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Abstract We consider a nonparametric regression model where m noise-
perturbed functions f1, . . . , fm are randomly observed. For a fixed ν ∈ {1, . . . ,m},
we want to estimate fν from the observations. To reach this goal, we develop
an adaptive wavelet estimator based on a hard thresholding rule. Adopting
the mean integrated squared error over Besov balls, we prove that it attains
a sharp rate of convergence. Simulation results are reported to support our
theoretical findings.
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1 Introduction

An indirect nonparametric regression model is considered: we observe n in-
dependent pairs of random variables (X1, Y1), . . . , (Xn, Yn) where, for any
i ∈ {1, . . . , n},

Yi = fVi
(Xi) + ξi, (1)

V1, . . . , Vn are n unobserved independent discrete random variables each having
a known distribution such that, for any i ∈ {1, . . . , n}, the set of possible values
of Vi is

vi ∈ {1, . . . ,m}, m ∈ N
∗ .
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For any d ∈ {1, . . . ,m}, fd : [0, 1] → R is an unknown function, X1, . . . ,Xn

are n i.i.d. random variables uniformly distributed on [0, 1] and ξ1, . . . , ξn are
n i.i.d. unobserved random variables with finite first and second moments, i.e.

E(ξ1) = 0, E(ξ21) <∞.

The distribution of ξ1 may be unknown. We suppose that V1, . . . , Vn,X1, . . . ,Xn,
ξ1, . . . , ξn are mutually independent. The primary objective pursued in this pa-
per is to estimate fν , for a fixed ν ∈ {1, . . . ,m}, from (X1, Y1), . . . , (Xn, Yn).

Examples of application Model (1) is rather general and has many poten-
tial applications. Here we describe some examples that fall within the scope
(1), and for which our estimator can have practical usefulness. In general,
one can think of recovery problems and inverse problems in signal and im-
age processing with missing or partially/uncertainly observed data, such as in
computerized tomography, sensor networks, etc.

For instance, sensor network is a collection of spatially distributed au-
tonomous sensors intended to measure and monitor physical phenomena at di-
verse locations, e.g. temperature, humidity, pressure, wind direction and speed,
chemical concentrations, pollutant levels and vital body functions; see e.g. [1]
for an overview. In a sensor network, every sensor node is also equipped with a
transceiver which receives commands from a central computer and transmits
data to that computer. Sensor networks are encountered in several applica-
tions which include industrial monitoring, video surveillance, traffic, medical
and weather monitoring, etc. In this sensor network example, and assuming for
simplicity that each sensor records only one physical parameter, we can think
of the function fd, d ∈ {1, · · · ,m}, as the physical parameter at sensor d, and
Xi as the recording time. Given that the measurements gathering process is
centralized, only one sensor information is collected at a time. The problem
now is that given n noisy versions Yi and recording times Xi of the physical
parameter from non-necessarily identified sensors (i.e. unknown Vi), the goal
is to recover the parameter profile fν at any sensor ν ∈ {1, · · · , d}. The noise
in the observations Yi can be due to measurement noise or to faulty sensors.
In this setting, the distribution of Vi is typically dictated by the spatial con-
figuration, and other parameters such as the reliability of a sensor.

To estimate fν , various methods can be investigated (kernel methods,
spline methods, etc.) (see e.g. [23,24] and [27] for extensive overview). In this
study, we focus our attention on wavelet-based methods. They are attractive
for nonparametric function estimation because of their spatial adaptivity, com-
putational efficiency and asymptotic optimality properties. They can achieve
near optimal convergence rates over a wide range of function classes (Besov
balls, etc.) and enjoy excellent mean integrated squared error (MISE) proper-
ties when used to estimate spatially inhomogeneous function. Details on the
basics on wavelet methods in function estimation can be found in [2] and [15].
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When model (1) is considered with V1 = . . . = Vn = 1, it becomes the
classical nonparametric regression model. In this case, to estimate f1 = f ,
several wavelet methods have been designed. There is an extensive literature
on the subject, see e.g. [11,12,14,13], [10], [3], [6], [29], [4,5], [19], [8], [16], [7]
and [21]. However, to the best of our knowledge, there is no adaptive wavelet
estimator for fν in the general model (1).

Contributions In this paper, we design and study an adaptive wavelet esti-
mator for fν that relies on the hard thresholding rule in the wavelet domain.
It has the originality to combine an ”observation thresholding technique” in-
troduced by [10] with some technical tools that account for the distribution
of V1, . . . , Vn. Moreover, we evaluate its performance via the MISE over Besov
balls. Under mild assumptions, to be specified and discussed in Section 2,
we prove that our estimator attains a sharp rate of convergence: it is the one
attained by the best nonadaptive linear wavelet estimator (the one which min-
imizes the MISE) up to a logarithmic factor. We also report some simulation
results to illustrate the potential applicability of the estimator and to support
our theoretical findings.

Paper organization The paper is organized as follows. Assumptions on the
model and some notations are introduced in Section 2. Section 3 provides a
brief description of wavelet bases on [0, 1] and Besov balls, focusing only on
essential ingredients relevant to our work. The estimators are presented in Sec-
tion 4. The main results are stated in Section 5. Conclusions and perspectives
are drawn in Section 6 and Section 7 is devoted to the proofs.

2 Model assumptions

In the sequel, a(i) is the i-th entry of a vector a. We use the notation 〈a, b〉n =
1
n

∑n
i=1 a(i)b(i) for the normalized euclidean inner product in R

n, and ‖·‖n

the associated norm.

