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We consider a nonparametric regression model where m noiseperturbed functions f 1 , . . . , f m are randomly observed. For a fixed ν ∈ {1, . . . , m}, we want to estimate f ν from the observations. To reach this goal, we develop an adaptive wavelet estimator based on a hard thresholding rule. Adopting the mean integrated squared error over Besov balls, we prove that it attains a sharp rate of convergence. Simulation results are reported to support our theoretical findings.

Introduction

An indirect nonparametric regression model is considered: we observe n independent pairs of random variables (X 1 , Y 1 ), . . . , (X n , Y n ) where, for any i ∈ {1, . . . , n},

Y i = f Vi (X i ) + ξ i , (1) 
V 1 , . . . , V n are n unobserved independent discrete random variables each having a known distribution such that, for any i ∈ {1, . . . , n}, the set of possible values of V i is v i ∈ {1, . . . , m}, m ∈ N * .

For any d ∈ {1, . . . , m}, f d : [0, 1] → R is an unknown function, X 1 , . . . , X n are n i.i.d. random variables uniformly distributed on [0, 1] and ξ 1 , . . . , ξ n are n i.i.d. unobserved random variables with finite first and second moments, i.e.

E(ξ 1 ) = 0, E(ξ 2 1 ) < ∞.

The distribution of ξ 1 may be unknown. We suppose that V 1 , . . . , V n , X 1 , . . . , X n , ξ 1 , . . . , ξ n are mutually independent. The primary objective pursued in this paper is to estimate f ν , for a fixed ν ∈ {1, . . . , m}, from (X 1 , Y 1 ), . . . , (X n , Y n ).

Examples of application Model ( 1) is rather general and has many potential applications. Here we describe some examples that fall within the scope [START_REF] Akyildiz | A survey on sensor networks[END_REF], and for which our estimator can have practical usefulness. In general, one can think of recovery problems and inverse problems in signal and image processing with missing or partially/uncertainly observed data, such as in computerized tomography, sensor networks, etc. For instance, sensor network is a collection of spatially distributed autonomous sensors intended to measure and monitor physical phenomena at diverse locations, e.g. temperature, humidity, pressure, wind direction and speed, chemical concentrations, pollutant levels and vital body functions; see e.g. [START_REF] Akyildiz | A survey on sensor networks[END_REF] for an overview. In a sensor network, every sensor node is also equipped with a transceiver which receives commands from a central computer and transmits data to that computer. Sensor networks are encountered in several applications which include industrial monitoring, video surveillance, traffic, medical and weather monitoring, etc. In this sensor network example, and assuming for simplicity that each sensor records only one physical parameter, we can think of the function f d , d ∈ {1, • • • , m}, as the physical parameter at sensor d, and X i as the recording time. Given that the measurements gathering process is centralized, only one sensor information is collected at a time. The problem now is that given n noisy versions Y i and recording times X i of the physical parameter from non-necessarily identified sensors (i.e. unknown V i ), the goal is to recover the parameter profile f ν at any sensor ν ∈ {1, • • • , d}. The noise in the observations Y i can be due to measurement noise or to faulty sensors. In this setting, the distribution of V i is typically dictated by the spatial configuration, and other parameters such as the reliability of a sensor.

To estimate f ν , various methods can be investigated (kernel methods, spline methods, etc.) (see e.g. [START_REF] Rao | Nonparametric functional estimation[END_REF][START_REF] Rao | Nonparametric functional estimation: an overview, chap. Asymptotics[END_REF] and [START_REF] Tsybakov | Introduction à l'estimation nonparametrique[END_REF] for extensive overview). In this study, we focus our attention on wavelet-based methods. They are attractive for nonparametric function estimation because of their spatial adaptivity, computational efficiency and asymptotic optimality properties. They can achieve near optimal convergence rates over a wide range of function classes (Besov balls, etc.) and enjoy excellent mean integrated squared error (MISE) properties when used to estimate spatially inhomogeneous function. Details on the basics on wavelet methods in function estimation can be found in [START_REF] Antoniadis | Wavelets in statistics: a review (with discussion)[END_REF] and [START_REF] Härdle | Wavelets, Approximation and Statistical Applications[END_REF].

When model ( 1) is considered with V 1 = . . . = V n = 1, it becomes the classical nonparametric regression model. In this case, to estimate f 1 = f , several wavelet methods have been designed. There is an extensive literature on the subject, see e.g. [START_REF] Donoho | Ideal spatial adaptation via wavelet shrinkage[END_REF][START_REF] Donoho | Adapting to unknown smoothness via wavelet shrinkage[END_REF][START_REF] Donoho | Minimax estimation via wavelet shrinkage[END_REF][START_REF] Donoho | Wavelet shrinkage: asymptopia?[END_REF], [START_REF] Delyon | On minimax wavelet estimators[END_REF], [START_REF] Antoniadis | Random design wavelet curve smoothing[END_REF], [START_REF] Cai | Wavelet estimation for samples with random uniform design[END_REF], [START_REF] Zhang | Nonlinear wavelet estimation of regression function with random design[END_REF], [START_REF] Cai | Adaptive wavelet estimation: a block thresholding and oracle inequality approach[END_REF][START_REF] Cai | On block thresholding in wavelet regression: Adaptivity, block size, and threshold level[END_REF], [START_REF] Pensky | On non-equally spaced wavelet regression[END_REF], [START_REF] Chicken | Block thresholding and wavelet estimation for nonequispaced samples[END_REF], [START_REF] Kerkyacharian | Regression in random design and warped wavelets[END_REF], [START_REF] Chesneau | Wavelet block thresholding for samples with random design: a minimax approach under the L p risk[END_REF] and [START_REF] Pham Ngoc | Regression in random design and bayesian warped wavelets estimators[END_REF]. However, to the best of our knowledge, there is no adaptive wavelet estimator for f ν in the general model [START_REF] Akyildiz | A survey on sensor networks[END_REF].

