,

VG2 < 2IVAwlEe + lwlip + [VEE|Z..

Consequently, we get from (120) by standard elliptic regularity that

elwlps < YE(w) + 1F° |7 (121)
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By replacing this last estimate in (119), we finally obtain

d
NG (EAqu(t)) S Yi(w) + X (eAaF?) + [F [ (122)

To conclude, it suffices to sum the estimates (109), (116), (117) and (122) to get (108).

The estimate (108) is sufficient to prove the nonlinear stability stated in Theorem 6 for d < 3.
Nevertheless, it is possible to prove by induction that for every s,

%( > Ni((EA)mw)) <> (Xa((sA)me) + Ni((sA)mw)),

m<s

Nonlinear stability.

Thanks to (108) and Gronwall inequality, we get for 0 < T' < T,,,,where T, is the existence time of
the approximate solution given by Lemma 4,

sup Y= (w) < YE(0) + Te?” sup (XE(FE) + XE(EAF5)>
(0,7 [0,7]

for some v > 0 independent of e. Combining this last estimate with (121), we get

sup Z5 (w) < Cr,, (Yi(O) + sup (XE(FE) + XE(EAF6)>), (123)
(0,7 [0,7]

with
7% (w) = YE(w) + S uls.

Thanks to this a priori estimate, one can easily prove by standard fixed point argument the existence
of a unique solution of (19) with the neumann condition 9,w|,—y = 0 on some interval of time
[0,T¢] C [0,T},] such that Z5 (w) remains finite.

By using that w/,_o = 0 and the equation to compute the time derivative, we find

Y5 (w) =g = N5 (eBiw) =g < O, ™.
Moreover, using that F° = "™ R® + ¢, we have thanks to (86) that

sup (Xi(RE) + Xi(AR5)> < Crp, e¥™ L,
[0, T3]

Inserting this into (123) yields, for 0 <t < T*,

sup Z5 (w) < Kr,, e L + Oy, sup (Xa(Qa) + XE(EAQE)). (124)
[0,T] (0,7

We can thus define 7¢ € (0,7,,,] as the maximal time such that the solution w of (19) satisfies
Z% (w(t)) < 2K, ! on [0,7¢]. Asin the proof of Theorem 5, we shall prove that for ¢ sufficiently
small, we have 7¢ = T},,. Here, the expression of Q°(w) is given by

Q°(w) = as|w|2 + 2(w, a®)w + w\w\2.
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To conclude, we need to bound the right hand side of (124). To estimate the nonlinear term, we
use that for d < 3, we have
[wlzee < IVl lwlgs,

which gives

25 (w) -
fuf $ 2 < 2mo wefo,79),
We shall take m such that 2m > 5 in order to get |w|re <1 for ¢ € [0,7¢). This implies

7e (w)Q
Q%17 S (lwlZe + i) lolfn S =5
Next, since H'(R%) c L* for d < 3, we also have
Qs _ Jull
£

! Z5 (w)?
EQ 2H (1 + HwH%‘”) S +€6 .

~

Consequently, we have already proven that

oo < Zaw)?
X(Q7) 5

Next, we evaluate X¢(cAQ*). At first, we write

(125)

A% N S | Aw[fp (JwlZee + [wlLee) + e*[Aw]7a [Vewl7a (1 + [w]Ee)
and by using for d < 3, the Sobolev embedding H' € L* and the Gagliardo-Nirenberg inequality

1 3
IVFI7a S 1F120 V22

we get for 0 <t < 7¢:

75 (w)? : s ZE(w)?
- -
|AQ° 5 < —a + e Vulipwl i V2wl 7, S 5
Finally, by similar arguments, we also have
leAQ7 7 . 75 (w)?
TL S A2 Jwl 7 S [Awln Jwln S 5

We have thus proven that

Z5(w)?

X (eAQ) S —

; (126)

Consequently, inserting (125), (126) into (124), we get

7e 2
sup Z% (w) < Kr,,e*™ " + Cr,, sup +(;v) < Kr,,e®™ ' + 2K7, Cr, e 7 sup Z5 (w).
[0,7¢] 0.7 € [0,7¢]

By choosing m > 4, this allows to get for e sufficiently small that 7 = T,,, and that

sup Z5 (w) < Ce*™ 1.
[0,T5m]

Finally, the estimate (98) follows by Sobolev embedding. This ends the proof of Theorem 6. O
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A A Lemma about composition in Sobolev spaces

During the proof of Lemma 3, we have used a result about composition in Sobolev spaces. This
result is very standard when h does not depend on x (see, for instance, [18]).

Lemma 5 Let R > 0, s € N and h = h(z,w) € C*t1(R? x R2,R), satisfying h(x,0) = 0 for all
r € R Assume moreover

A= sup{”@ﬁ@ﬁhHLm(RdeR), aeNY BeN? |a| <s, o +]6] < s+1} < +cc.

Then, there exists C, depending only on A, s and R, such that, for any w € H*(RY) satisfying
|| o0 (may < R, we have h(z,w(z)) € H*(R?) and

[ (2, w(@) || 7o < Cllew]l -

Proof. The proof is by induction on s € N and relies on the Gagliardo-Nirenberg inequality. If
s = 0, it suffices to notice that since h(z,0) = 0, then for w € Bp,

(2, w)] < Afwl.

Assume then the result for s — 1 € N. Let x4 € N? with |u| = s. One has easily
M (h(z,w(z))) = Z *(8?85+7h) (z,w(x)) (aﬂwl)p(aﬂng)q,

where o € N%, o < p, 8, v € N2, p, ¢ € N* depend on 8 and v, |a| + p|f| + ¢|y| = s, and * is
a coefficient depending only on u, a, 8 and . Furthermore, since w € H® N L*°, the Gagliardo-
Nirenberg inequality yields, for 1 < k < s,

1_,

] ze < Crolwlls o]

"k

As a consequence, by interpolation, if w € H*N L* and HwHLoo < R, then for v € N%, |4| < s, and
2<p< i
2
|07 < Cop.rlw] -
Therefore, in view of |a| + p|8| + ¢|y| = s, by Hoélder inequality, we can estimate the terms in
" (h(z,w(z))) for which a # p (thus |a| < s) as

Lo < CsprA|w] .-

(020577 h) (, w(@)) (9%wn) " (9Mw2)| o < AO%un ", g 0702,

For the term for which a = p, we note that since h(z,0) = 0 for 2 € R?, then (02h)(z,0) = 0 for
any = € R? so that if w € B C R?,

(02 h) (2, w)| < Afuwl,
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which implies

|02h) (2, w(2)) | ;2 < Aw] 2 < Afw],.-

Combining these two estimates gives

[0 (h(@, w(@)) [ 2 < CsprAlw] .

and the proof of the Lemma is complete. O
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