Additional assumptions on the model (1) are as follows.

Assumption on (fd)d∈{1,...,m}. We suppose that the collection of functions
fd is uniformly bounded, i.e. ∃ C∗ > 0 such that

sup
d∈{1,...,m}

sup
x∈[0,1]

|fd(x)| ≤ C∗. (2)

Assumptions on (Vi)i∈{1,...,n}. Recall that V1, . . . , Vn are assumed unob-
served. However for any i ∈ {1, . . . , n}, we suppose that the following
probabilities are known

wd(i) = P(Vi = d), d ∈ {1, . . . ,m}.
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We also suppose that the Gram matrix

Γn =
1

n
WTW = (〈wk, wℓ〉n)

(k,ℓ)∈{1,...,m}2

is (symmetric) positive-definite, or equivalently that the matrix of proba-
bilities W = (w1, · · · , wm) ∈ [0, 1]n×m is full column rank.
For the considered ν (the one which refers to the estimation of fν) and any
i ∈ {1, . . . , n}, we set

aν =
1

det(Γn)

m∑

k=1

(−1)k+νMn
ν,kwk, (3)

where Mn
ν,k denotes the minor (ν, k) of the matrix Γn.

To get the gist of (3) and the importance of positive-definiteness of Γn,
it is useful to view the vector aν = (aν(1), . . . , aν(n))T as the solution of
the following (strictly convex) quadratic program, i.e. a quadratic objective
with linear (here orthogonormality) constraints

min
b∈Rn

‖b‖2
n such that 〈wd, b〉n = δν,d, for d ∈ {1, · · · ,m} (4)

where δν,d is the Kronecker delta. Using the Lagrange multipliers, it is easy
to see that the unique minimizer of (4) is given by

aν = WΓ−1
n ∆ν , (5)

where ∆ν is a vector of zeros except at its ν-th entry. Using the cofactors of
Γn to get its inverse, we recover (3). Positive-definiteness of Γn is important
for (5) to make sense, otherwise aν would not be uniquely defined.
In a nutshell, aν ∈ Span(wk, k ∈ {1, · · · ,m}) is the dual vector of minimal
norm, i.e. aν correlates perfectly with the proper row ν of the matrix W ,
otherwise the inner products are zero. In the context of mixture density
estimation, [17] showed that aν is the minimal risk weight vector to be
used for the empirical measure constructed from the observations to yield
an unbiased estimator of the ν-th distribution in the mixture. See [17,22,
25] for further technical details.

If Vi were observed along with (Xi, Yi), then only observations (Xi, Yi)
corresponding to Vi = ν should be involved in the estimator. But in our
setting, Vi are unobserved, and in this case, a careful decision should be
made based upon all available observations to incorporate them in the
estimator by ”weighting” them wisely using the prior probabilities wk(i).
In view of the above discussion on aν , it appears natural to construct such
a decision using this vector. We therefore let

zn = ‖aν‖
2
n (6)

where it is supposed that zn < n/e. This upper-bound is not restric-
tive and it can be shown that a sufficient condition for it to hold is that
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maxk,i wk(i) >
√
e/n which is reasonable. The wavelet hard thresholding

estimator that we will describe in Section 4 will explicitly involve zn, hence
aν .

3 Wavelets and Besov balls

Wavelet basis. Let N ∈ N
∗, and φ and ψ be respectively the father and

mother wavelet functions of the Daubechies family dbN . Denote the scaled
and translated versions

φj,k(x) = 2j/2φ(2jx− k), ψj,k(x) = 2j/2ψ(2jx− k).

Then there exists an integer τ satisfying 2τ ≥ 2N such that, for any integer
ℓ ≥ τ , the collection

B = {φℓ,k(.), k ∈ {0, . . . , 2ℓ−1}; ψj,k(.); j ∈ N−{0, . . . , ℓ−1}, k ∈ {0, . . . , 2j−1}},

(with an appropriate treatment at the boundaries) forms an orthonormal
basis of L

2([0, 1]), the set of square-integrable functions on the interval
[0, 1]. The interested reader may refer to [9] for futher details.
In turn, any h ∈ L

2([0, 1]) can be expanded on B as

h(x) =

2ℓ−1∑

k=0

αℓ,kφℓ,k(x) +

∞∑

j=ℓ

2j−1∑

k=0

βj,kψj,k(x),

where αj,k and βj,k are the wavelet coefficients of h given through the inner
product that equips L

2([0, 1])

αj,k =

∫ 1

0

h(x)φj,k(x)dx, βj,k =

∫ 1

0

h(x)ψj,k(x)dx. (7)

Besov balls. Here, instead of the original definition of Besov spaces through
the modulus of continuity, we will focus on the now classical definition
of the Besov norm of a function through a sequence space norm on its
wavelet coefficients. More precisely, Let M > 0, s > 0, p ≥ 1 and r ≥ 1. A
function h belongs to Bs

p,r(M) if and only if there exists a constant M∗ > 0
(depending on M) such that the associated wavelet coefficients1 (7) obey

2τ(1/2−1/p)

(
2τ−1∑

k=0

|ατ,k|
p

)1/p

+




∞∑

j=τ



2j(s+1/2−1/p)




2j−1∑

k=0

|βj,k|
p




1/p




r



1/r

≤ M∗.