Contributions

In this paper, we design and study an adaptive wavelet estimator for f ν that relies on the hard thresholding rule in the wavelet domain. It has the originality to combine an "observation thresholding technique" introduced by [START_REF] Delyon | On minimax wavelet estimators[END_REF] with some technical tools that account for the distribution of V 1 , . . . , V n . Moreover, we evaluate its performance via the MISE over Besov balls. Under mild assumptions, to be specified and discussed in Section 2, we prove that our estimator attains a sharp rate of convergence: it is the one attained by the best nonadaptive linear wavelet estimator (the one which minimizes the MISE) up to a logarithmic factor. We also report some simulation results to illustrate the potential applicability of the estimator and to support our theoretical findings.

Paper organization

The paper is organized as follows. Assumptions on the model and some notations are introduced in Section 2. Section 3 provides a brief description of wavelet bases on [0, 1] and Besov balls, focusing only on essential ingredients relevant to our work. The estimators are presented in Section 4. The main results are stated in Section 5. Conclusions and perspectives are drawn in Section 6 and Section 7 is devoted to the proofs.

Model assumptions

In the sequel, a(i) is the i-th entry of a vector a. We use the notation a, b n = 1 n n i=1 a(i)b(i) for the normalized euclidean inner product in R n , and • n the associated norm.

Additional assumptions on the model (1) are as follows.

Assumption on (f d ) d∈{1,...,m} . We suppose that the collection of functions f d is uniformly bounded, i.e. ∃ C * > 0 such that sup d∈{1,...,m}

sup x∈[0,1] |f d (x)| ≤ C * . (2) 
Assumptions on (V i ) i∈{1,...,n} . Recall that V 1 , . . . , V n are assumed unobserved. However for any i ∈ {1, . . . , n}, we suppose that the following probabilities are known

w d (i) = P(V i = d), d ∈ {1, . . . , m}.
We also suppose that the Gram matrix

Γ n = 1 n W T W = ( w k , w ℓ n ) (k,ℓ)∈{1,...,m} 2
is (symmetric) positive-definite, or equivalently that the matrix of probabilities

W = (w 1 , • • • , w m ) ∈ [0, 1] n×m is full column rank.
For the considered ν (the one which refers to the estimation of f ν ) and any i ∈ {1, . . . , n}, we set

a ν = 1 det(Γ n ) m k=1 (-1) k+ν M n ν,k w k , (3) 
where M n ν,k denotes the minor (ν, k) of the matrix Γ n . To get the gist of (3) and the importance of positive-definiteness of Γ n , it is useful to view the vector a ν = (a ν (1), . . . , a ν (n)) T as the solution of the following (strictly convex) quadratic program, i.e. a quadratic objective with linear (here orthogonormality) constraints

min b∈R n b 2 n such that w d , b n = δ ν,d , for d ∈ {1, • • • , m} (4) 
where δ ν,d is the Kronecker delta. Using the Lagrange multipliers, it is easy to see that the unique minimizer of ( 4) is given by

a ν = W Γ -1 n ∆ ν , (5) 
where ∆ ν is a vector of zeros except at its ν-th entry. Using the cofactors of Γ n to get its inverse, we recover (3). Positive-definiteness of Γ n is important for (5) to make sense, otherwise a ν would not be uniquely defined.

In a nutshell, a ν ∈ Span(w k , k ∈ {1, • • • , m}) is the dual vector of minimal norm, i.e. a ν correlates perfectly with the proper row ν of the matrix W , otherwise the inner products are zero. In the context of mixture density estimation, [START_REF] Maiboroda | Estimates of components of a mixture with varying concentrations[END_REF] showed that a ν is the minimal risk weight vector to be used for the empirical measure constructed from the observations to yield an unbiased estimator of the ν-th distribution in the mixture. See [START_REF] Maiboroda | Estimates of components of a mixture with varying concentrations[END_REF][START_REF] Pokhyl'ko | Wavelet estimators of a density constructed from observations of a mixture[END_REF][START_REF] Rao | Wavelet linear estimation for derivatives of a density from observations of mixtures with varying mixing proportions[END_REF] for further technical details.

If V i were observed along with (X i , Y i ), then only observations (X i , Y i ) corresponding to V i = ν should be involved in the estimator. But in our setting, V i are unobserved, and in this case, a careful decision should be made based upon all available observations to incorporate them in the estimator by "weighting" them wisely using the prior probabilities w k (i).

In view of the above discussion on a ν , it appears natural to construct such a decision using this vector. We therefore let

z n = a ν 2 n ( 6 
)
where it is supposed that z n < n/e. This upper-bound is not restrictive and it can be shown that a sufficient condition for it to hold is that max k,i w k (i) > e/n which is reasonable. The wavelet hard thresholding estimator that we will describe in Section 4 will explicitly involve z n , hence a ν .