In this expression, s is a smoothness parameter and p and r are norm
parameters. For a particular choice of s, p and r, Bs

p,r(M) contain the
Hölder and Sobolev balls. See [18].

1 The wavelet is assumed to have a sufficient number of vanishing moments.
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4 Estimators

Wavelet coefficient estimators. The first step to estimate fν consists in
expanding fν on B and estimating its unknown wavelet coefficients.
For any integer j ≥ τ and any k ∈ {0, . . . , 2j − 1},

• αj,k =
∫ 1

0
fν(x)φj,k(x)dx are estimated by

α̂j,k =
1

n

n∑

i=1

aν(i)Yiφj,k(Xi), (8)

• βj,k =
∫ 1

0
fν(x)ψj,k(x)dx are estimated by

β̂j,k =
1

n

n∑

i=1

Zi,j,k1{|Zi,j,k|≤γn}, (9)

where, for any i ∈ {1, . . . , n},

Zi,j,k = aν(i)Yiψj,k(Xi),

aν(i) is defined by (3), and for any random event A, 1A is the indicator
function on A. The threshold γn is defined by

γn = θ

√
nzn

ln(n/zn)
, (10)

zn is defined by (6), θ =
√
C2

∗ + E(ξ21) and C∗ is the one in (2). The
value of θ allows to upper-bound the mean squared-error in the esti-
mates of the scaling and wavelet coefficients α̂j,k and β̂j,k; see the proofs
of Proposition 1 and 2, and more precisely (18) and (23).

Remark 1 It is worth mentioning that α̂j,k is an unbiased estimator of αj,k,

whereas β̂j,k is not an unbiased estimator of βj,k. However (1/n)
∑n

i=1 Zi,j,k

is an unbiased estimator of βj,k. See the proofs of Proposition 1 and 2 in
Section 7, and more precisely (15) and (20).

Remark 2 The ”observations thresholding technique” used in (9) has been
firstly introduced by [10] for (1) in the classical case (i.e. V1 = . . . = Vn =
1). In our general setting, this allows us to provide a good estimator of βj,k

under mild assumptions on
– (aν(i))i∈{1,...,n} and a fortiori the distributions of V1, . . . , Vn (only zn <
n/e is required),

– ξ1, . . . , ξn (only finite moments of order 2 are required).

Linear estimator. Assuming that fν ∈ Bs
p,r(M) with p ≥ 2, we define the

linear estimator f̂L by

f̂L(x) =

2j0−1∑

k=0

α̂j0,kφj0,k(x), (11)
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where α̂j,k is given by (8) and j0 is the integer satisfying

1

2

(
n

zn

)1/(2s+1)

< 2j0 ≤

(
n

zn

)1/(2s+1)

.

The definition of j0 is chosen to minimize the MISE of f̂L. Note that it is
not adaptive since it depends on s, the smoothness parameter of fν .

Hard thresholding estimator. We define the hard thresholding estimator
f̂H by

f̂H(x) =

2τ−1∑

k=0

α̂τ,kφτ,k(x) +

j1∑

j=τ

2j−1∑

k=0

β̂j,k1{|bβj,k|≥κλn}ψj,k(x), (12)

where α̂j,k is defined by (8), β̂j,k by (9), j1 is the integer satisfying

n

2zn
< 2j1 ≤

n

zn
,

κ ≥ 8/3 + 2 + 2
√

16/9 + 4 and λn is the threshold

λn = θ

√
zn ln(n/zn)

n
. (13)

The bound on κ comes from the Bernstein concentration inequality, see
Lemma 2.
Further details on the hard thresholding wavelet estimator for the standard
nonparametric regression model can be found for instance in the seminal
work of [11,12,14] as well as in [10].
Note that the choice of γn in (10) depends on λn in (13): we have λn =
θ2zn/γn. The definitions of γn and λn are based on theoretical considera-
tions that will be clarified shortly. These considerations allow our estimator
to attain a sharp convergence rate on the MISE.

5 Results

Theorem 1 (Convergence rate of f̂L) Consider (1) under the assumptions

of Section 2. Suppose that fν ∈ Bs
p,r(M) with s > 0, p ≥ 2 and r ≥ 1. Let f̂L

as defined by (11). Then there exists a constant C > 0 such that

E

(∫ 1

0

(
f̂L(x) − fν(x)

)2

dx

)
≤ C

(zn

n

)2s/(2s+1)

.
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The proof of Theorem 1 uses moment inequalities on (8) and (9), and a suitable
decomposition of the MISE.

Since the common distribution of ξ1, . . . , ξn is unknown (a priori), we can
not apply the standard lower bound theorems to prove that the rate of con-
vergence vn = (zn/n)2s/(2s+1) is the optimal one (in the minimax sense) for
(1) (most of these theorems can be found in [27, Chapter 2]). However, since

f̂L is constructed to be the nonadaptive linear estimator which optimizes the
MISE, assuming the smoothness of fν is known, our benchmark will be vn.

One may remark that, in the case V1 = . . . = Vn = 1 and ξ1 ∼ N (0, 1),
we have zn = 1 and vn (= n−2s/(2s+1)), which is the optimal (minimax)
convergence rate (see [27]).

We now turn to the rate of the nonlinear wavelet hard thresholding esti-
mator.

Theorem 2 (Convergence rate of f̂H) Consider (1) under the assump-

tions of Section 2. Let f̂H as defined by (12). Then there exists a constant

C > 0 such that

sup
fν∈Bs

p,r(M)

E

(∫ 1

0

(
f̂H(x) − fν(x)

)2

dx

)
≤ C

(
zn ln(n/zn)

n

)2s/(2s+1)

,

with r ≥ 1, {p ≥ 2 and s > 0} or {p ∈ [1, 2) and s > 1/p}.

The proof of Theorem 2 is based on several probability results (moment in-
equalities, Bernstein concentration inequality, etc.), in conjunction with a suit-
able decomposition of the MISE.

Theorem 2 proves that f̂H attains the sharp rate vn = (zn/n)2s/(2s+1) up
to the logarithmic factor (ln(n/zn))2s/(2s+1).

Naturally, when V1 = . . . = Vn = 1 and ξ1 ∼ N (0, 1), f̂H attains the
same rate of convergence as the standard hard thresholding estimator for the
classical nonparametric regression model (see [11,12,14]). The latter is known
to be optimal in the minimax sense up to a logarithmic term.

6 Simulation results

In this simulation, n = 4096 observed data samples (Yi,Xi) were generated
according to model (1), where Xi were equi-spaced in [0, 1] with X1 = 0 and
Xn = 1, and ξi ∼i.i.d. N (0, σ2) with σ = 0.01. We have used three piece-wise
regular test functions exhibiting different degrees of smoothness, and we have
chosen arbitrarily C∗ = 1. These functions are widely used in the non-linear
wavelet estimation literature. The Vi’s were sampled randomly in {1, 2, 3} with
probabilities wd(i) such that each function was randomly observed third of the
time on [0, 1]. We used the Daubechies db3 wavelet and our test code was based
on [28].
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The results are depicted in Fig. 1. It can be clearly seen that our adaptive
hard thresholding estimator is very effective to estimate each of the three test
functions. The recovered wavelet coefficients are also shown where most of
the irreagularities are captured in the estimated coefficients. In the figure, we
also display the indicators of the true indices (those of the first 20 samples)
for each test function, i.e. 1 if sample i is selected from function ν ∈ {1, 2, 3}
and 0 otherwise. The corresponding weight vector aν is shown, and it can
be seen that aν fullfills its expected role by wisely weighting the appropriate
observations.

7 Conclusion and perspectives

In this work, an adaptive wavelet hard thresholding estimator was constructed
to estimate an arbitrary function fν from the sophisticated regression model
(1). Under mild assumptions on the noise and the Vi’s, it was proved that it
attains a sharp rate of convergence over a wide class of functions belonging to
Besov spaces.

There are several perspectives that rise naturally from this work:

• It would be interesting to investigate the estimation of fν in (1) when the de-
sign point X1 has a more complex distribution beyond the random uniform
one. In this case, the warped wavelet basis introduced in the nonparamet-
ric regression estimation by [16] could be a promising tool to attack this
problem.

• Another important extension would be to consider the case where the dis-
tributions of V1, . . . , Vn are unknown, which is the case in many practical
situations.

• A last point would be to try to improve the estimation of fν (e.g. by removing
the extra logarithmic term). The block-thresholding rule named BlockJS
developed in wavelet estimation by [4,5] seems to be a good candidate.

All these open questions need further investigations that we leave for a future
work.

8 Proofs

In this section, we consider (1) under the assumptions of Section 2. Moreover,
C represents a positive constant which may differ from one term to another.

8.1 Auxiliary results

Proposition 1 For any integer j ≥ τ and any k ∈ {0, . . . , 2j − 1}, let αj,k

be the wavelet coefficient (7) of fν and α̂j,k be as in (8). Then there exists a

constant C > 0 such that

E

(
(α̂j,k − αj,k)

2
)
≤ C

zn

n
.
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Fig. 1 Estimated functions using our adaptive wavelet hard thresholding from n = 4096
noisy observations with ξi ∼i.i.d. N (0, σ2), and Xi are equi-spaced in [0, 1]. In this experi-
ment, we used m = 3 irregular test functions with different degrees of smoothness. (a): noisy
observations. (b)-(d): estimated functions.
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Proof of Proposition 1. First of all, we prove that α̂j,k is an unbiased
estimator of αj,k. For any i ∈ {1, . . . , n}, set

Wi,j,k = aν(i)Yiφj,k(Xi).

Since Xi, Vi and ξi are independent, and E(ξi) = 0, we have

E(Wi,j,k) = E(aν(i)Yiφj,k(Xi)) = E(aν(i)(fVi
(Xi) + ξi)φj,k(Xi))

= aν(i)E(fVi
(Xi)φj,k(Xi)) + aν(i)E(ξi)E(φj,k(Xi))

= aν(i)E(fVi
(Xi)φj,k(Xi))

= aν(i)
m∑

d=1

wd(i)

∫ 1

0

fd(x)φj,k(x)dx. (14)

It follows from (14) and (4) that

E(α̂j,k) =
1

n

n∑

i=1

E(Wi,j,k) =
1

n

n∑

i=1

(
aν(i)

m∑

d=1

wd(i)

∫ 1

0

fd(x)φj,k(x)dx

)

=

m∑

d=1

∫ 1

0

fd(x)φj,k(x)dx

(
1

n

n∑

i=1

aν(i)wd(i)

)

=

∫ 1

0

fν(x)φj,k(x)dx = αj,k. (15)

So α̂j,k is an unbiased estimator of αj,k. Therefore

E

(
(α̂j,k − αj,k)