3 Wavelets and Besov balls Wavelet basis. Let N ∈ N * , and φ and ψ be respectively the father and mother wavelet functions of the Daubechies family db N . Denote the scaled and translated versions

φ j,k (x) = 2 j/2 φ(2 j x -k), ψ j,k (x) = 2 j/2 ψ(2 j x -k).
Then there exists an integer τ satisfying 2 τ ≥ 2N such that, for any integer ℓ ≥ τ , the collection

B = {φ ℓ,k (.), k ∈ {0, . . . , 2 ℓ -1}; ψ j,k (.); j ∈ N-{0, . . . , ℓ-1}, k ∈ {0, . . . , 2 j -1}},
(with an appropriate treatment at the boundaries) forms an orthonormal basis of L 2 ([0, 1]), the set of square-integrable functions on the interval [0, 1]. The interested reader may refer to [START_REF] Cohen | Wavelets on the interval and fast wavelet transforms[END_REF] for futher details.

In turn, any h ∈ L 2 ([0, 1]) can be expanded on B as

h(x) = 2 ℓ -1 k=0 α ℓ,k φ ℓ,k (x) + ∞ j=ℓ 2 j -1 k=0 β j,k ψ j,k (x),
where α j,k and β j,k are the wavelet coefficients of h given through the inner product that equips L 2 ([0, 1])

α j,k = 1 0 h(x)φ j,k (x)dx, β j,k = 1 0 h(x)ψ j,k (x)dx. (7) 
Besov balls. Here, instead of the original definition of Besov spaces through the modulus of continuity, we will focus on the now classical definition of the Besov norm of a function through a sequence space norm on its wavelet coefficients. More precisely, Let M > 0, s > 0, p ≥ 1 and r ≥ 1. A function h belongs to B s p,r (M ) if and only if there exists a constant M * > 0 (depending on M ) such that the associated wavelet coefficients1 (7) obey

2 τ (1/2-1/p) 2 τ -1 k=0 |α τ,k | p 1/p +    ∞ j=τ   2 j(s+1/2-1/p)   2 j -1 k=0 |β j,k | p   1/p    r    1/r ≤ M * .
In this expression, s is a smoothness parameter and p and r are norm parameters. For a particular choice of s, p and r, B s p,r (M ) contain the Hölder and Sobolev balls. See [START_REF] Meyer | Wavelet and Operators[END_REF].

Estimators

Wavelet coefficient estimators. The first step to estimate f ν consists in expanding f ν on B and estimating its unknown wavelet coefficients.

For any integer j ≥ τ and any k ∈ {0, . . . ,

2 j -1}, • α j,k = 1 0 f ν (x)φ j,k (x)dx are estimated by α j,k = 1 n n i=1 a ν (i)Y i φ j,k (X i ), (8) 
•

β j,k = 1 0 f ν (x)ψ j,k (x)dx are estimated by β j,k = 1 n n i=1 Z i,j,k 1 {|Z i,j,k |≤γn} , (9) 
where, for any i ∈ {1, . . . , n},

Z i,j,k = a ν (i)Y i ψ j,k (X i ),
a ν (i) is defined by (3), and for any random event A, 1 A is the indicator function on A. The threshold γ n is defined by

γ n = θ nz n ln(n/z n ) , ( 10 
)
z n is defined by (6), θ = C 2 * + E(ξ 2 1
) and C * is the one in [START_REF] Antoniadis | Wavelets in statistics: a review (with discussion)[END_REF]. The value of θ allows to upper-bound the mean squared-error in the estimates of the scaling and wavelet coefficients α j,k and β j,k ; see the proofs of Proposition 1 and 2, and more precisely [START_REF] Meyer | Wavelet and Operators[END_REF] and [START_REF] Rao | Nonparametric functional estimation[END_REF].

Remark 1 It is worth mentioning that α j,k is an unbiased estimator of α j,k , whereas β j,k is not an unbiased estimator of β j,k . However (1/n) n i=1 Z i,j,k is an unbiased estimator of β j,k . See the proofs of Proposition 1 and 2 in Section 7, and more precisely [START_REF] Härdle | Wavelets, Approximation and Statistical Applications[END_REF] and [START_REF] Petrov | Limit Theorems of Probability Theory: Sequences of Independent Random Variables[END_REF].

Remark 2

The "observations thresholding technique" used in [START_REF] Cohen | Wavelets on the interval and fast wavelet transforms[END_REF] has been firstly introduced by [START_REF] Delyon | On minimax wavelet estimators[END_REF] for (1) in the classical case (i.e. V 1 = . . . = V n = 1). In our general setting, this allows us to provide a good estimator of β j,k under mild assumptions on -(a ν (i)) i∈{1,...,n} and a fortiori the distributions of V 1 , . . . , V n (only z n < n/e is required), -ξ 1 , . . . , ξ n (only finite moments of order 2 are required).

Linear estimator. Assuming that f ν ∈ B s p,r (M ) with p ≥ 2, we define the linear estimator f L by

f L (x) = 2 j 0 -1 k=0 α j0,k φ j0,k (x), (11) 
where α j,k is given by ( 8) and j 0 is the integer satisfying

1 2 n z n 1/(2s+1) < 2 j0 ≤ n z n 1/(2s+1)
.

The definition of j 0 is chosen to minimize the MISE of f L . Note that it is not adaptive since it depends on s, the smoothness parameter of f ν .

Hard thresholding estimator. We define the hard thresholding estimator f H by

f H (x) = 2 τ -1 k=0 α τ,k φ τ,k (x) + j1 j=τ 2 j -1 k=0 β j,k 1 {| b β j,k |≥κλn} ψ j,k (x), (12) 
where α j,k is defined by ( 8), β j,k by ( 9), j 1 is the integer satisfying

n 2z n < 2 j1 ≤ n z n ,
κ ≥ 8/3 + 2 + 2 16/9 + 4 and λ n is the threshold

λ n = θ z n ln(n/z n ) n . (13) 
The bound on κ comes from the Bernstein concentration inequality, see Lemma 2. Further details on the hard thresholding wavelet estimator for the standard nonparametric regression model can be found for instance in the seminal work of [START_REF] Donoho | Ideal spatial adaptation via wavelet shrinkage[END_REF][START_REF] Donoho | Adapting to unknown smoothness via wavelet shrinkage[END_REF][START_REF] Donoho | Minimax estimation via wavelet shrinkage[END_REF] as well as in [START_REF] Delyon | On minimax wavelet estimators[END_REF].

Note that the choice of γ n in (10) depends on λ n in (13): we have λ n = θ 2 z n /γ n . The definitions of γ n and λ n are based on theoretical considerations that will be clarified shortly. These considerations allow our estimator to attain a sharp convergence rate on the MISE.

Results

Theorem 1 (Convergence rate of f L ) Consider (1) under the assumptions of Section 2. Suppose that f ν ∈ B s p,r (M ) with s > 0, p ≥ 2 and r ≥ 1. Let f L as defined by [START_REF] Donoho | Ideal spatial adaptation via wavelet shrinkage[END_REF]. Then there exists a constant C > 0 such that

E 1 0 f L (x) -f ν (x) 2 dx ≤ C z n n 2s/(2s+1)
.

The proof of Theorem 1 uses moment inequalities on ( 8) and ( 9), and a suitable decomposition of the MISE. Since the common distribution of ξ 1 , . . . , ξ n is unknown (a priori), we can not apply the standard lower bound theorems to prove that the rate of convergence v n = (z n /n) 2s/(2s+1) is the optimal one (in the minimax sense) for (1) (most of these theorems can be found in [START_REF] Tsybakov | Introduction à l'estimation nonparametrique[END_REF]Chapter 2]). However, since f L is constructed to be the nonadaptive linear estimator which optimizes the MISE, assuming the smoothness of f ν is known, our benchmark will be v n .

One may remark that, in the case V 1 = . . . = V n = 1 and ξ 1 ∼ N (0, 1), we have z n = 1 and v n (= n -2s/(2s+1) ), which is the optimal (minimax) convergence rate (see [START_REF] Tsybakov | Introduction à l'estimation nonparametrique[END_REF]).

We now turn to the rate of the nonlinear wavelet hard thresholding estimator.

Theorem 2 (Convergence rate of f H ) Consider (1) under the assumptions of Section 2. Let f H as defined by [START_REF] Donoho | Adapting to unknown smoothness via wavelet shrinkage[END_REF]. Then there exists a constant C > 0 such that

sup fν ∈B s p,r (M ) E 1 0 f H (x) -f ν (x) 2 dx ≤ C z n ln(n/z n ) n 2s/(2s+1) , with r ≥ 1, {p ≥ 2 and s > 0} or {p ∈ [1, 2) and s > 1/p}.
The proof of Theorem 2 is based on several probability results (moment inequalities, Bernstein concentration inequality, etc.), in conjunction with a suitable decomposition of the MISE. Theorem 2 proves that f H attains the sharp rate v n = (z n /n) 2s/(2s+1) up to the logarithmic factor (ln(n/z n )) 2s/(2s+1) .

Naturally, when V 1 = . . . = V n = 1 and ξ 1 ∼ N (0, 1), f H attains the same rate of convergence as the standard hard thresholding estimator for the classical nonparametric regression model (see [START_REF] Donoho | Ideal spatial adaptation via wavelet shrinkage[END_REF][START_REF] Donoho | Adapting to unknown smoothness via wavelet shrinkage[END_REF][START_REF] Donoho | Minimax estimation via wavelet shrinkage[END_REF]). The latter is known to be optimal in the minimax sense up to a logarithmic term.

Simulation results

In this simulation, n = 4096 observed data samples (Y i , X i ) were generated according to model [START_REF] Akyildiz | A survey on sensor networks[END_REF], where X i were equi-spaced in [0, 1] with X 1 = 0 and X n = 1, and ξ i ∼ i.i.d. N (0, σ 2 ) with σ = 0.01. We have used three piece-wise regular test functions exhibiting different degrees of smoothness, and we have chosen arbitrarily C * = 1. These functions are widely used in the non-linear wavelet estimation literature. The V i 's were sampled randomly in {1, 2, 3} with probabilities w d (i) such that each function was randomly observed third of the time on [0, 1]. We used the Daubechies db 3 wavelet and our test code was based on [28].

The results are depicted in Fig. 1. It can be clearly seen that our adaptive hard thresholding estimator is very effective to estimate each of the three test functions. The recovered wavelet coefficients are also shown where most of the irreagularities are captured in the estimated coefficients. In the figure, we also display the indicators of the true indices (those of the first 20 samples) for each test function, i.e. 1 if sample i is selected from function ν ∈ {1, 2, 3} and 0 otherwise. The corresponding weight vector a ν is shown, and it can be seen that a ν fullfills its expected role by wisely weighting the appropriate observations.

Conclusion and perspectives

In this work, an adaptive wavelet hard thresholding estimator was constructed to estimate an arbitrary function f ν from the sophisticated regression model [START_REF] Akyildiz | A survey on sensor networks[END_REF]. Under mild assumptions on the noise and the V i 's, it was proved that it attains a sharp rate of convergence over a wide class of functions belonging to Besov spaces.