2
)

= V (α̂j,k) = V

(
1

n

n∑

i=1

Wi,j,k

)
=

1

n2

n∑

i=1

V(Wi,j,k)

≤
1

n2

n∑

i=1

E
(
W 2

i,j,k

)
. (16)

For any i ∈ {1, . . . , n}, we have

E
(
W 2

i,j,k

)
= E(a2

ν(i)Y 2
i φ

2
j,k(Xi)) = a2

ν(i)E
(
(fVi

(Xi) + ξi)
2φ2

j,k(Xi)
)
. (17)

Since Xi, Vi and ξi are independent, E

(
φ2

j,k(Xi)
)

=
∫ 1

0
φ2

j,k(x)dx = 1 and, by

(2), supd∈{1,...,m} supx∈[0,1] |fd(x)| ≤ C∗, we have

E
(
(fVi

(Xi) + ξi)
2φ2

j,k(Xi)
)

= E
(
f2

Vi
(Xi)φ

2
j,k(Xi)

)
+ 2E(ξi)E(fVi

(Xi)φ
2
j,k(Xi)) + E

(
ξ2i
)

E
(
φ2

j,k(Xi)
)

= E
(
f2

Vi
(Xi)φ

2
j,k(Xi)

)
+ E

(
ξ21
)
≤ C2

∗E
(
φ2

j,k(Xi)
)

+ E
(
ξ21
)

= C2
∗ + E

(
ξ21
)

= θ2. (18)

Putting (17) and (18) together, we obtain

E
(
W 2

i,j,k

)
≤ θ2a2

ν(i). (19)



12 Christophe Chesneau, Jalal Fadili

It follows from (16) and (19) that

E

(
(α̂j,k − αj,k)

2
)
≤

1

n

(
θ2

1

n

n∑

i=1

a2
ν(i)

)
= C

zn

n
.

The proof of Proposition 1 is complete.

�

Proposition 2 For any integer j ≥ τ and any k ∈ {0, . . . , 2j − 1}, let βj,k

be the wavelet coefficient (7) of fν and β̂j,k be as in (9). Then there exists a

constant C > 0 such that

E

((
β̂j,k − βj,k

)4
)

≤ C
(zn ln(n/zn))2

n2
.

Proof of Proposition 2. Taking ψ instead of φ in (15), we obtain

βj,k =

∫ 1

0

fν(x)ψj,k(x)dx =
1

n

n∑

i=1

E (Zi,j,k)

=
1

n

n∑

i=1

E(Zi,j,k1{|Zi,j,k|≤γn}) +
1

n

n∑

i=1

E(Zi,j,k1{|Zi,j,k|>γn}). (20)

Therefore, by the elementary inequality (x+ y)4 ≤ 8(x4 + y4), (x, y) ∈ R
2, we

have

E

((
β̂j,k − βj,k

)4
)

≤ 8(A+B), (21)

where

A = E




(

1

n

n∑

i=1

(
Zi,j,k1{|Zi,j,k|≤γn} − E(Zi,j,k1{|Zi,j,k|≤γn})

)
)4




and

B =

(
1

n

n∑

i=1

E(|Zi,j,k|1{|Zi,j,k|>γn})

)4

.

Let us bound A and B, in turn.
Upper bound for A. Let us present the Rosenthal inequality (see [26]).

Lemma 1 (Rosenthal’s inequality) Let n ∈ N
∗, p ≥ 2 and U1, . . . , Un be n

zero mean independent random variables such that supi∈{1,...,n} E(|Ui|
p) <∞.

Then there exists a constant C > 0 such that

E

(∣∣∣∣∣

n∑

i=1

Ui

∣∣∣∣∣

p)
≤ Cmax




n∑

i=1

E (|Ui|
p) ,

(
n∑

i=1

E
(
U2

i

)
)p/2



 .
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Set, for any i ∈ {1, . . . , n},

Ui,j,k = Zi,j,k1{|Zi,j,k|≤γn} − E
(
Zi,j,k1{|Zi,j,k|≤γn}

)
.

Then, for any i ∈ {1, . . . , n}, we have E(Ui,j,k) = 0 and using (19) (with ψ
instead of φ), for any b ∈ {2, 4},

E
(
U b

i,j,k

)
≤ 2b

E
(
Zb

i,j,k1{|Zi,j,k|≤γn}

)
≤ 2bγb−2

n E
(
Z2

i,j,k

)
≤ 2bγb−2

n θ2a2
ν(i).

It follows from the Rosenthal inequality and zn < n/e that

A =
1

n4
E




(

n∑

i=1

Ui,j,k

)4


 ≤ C
1

n4
max




n∑

i=1

E
(
U4

i,j,k

)
,

(
n∑

i=1

E
(
U2

i,j,k

)
)2




≤ C
1

n4
max



γ2
n

n∑

i=1

a2
ν(i),

(
n∑

i=1

a2
ν(i)

)2




= C
1

n4
max

(
n2

ln(n/zn)
z2
n, n

2z2
n

)
= C

z2
n

n2
. (22)

Upper bound for B. Using again (19) (with ψ instead of φ), for any i ∈
{1, . . . , n}, we obtain

E
(
|Zi,j,k|1{|Zi,j,k|>γn}

)
≤

E(Z2
i,j,k)

γn
≤

1

θ

√
ln(n/zn)

nzn
θ2a2

ν(i)

= θ

√
ln(n/zn)

nzn
a2

ν(i).