There are several perspectives that rise naturally from this work: • It would be interesting to investigate the estimation of f ν in (1) when the design point X 1 has a more complex distribution beyond the random uniform one. In this case, the warped wavelet basis introduced in the nonparametric regression estimation by [START_REF] Kerkyacharian | Regression in random design and warped wavelets[END_REF] could be a promising tool to attack this problem.

• Another important extension would be to consider the case where the distributions of V 1 , . . . , V n are unknown, which is the case in many practical situations. • A last point would be to try to improve the estimation of f ν (e.g. by removing the extra logarithmic term). The block-thresholding rule named BlockJS developed in wavelet estimation by [START_REF] Cai | Adaptive wavelet estimation: a block thresholding and oracle inequality approach[END_REF][START_REF] Cai | On block thresholding in wavelet regression: Adaptivity, block size, and threshold level[END_REF] seems to be a good candidate. All these open questions need further investigations that we leave for a future work.

Proofs

In this section, we consider (1) under the assumptions of Section 2. Moreover, C represents a positive constant which may differ from one term to another.

Auxiliary results

Proposition 1 For any integer j ≥ τ and any k ∈ {0, . . . , 2 j -1}, let α j,k be the wavelet coefficient (7) of f ν and α j,k be as in [START_REF] Chicken | Block thresholding and wavelet estimation for nonequispaced samples[END_REF]. Then there exists a constant C > 0 such that Proof of Proposition 1. First of all, we prove that α j,k is an unbiased estimator of α j,k . For any i ∈ {1, . . . , n}, set

E ( α j,k -α j,k ) 2 ≤ C z n n .
W i,j,k = a ν (i)Y i φ j,k (X i ).
Since X i , V i and ξ i are independent, and E(ξ i ) = 0, we have

E(W i,j,k ) = E(a ν (i)Y i φ j,k (X i )) = E(a ν (i)(f Vi (X i ) + ξ i )φ j,k (X i )) = a ν (i)E(f Vi (X i )φ j,k (X i )) + a ν (i)E(ξ i )E(φ j,k (X i )) = a ν (i)E(f Vi (X i )φ j,k (X i )) = a ν (i) m d=1 w d (i) 1 0 f d (x)φ j,k (x)dx. ( 14 
)
It follows from ( 14) and ( 4) that

E( α j,k ) = 1 n n i=1 E(W i,j,k ) = 1 n n i=1 a ν (i) m d=1 w d (i) 1 0 f d (x)φ j,k (x)dx = m d=1 1 0 f d (x)φ j,k (x)dx 1 n n i=1 a ν (i)w d (i) = 1 0 f ν (x)φ j,k (x)dx = α j,k . (15) 
So α j,k is an unbiased estimator of α j,k . Therefore

E ( α j,k -α j,k ) 2 = V ( α j,k ) = V 1 n n i=1 W i,j,k = 1 n 2 n i=1 V(W i,j,k ) ≤ 1 n 2 n i=1 E W 2 i,j,k . (16) 
For any i ∈ {1, . . . , n}, we have

E W 2 i,j,k = E(a 2 ν (i)Y 2 i φ 2 j,k (X i )) = a 2 ν (i)E (f Vi (X i ) + ξ i ) 2 φ 2 j,k (X i ) . ( 17 
) Since X i , V i and ξ i are independent, E φ 2 j,k (X i ) = 1 0 φ 2 j,k (x)dx = 1 and, by (2), sup d∈{1,...,m} sup x∈[0,1] |f d (x)| ≤ C * , we have E (f Vi (X i ) + ξ i ) 2 φ 2 j,k (X i ) = E f 2 Vi (X i )φ 2 j,k (X i ) + 2E(ξ i )E(f Vi (X i )φ 2 j,k (X i )) + E ξ 2 i E φ 2 j,k (X i ) = E f 2 Vi (X i )φ 2 j,k (X i ) + E ξ 2 1 ≤ C 2 * E φ 2 j,k (X i ) + E ξ 2 1 = C 2 * + E ξ 2 1 = θ 2 . ( 18 
)
Putting ( 17) and ( 18) together, we obtain

E W 2 i,j,k ≤ θ 2 a 2 ν (i). ( 19 
)
It follows from ( 16) and ( 19) that

E ( α j,k -α j,k ) 2 ≤ 1 n θ 2 1 n n i=1 a 2 ν (i) = C z n n .
The proof of Proposition 1 is complete.

Proposition 2 For any integer j ≥ τ and any k ∈ {0, . . . , 2 j -1}, let β j,k be the wavelet coefficient [START_REF] Chesneau | Wavelet block thresholding for samples with random design: a minimax approach under the L p risk[END_REF] of f ν and β j,k be as in [START_REF] Cohen | Wavelets on the interval and fast wavelet transforms[END_REF]. Then there exists a constant C > 0 such that

E β j,k -β j,k 4 ≤ C (z n ln(n/z n )) 2 n 2 .
Proof of Proposition 2. Taking ψ instead of φ in [START_REF] Härdle | Wavelets, Approximation and Statistical Applications[END_REF], we obtain

β j,k = 1 0 f ν (x)ψ j,k (x)dx = 1 n n i=1 E (Z i,j,k ) = 1 n n i=1 E(Z i,j,k 1 {|Z i,j,k |≤γn} ) + 1 n n i=1 E(Z i,j,k 1 {|Z i,j,k |>γn} ). ( 20 
)
Therefore, by the elementary inequality (x + y) 4 ≤ 8(x 4 + y 4 ), (x, y) ∈ R 2 , we have

E β j,k -β j,k 4 ≤ 8(A + B), (21) 
where

A = E   1 n n i=1 Z i,j,k 1 {|Z i,j,k |≤γn} -E(Z i,j,k 1 {|Z i,j,k |≤γn} ) 4   and B = 1 n n i=1 E(|Z i,j,k |1 {|Z i,j,k |>γn} ) 4 .
Let us bound A and B, in turn. Upper bound for A. Let us present the Rosenthal inequality (see [START_REF] Rosenthal | On the subspaces of L p (p ≥ 2) spanned by sequences of independent random variables[END_REF]).

Lemma 1 (Rosenthal's inequality) Let n ∈ N * , p ≥ 2 and U 1 , . . . , U n be n zero mean independent random variables such that sup i∈{1,...,n} E(

|U i | p ) < ∞.
Then there exists a constant C > 0 such that

E n i=1 U i p ≤ C max   n i=1 E (|U i | p ) , n i=1 E U 2 i p/2   .
Set, for any i ∈ {1, . . . , n},

U i,j,k = Z i,j,k 1 {|Z i,j,k |≤γn} -E Z i,j,k 1 {|Z i,j,k |≤γn} .
Then, for any i ∈ {1, . . . , n}, we have E(U i,j,k ) = 0 and using [START_REF] Pensky | On non-equally spaced wavelet regression[END_REF] (with ψ instead of φ), for any b ∈ {2, 4},

E U b i,j,k ≤ 2 b E Z b i,j,k 1 {|Z i,j,k |≤γn} ≤ 2 b γ b-2 n E Z 2 i,j,k ≤ 2 b γ b-2 n θ 2 a 2 ν (i). It follows from the Rosenthal inequality and z n < n/e that A = 1 n 4 E   n i=1 U i,j,k 4   ≤ C 1 n 4 max   n i=1 E U 4 i,j,k , n i=1 E U 2 i,j,k 2   ≤ C 1 n 4 max   γ 2 n n i=1 a 2 ν (i), n i=1 a 2 ν (i) 2   = C 1 n 4 max n 2 ln(n/z n ) z 2 n , n 2 z 2 n = C z 2 n n 2 . ( 22 
)
Upper bound for B. Using again [START_REF] Pensky | On non-equally spaced wavelet regression[END_REF] (with ψ instead of φ), for any i ∈ {1, . . . , n}, we obtain

E |Z i,j,k |1 {|Z i,j,k |>γn} ≤ E(Z 2 i,j,k ) γ n ≤ 1 θ ln(n/z n ) nz n θ 2 a 2 ν (i) = θ ln(n/z n ) nz n a 2 ν (i). Therefore B = 1 n n i=1 E(|Z i,j,k |1 {|Z i,j,k |>γn} ) 4 ≤ θ 4 (ln(n/z n )) 2 n 2 z 2 n 1 n n i=1 a 2 ν (i) 4 = θ 4 (ln(n/z n )) 2 n 2 z 2 n z 4 n = θ 4 (z n ln(n/z n )) 2 n 2 . ( 23 
)
Combining ( 21), ( 22) and ( 23) and using z n < n/e, we have

E β j,k -β j,k 4 ≤ C 1 n 2 z 2 n + (z n ln(n/z n )) 2 n 2 ≤ C (z n ln(n/z n )) 2 n 2 .
This completes the proof of Proposition 2.

Proposition 3 For any integer j ≥ τ and any k ∈ {0, . . . , 2 j -1}, let β j,k be the wavelet coefficient (7) of f ν , β j,k be (9) and λ n be as in [START_REF] Donoho | Wavelet shrinkage: asymptopia?[END_REF]. Then, for any κ ≥ 8/3 + 2 + 2 16/9 + 4,

P | β j,k -β j,k | ≥ κλ n /2 ≤ 2 z n n 2 .
Proof of Proposition 3. By [START_REF] Petrov | Limit Theorems of Probability Theory: Sequences of Independent Random Variables[END_REF] we have

| β j,k -β j,k | ≤ 1 n n i=1 Z i,j,k 1 {|Z i,j,k |≤γn} -E Z i,j,k 1 {|Z i,j,k |≤γn} + 1 n n i=1 E |Z i,j,k |1 {|Z i,j,k |>γn} .
Using [START_REF] Pensky | On non-equally spaced wavelet regression[END_REF] (with ψ instead of φ), we obtain

1 n n i=1 E |Z i,j,k |1 {|Z i,j,k |>γn} ≤ 1 γ n 1 n n i=1 E Z 2 i,j,k ≤ 1 γ n θ 2 1 n n i=1 a 2 ν (i) = 1 γ n θ 2 z n = 1 θ ln(n/z n ) nz n θ 2 z n = θ z n ln(n/z n ) n = λ n .
Hence

P | β j,k -β j,k | ≥ κλ n /2 ≤ P 1 n n i=1 Z i,j,k 1 {|Z i,j,k |≤γn} -E Z i,j,k 1 {|Z i,j,k |≤γn} ≥ (κ/2 -1)λ n . (24) 
Now we need the Bernstein inequality presented in the lemma below (see [START_REF] Petrov | Limit Theorems of Probability Theory: Sequences of Independent Random Variables[END_REF]).