Therefore

B =

(
1

n

n∑

i=1

E(|Zi,j,k|1{|Zi,j,k|>γn})

)4

≤ θ4
(ln(n/zn))2

n2z2
n

(
1

n

n∑

i=1

a2
ν(i)

)4

= θ4
(ln(n/zn))2

n2z2
n

z4
n = θ4

(zn ln(n/zn))2

n2
. (23)

Combining (21), (22) and (23) and using zn < n/e, we have

E

((
β̂j,k − βj,k

)4
)

≤ C

(
1

n2
z2
n +

(zn ln(n/zn))2

n2

)
≤ C

(zn ln(n/zn))2

n2
.

This completes the proof of Proposition 2.

�

Proposition 3 For any integer j ≥ τ and any k ∈ {0, . . . , 2j − 1}, let βj,k be

the wavelet coefficient (7) of fν , β̂j,k be (9) and λn be as in (13). Then, for

any κ ≥ 8/3 + 2 + 2
√

16/9 + 4,

P

(
|β̂j,k − βj,k| ≥ κλn/2

)
≤ 2

(zn

n

)2

.
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Proof of Proposition 3. By (20) we have

|β̂j,k − βj,k|

≤

∣∣∣∣∣
1

n

n∑

i=1

(
Zi,j,k1{|Zi,j,k|≤γn} − E

(
Zi,j,k1{|Zi,j,k|≤γn}

))
∣∣∣∣∣+

1

n

n∑

i=1

E
(
|Zi,j,k|1{|Zi,j,k|>γn}

)
.

Using (19) (with ψ instead of φ), we obtain

1

n

n∑

i=1

E
(
|Zi,j,k|1{|Zi,j,k|>γn}

)
≤

1

γn

(
1

n

n∑

i=1

E
(
Z2

i,j,k

)
)

≤
1

γn

(
θ2

1

n

n∑

i=1

a2
ν(i)

)

=
1

γn
θ2zn =

1

θ

√
ln(n/zn)

nzn
θ2zn

= θ

√
zn ln(n/zn)

n
= λn.

Hence

P

(
|β̂j,k − βj,k| ≥ κλn/2

)

≤ P

(∣∣∣∣∣
1

n

n∑

i=1

(
Zi,j,k1{|Zi,j,k|≤γn} − E

(
Zi,j,k1{|Zi,j,k|≤γn}

))
∣∣∣∣∣ ≥ (κ/2 − 1)λn

)
.

(24)

Now we need the Bernstein inequality presented in the lemma below (see [20]).

Lemma 2 (Bernstein’s inequality) Let n ∈ N
∗ and U1, . . . , Un be n zero

mean independent random variables such that there exists a constant M > 0
satisfying supi∈{1,...,n} |Ui| ≤M <∞. Then, for any λ > 0,

P

(∣∣∣∣∣

n∑

i=1

Ui

∣∣∣∣∣ ≥ λ

)
≤ 2 exp

(
−

λ2

2 (
∑n

i=1 E (U2
i ) + λM/3)

)
.

Set, for any i ∈ {1, . . . , n},

Ui,j,k = Zi,j,k1{|Zi,j,k|≤γn} − E
(
Zi,j,k1{|Zi,j,k|≤γn}

)
.

Then, for any i ∈ {1, . . . , n}, we have E(Ui,j,k) = 0,

|Ui,j,k| ≤ |Zi,j,k|1{|Zi,j,k|≤γn} + E
(
|Zi,j,k|1{|Zi,j,k|≤γn}

)
≤ 2γn

and, using again (19) (with ψ instead of φ),

E
(
U2

i,j,k

)
= V

(
Zi,j,k1{|Zi,j,k|≤γn}

)
≤ E

(
Z2

i,j,k1{|Zi,j,k|≤γn}

)
≤ E

(
Z2

i,j,k

)
≤ θ2a2

ν(i).

So
n∑

i=1

E
(
U2

i,j,k

)
≤ θ2

n∑

i=1

a2
ν(i) = θ2nzn.
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It follows from the Bernstein inequality that

P

(∣∣∣∣∣

n∑

i=1

Ui,j,k

∣∣∣∣∣ ≥ n(κ/2 − 1)λn

)

≤ 2 exp

(
−

n2(κ/2 − 1)2λ2
n

2 (θ2nzn + 2n(κ/2 − 1)λnγn/3)

)
. (25)

Remark that

λnγn = θ

√
zn ln(n/zn)

n
θ

√
nzn

ln(n/zn)
= θ2zn, λ2

n = θ2
zn ln(n/zn)

n
.

Putting (24) and (25) together, for any κ ≥ 8/3 + 2 + 2
√

16/9 + 4, we have

P

(
|β̂j,k − βj,k| ≥ κλn/2

)
≤ 2 exp

(
−

(κ/2 − 1)2 ln(n/zn)

2 (1 + 2(κ/2 − 1)/3)

)

= 2

(
n

zn

)−
(κ/2−1)2

2(1+2(κ/2−1)/3)

≤ 2
(zn

n

)2

.

This ends the proof of Proposition 3.

�

8.2 Proofs of the main results

Proof of Theorem 1. We expand the function fν on B as

fν(x) =

2j0−1∑

k=0

αj0,kφj0,k(x) +

∞∑

j=j0

2j−1∑

k=0

βj,kψj,k(x),

where

αj0,k =

∫ 1

0

fν(x)φj0,k(x)dx, βj,k =

∫ 1

0

fν(x)ψj,k(x)dx.