Lemma 2 (Bernstein's inequality) Let n ∈ N * and U 1 , . . . , U n be n zero mean independent random variables such that there exists a constant M > 0 satisfying sup i∈{1,...,n} |U i | ≤ M < ∞. Then, for any λ > 0,

P n i=1 U i ≥ λ ≤ 2 exp - λ 2 2 ( n i=1 E (U 2 i ) + λM /3) .
Set, for any i ∈ {1, . . . , n},

U i,j,k = Z i,j,k 1 {|Z i,j,k |≤γn} -E Z i,j,k 1 {|Z i,j,k |≤γn} .
Then, for any i ∈ {1, . . . , n}, we have E(U i,j,k ) = 0,

|U i,j,k | ≤ |Z i,j,k | 1 {|Z i,j,k |≤γn} + E |Z i,j,k |1 {|Z i,j,k |≤γn} ≤ 2γ n
and, using again [START_REF] Pensky | On non-equally spaced wavelet regression[END_REF] (with ψ instead of φ),

E U 2 i,j,k = V Z i,j,k 1 {|Z i,j,k |≤γn} ≤ E Z 2 i,j,k 1 {|Z i,j,k |≤γn} ≤ E Z 2 i,j,k ≤ θ 2 a 2 ν (i). So n i=1 E U 2 i,j,k ≤ θ 2 n i=1 a 2 ν (i) = θ 2 nz n .
It follows from the Bernstein inequality that

P n i=1 U i,j,k ≥ n(κ/2 -1)λ n ≤ 2 exp - n 2 (κ/2 -1) 2 λ 2 n 2 (θ 2 nz n + 2n(κ/2 -1)λ n γ n /3) . (25) 
Remark that

λ n γ n = θ z n ln(n/z n ) n θ nz n ln(n/z n ) = θ 2 z n , λ 2 n = θ 2 z n ln(n/z n ) n .
Putting ( 24) and ( 25) together, for any κ ≥ 8/3 + 2 + 2 16/9 + 4, we have

P | β j,k -β j,k | ≥ κλ n /2 ≤ 2 exp - (κ/2 -1) 2 ln(n/z n ) 2 (1 + 2(κ/2 -1)/3) = 2 n z n - (κ/2-1) 2 2(1+2(κ/2-1)/3) ≤ 2 z n n 2 .
This ends the proof of Proposition 3.

Proofs of the main results

Proof of Theorem 1. We expand the function f ν on B as

f ν (x) = 2 j 0 -1 k=0 α j0,k φ j0,k (x) + ∞ j=j0 2 j -1 k=0 β j,k ψ j,k (x),
where

α j0,k = 1 0 f ν (x)φ j0,k (x)dx, β j,k = 1 0 f ν (x)ψ j,k (x)dx.
We have

f L (x) -f ν (x) = 2 j 0 -1 k=0 ( α j0,k -α j0,k ) φ j0,k (x) - ∞ j=j0 2 j -1 k=0 β j,k ψ j,k (x) 
.

Hence

E 1 0 f L (x) -f ν (x) 2 dx = A + B,
where

A = 2 j 0 -1 k=0 E ( α j0,k -α j0,k ) 2 , B = ∞ j=j0 2 j -1 k=0 β 2 j,k . Proposition 1 gives A ≤ C2 j0 z n n ≤ C z n n 2s/(2s+1)
.

Since p ≥ 2, we have B s p,r (M ) ⊆ B s 2,∞ (M ). Hence

B ≤ C2 -2j0s ≤ C z n n 2s/(2s+1)
.

So E 1 0 f L (x) -f ν (x) 2 dx ≤ C z n n 2s/(2s+1)
.

The proof of Theorem 1 is complete.

Proof of Theorem 2. We expand the function f ν on B as

f ν (x) = 2 τ -1 k=0 α τ,k φ τ,k (x) + ∞ j=τ 2 j -1 k=0 β j,k ψ j,k (x),
where

α τ,k = 1 0 f ν (x)φ τ,k (x)dx, β j,k = 1 0 f ν (x)ψ j,k (x)dx. 
We have

f H (x) -f ν (x) = 2 τ -1 k=0 ( α τ,k -α τ,k )φ τ,k (x) + j1 j=τ 2 j -1 k=0 β j,k 1 {| b β j,k |≥κλn} -β j,k ψ j,k (x) - ∞ j=j1+1 2 j -1 k=0 β j,k ψ j,k (x) 
.

Hence

E 1 0 f H (x) -f ν (x) 2 dx = R + S + T, (26) 
where

R = 2 τ -1 k=0 E ( α τ,k -α τ,k ) 2 , S = j1 j=τ 2 j -1 k=0 E β j,k 1 {| b β j,k |≥κλn} -β j,k 2 and T = ∞ j=j1+1 2 j -1 k=0 β 2 j,k .
Let us bound R, T and S, in turn.

By Proposition 1 and the inequalities: z n < n/e, z n ln(n/z n ) < n and 2s/(2s + 1) < 1, we have

R ≤ C z n n ≤ C z n ln(n/z n ) n ≤ C z n ln(n/z n ) n 2s/(2s+1) . (27) 
For r ≥ 1 and p ≥ 2, we have B s p,r (M ) ⊆ B s 2,∞ (M ). Using z n < n/e, z n ln(n/z n ) < n and 2s/(2s + 1) < 2s, we obtain

T ≤ C ∞ j=j1+1 2 -2js ≤ C2 -2j1s ≤ C n z n -2s ≤ C z n ln(n/z n ) n 2s ≤ C z n ln(n/z n ) n 2s/(2s+1)
.