We have

f̂L(x) − fν(x) =

2j0−1∑

k=0

(α̂j0,k − αj0,k)φj0,k(x) −
∞∑

j=j0

2j−1∑

k=0

βj,kψj,k(x).

Hence

E

(∫ 1

0

(
f̂L(x) − fν(x)

)2

dx

)
= A+B,

where

A =
2j0−1∑

k=0

E

(
(α̂j0,k − αj0,k)

2
)
, B =

∞∑

j=j0

2j−1∑

k=0

β2
j,k.
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Proposition 1 gives

A ≤ C2j0
zn

n
≤ C

(zn

n

)2s/(2s+1)

.

Since p ≥ 2, we have Bs
p,r(M) ⊆ Bs

2,∞(M). Hence

B ≤ C2−2j0s ≤ C
(zn

n

)2s/(2s+1)

.

So

E

(∫ 1

0

(
f̂L(x) − fν(x)

)2

dx

)
≤ C

(zn

n

)2s/(2s+1)

.

The proof of Theorem 1 is complete.

�

Proof of Theorem 2. We expand the function fν on B as

fν(x) =
2τ−1∑

k=0

ατ,kφτ,k(x) +
∞∑

j=τ

2j−1∑

k=0

βj,kψj,k(x),

where

ατ,k =

∫ 1

0

fν(x)φτ,k(x)dx, βj,k =

∫ 1

0

fν(x)ψj,k(x)dx.

We have

f̂H(x) − fν(x)

=

2τ−1∑

k=0

(α̂τ,k − ατ,k)φτ,k(x) +

j1∑

j=τ

2j−1∑

k=0

(
β̂j,k1{|bβj,k|≥κλn} − βj,k

)
ψj,k(x)

−
∞∑

j=j1+1

2j−1∑

k=0

βj,kψj,k(x).

Hence

E

(∫ 1

0

(
f̂H(x) − fν(x)

)2

dx

)
= R+ S + T, (26)

where

R =

2τ−1∑

k=0

E

(
(α̂τ,k − ατ,k)

2
)
, S =

j1∑

j=τ

2j−1∑

k=0

E

((
β̂j,k1{|bβj,k|≥κλn} − βj,k

)2
)

and

T =
∞∑

j=j1+1

2j−1∑

k=0

β2
j,k.
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Let us bound R, T and S, in turn.

By Proposition 1 and the inequalities: zn < n/e, zn ln(n/zn) < n and 2s/(2s+
1) < 1, we have

R ≤ C
zn

n
≤ C

zn ln(n/zn)

n
≤ C

(
zn ln(n/zn)

n

)2s/(2s+1)

. (27)

For r ≥ 1 and p ≥ 2, we have Bs
p,r(M) ⊆ Bs

2,∞(M). Using zn < n/e,
zn ln(n/zn) < n and 2s/(2s+ 1) < 2s, we obtain

T ≤ C

∞∑

j=j1+1

2−2js ≤ C2−2j1s ≤ C

(
n

zn

)−2s

≤ C

(
zn ln(n/zn)

n

)2s

≤ C

(
zn ln(n/zn)

n

)2s/(2s+1)

.

For r ≥ 1 and p ∈ [1, 2), we have Bs
p,r(M) ⊆ B

s+1/2−1/p
2,∞ (M). Since s > 1/p,

we have s+ 1/2 − 1/p > s/(2s+ 1). So, by zn < n/e and zn ln(n/zn) < n, we
have

T ≤ C

∞∑

j=j1+1

2−2j(s+1/2−1/p) ≤ C2−2j1(s+1/2−1/p)

≤ C

(
n

zn

)−2(s+1/2−1/p)

≤ C

(
zn ln(n/zn)

n

)2(s+1/2−1/p)

≤ C

(
zn ln(n/zn)

n

)2s/(2s+1)

.

Hence, for r ≥ 1, {p ≥ 2 and s > 0} or {p ∈ [1, 2) and s > 1/p}, we have

T ≤ C

(
zn ln(n/zn)

n

)2s/(2s+1)

. (28)

The term S can be decomposed as

S = S1 + S2 + S3 + S4, (29)

where

S1 =

j1∑

j=τ

2j−1∑

k=0

E

((
β̂j,k − βj,k

)2

1{|bβj,k|≥κλn}1{|βj,k|<κλn/2}

)
,

S2 =

j1∑

j=τ

2j−1∑

k=0

E

((
β̂j,k − βj,k

)2

1{|bβj,k|≥κλn}1{|βj,k|≥κλn/2}

)
,
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S3 =

j1∑

j=τ

2j−1∑

k=0

E

(
β2

j,k1{|bβj,k|<κλn}1{|βj,k|≥2κλn}

)

and

S4 =

j1∑

j=τ

2j−1∑

k=0

E

(
β2

j,k1{|bβj,k|<κλn}1{|βj,k|<2κλn}

)
.

Upper bounds for S1 and S3. We have
{
|β̂j,k| < κλn, |βj,k| ≥ 2κλn

}
⊆
{
|β̂j,k − βj,k| > κλn/2

}
,

{
|β̂j,k| ≥ κλn, |βj,k| < κλn/2

}
⊆
{
|β̂j,k − βj,k| > κλn/2

}

and {
|β̂j,k| < κλn, |βj,k| ≥ 2κλn

}
⊆
{
|βj,k| ≤ 2|β̂j,k − βj,k|

}
.