For r ≥ 1 and p ∈ [1, 2), we have

B s p,r (M ) ⊆ B s+1/2-1/p 2,∞ ( 
M ). Since s > 1/p, we have s + 1/2 -1/p > s/(2s + 1). So, by z n < n/e and z n ln(n/z n ) < n, we have

T ≤ C ∞ j=j1+1 2 -2j(s+1/2-1/p) ≤ C2 -2j1(s+1/2-1/p) ≤ C n z n -2(s+1/2-1/p) ≤ C z n ln(n/z n ) n 2(s+1/2-1/p) ≤ C z n ln(n/z n ) n 2s/(2s+1)
.

Hence, for r ≥ 1, {p ≥ 2 and s > 0} or {p ∈ [1, 2) and s > 1/p}, we have

T ≤ C z n ln(n/z n ) n 2s/(2s+1) . (28) 
The term S can be decomposed as

S = S 1 + S 2 + S 3 + S 4 , (29) 
where

S 1 = j1 j=τ 2 j -1 k=0 E β j,k -β j,k 2 1 {| b β j,k |≥κλn} 1 {|β j,k |<κλn/2} , S 2 = j1 j=τ 2 j -1 k=0 E β j,k -β j,k 2 1 {| b β j,k |≥κλn} 1 {|β j,k |≥κλn/2} , S 3 = j1 j=τ 2 j -1 k=0 E β 2 j,k 1 {| b β j,k |<κλn} 1 {|β j,k |≥2κλn}
and

S 4 = j1 j=τ 2 j -1 k=0 E β 2 j,k 1 {| b β j,k |<κλn} 1 {|β j,k |<2κλn} .
Upper bounds for S 1 and S 3 . We have

| β j,k | < κλ n , |β j,k | ≥ 2κλ n ⊆ | β j,k -β j,k | > κλ n /2 , | β j,k | ≥ κλ n , |β j,k | < κλ n /2 ⊆ | β j,k -β j,k | > κλ n /2 and | β j,k | < κλ n , |β j,k | ≥ 2κλ n ⊆ |β j,k | ≤ 2| β j,k -β j,k | . So max(S 1 , S 3 ) ≤ C j1 j=τ 2 j -1 k=0 E β j,k -β j,k 2 1 {| b β j,k -β j,k |>κλn/2} .
It follows from the Cauchy-Schwarz inequality and Propositions 2 and 3 that

E β j,k -β j,k 2 1 {| b β j,k -β j,k |>κλn/2} ≤ E β j,k -β j,k 4 1/2 
P | β j,k -β j,k | > κλ n /2 1/2 ≤ C z 2 n ln(n/z n ) n 2 .
Hence, using z n < n/e, z n ln(n/z n ) < n and 2s/(2s + 1) < 1, we have

max(S 1 , S 3 ) ≤ C z 2 n ln(n/z n ) n 2 j1 j=τ 2 j ≤ C z 2 n ln(n/z n ) n 2 2 j1 ≤ C z n ln(n/z n ) n ≤ C z n ln(n/z n ) n 2s/(2s+1) . (30) 
Upper bound for S 2 . Using the Cauchy-Schwarz inequality and Proposition 2, we obtain 

E β j,k -β j,k 2 ≤ E β j,k -β j,k 4 
Combining ( 26), ( 27), ( 28) and (34), we have, for r ≥ 1, {p ≥ 2 and s > 0} or {p ∈ [1, 2) and s > 1/p},

E 1 0 f H (x) -f ν (x) 2 dx ≤ C z n ln(n/z n ) n 2s/(2s+1)
.

This ends the proof of Theorem 2.

Fig. 1

 1 Fig. 1 Estimated functions using our adaptive wavelet hard thresholding from n = 4096 noisy observations with ξ i ∼ i.i.d. N (0, σ 2 ), and X i are equi-spaced in [0, 1]. In this experiment, we used m = 3 irregular test functions with different degrees of smoothness. (a): noisy observations. (b)-(d): estimated functions.
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  So, for r ≥ 1, {p ≥ 2 and s > 0} or {p ∈ [1, 2) and s > 1/p}, Upper bound for S 4 . We have {|β j,k |<2κλn} .Let j 2 be the integer (31). We haveS 4 ≤ S 4,1 + S 4,2 ,

	Let j 2 be the integer defined by		
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	S 2,2 ≤ C	z n ln(n/z n ) nλ 2 n	j1 j=j2+1	2 j -1 k=0	β 2 j,k ≤ C	∞ j=j2+1	2 j -1 k=0	β 2 j,k ≤	∞ j=j2+1	2 -2js
	≤ C2 -2j2s ≤ C	n z n ln(n/z n )	2s/(2s+1)
	(2s + 1)(2 -p)/2 + (s + 1/2 -1/p)p = 2s, we have	s+1/2-1/p 2,∞	(M ) and
	S 2,2 ≤ C	z n ln(n/z n ) nλ p n	j1 j=j2+1	2 j -1 k=0	|β j,k | p
	≤ C	z n ln(n/z n ) n	(2-p)/2	∞ j=j2+1	2 -j(s+1/2-1/p)p
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			S 2 ≤ C S 2 ≤ C z n ln(n/z n ) n z n ln(n/z n ) j1 j=τ 2 j -1 k=0 n	1 {|β j,k |>κλn/2} . 2s/(2s+1) .	(32)

. For r ≥ 1 and p ≥ 2, since B s p,r (M ) ⊆ B s 2,∞ (M ), . For r ≥ 1, p ∈ [1, 2) and s > 1/p, since B s p,r (M ) ⊆ B . For r ≥ 1 and p ≥ 2, since B s p,r (M ) ⊆ B s 2,∞ (M ), we have

The wavelet is assumed to have a sufficient number of vanishing moments.
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