So

max(S1, S3) ≤ C

j1∑

j=τ

2j−1∑

k=0

E

((
β̂j,k − βj,k

)2

1{|bβj,k−βj,k|>κλn/2}

)
.

It follows from the Cauchy-Schwarz inequality and Propositions 2 and 3 that

E

((
β̂j,k − βj,k

)2

1{|bβj,k−βj,k|>κλn/2}

)

≤

(
E

((
β̂j,k − βj,k

)4
))1/2 (

P

(
|β̂j,k − βj,k| > κλn/2

))1/2

≤ C
z2
n ln(n/zn)

n2
.

Hence, using zn < n/e, zn ln(n/zn) < n and 2s/(2s+ 1) < 1, we have

max(S1, S3) ≤ C
z2
n ln(n/zn)

n2

j1∑

j=τ

2j ≤ C
z2
n ln(n/zn)

n2
2j1

≤ C
zn ln(n/zn)

n
≤ C

(
zn ln(n/zn)

n

)2s/(2s+1)

. (30)

Upper bound for S2. Using the Cauchy-Schwarz inequality and Proposition 2,
we obtain

E

((
β̂j,k − βj,k

)2
)

≤

(
E

((
β̂j,k − βj,k

)4
))1/2

≤ C
zn ln(n/zn)

n
.

Hence

S2 ≤ C
zn ln(n/zn)

n

j1∑

j=τ

2j−1∑

k=0

1{|βj,k|>κλn/2}.
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Let j2 be the integer defined by

1

2

(
n

zn ln(n/zn)

)1/(2s+1)

< 2j2 ≤

(
n

zn ln(n/zn)

)1/(2s+1)

. (31)

We have

S2 ≤ S2,1 + S2,2,

where

S2,1 = C
zn ln(n/zn)

n

j2∑

j=τ

2j−1∑

k=0

1{|βj,k|>κλn/2}

and

S2,2 = C
zn ln(n/zn)

n

j1∑

j=j2+1

2j−1∑

k=0

1{|βj,k|>κλn/2}.

We have

S2,1 ≤ C
zn ln(n/zn)

n

j2∑

j=τ

2j ≤ C
zn ln(n/zn)

n
2j2 ≤ C

(
zn ln(n/zn)

n

)2s/(2s+1)

.

For r ≥ 1 and p ≥ 2, since Bs
p,r(M) ⊆ Bs

2,∞(M),

S2,2 ≤ C
zn ln(n/zn)

nλ2
n

j1∑

j=j2+1

2j−1∑

k=0

β2
j,k ≤ C

∞∑

j=j2+1

2j−1∑

k=0

β2
j,k ≤

∞∑

j=j2+1

2−2js

≤ C2−2j2s ≤ C

(
zn ln(n/zn)

n

)2s/(2s+1)

.

For r ≥ 1, p ∈ [1, 2) and s > 1/p, since Bs
p,r(M) ⊆ B

s+1/2−1/p
2,∞ (M) and

(2s+ 1)(2 − p)/2 + (s+ 1/2 − 1/p)p = 2s, we have

S2,2 ≤ C
zn ln(n/zn)

nλp
n

j1∑

j=j2+1

2j−1∑

k=0

|βj,k|
p

≤ C

(
zn ln(n/zn)

n

)(2−p)/2 ∞∑

j=j2+1

2−j(s+1/2−1/p)p

≤ C

(
zn ln(n/zn)

n

)(2−p)/2

2−j2(s+1/2−1/p)p ≤ C

(
zn ln(n/zn)

n

)2s/(2s+1)

.

So, for r ≥ 1, {p ≥ 2 and s > 0} or {p ∈ [1, 2) and s > 1/p},

S2 ≤ C

(
zn ln(n/zn)

n

)2s/(2s+1)

. (32)
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Upper bound for S4. We have

S4 ≤

j1∑

j=τ

2j−1∑

k=0

β2
j,k1{|βj,k|<2κλn}.

Let j2 be the integer (31). We have

S4 ≤ S4,1 + S4,2,

where

S4,1 =

j2∑

j=τ

2j−1∑

k=0

β2
j,k1{|βj,k|<2κλn}, S4,2 =

j1∑

j=j2+1

2j−1∑

k=0

β2
j,k1{|βj,k|<2κλn}.

We have

S4,1 ≤ Cλ2
n

j2∑

j=τ

2j ≤ C
zn ln(n/zn)

n
2j2 ≤ C

(
zn ln(n/zn)

n

)2s/(2s+1)

.

For r ≥ 1 and p ≥ 2, since Bs
p,r(M) ⊆ Bs

2,∞(M), we have

S4,2 ≤
∞∑

j=j2+1

2j−1∑

k=0

β2
j,k ≤ C

∞∑

j=j2+1

2−2js ≤ C2−2j2s ≤ C

(
zn ln(n/zn)

n

)2s/(2s+1)

.

For r ≥ 1, p ∈ [1, 2) and s > 1/p, since Bs
p,r(M) ⊆ B

s+1/2−1/p
2,∞ (M) and

(2 − p)(2s+ 1)/2 + (s+ 1/2 − 1/p)p = 2s, we have

S4,2 ≤ Cλ2−p
n

j1∑

j=j2+1

2j−1∑

k=0

|βj,k|
p

≤ C

(
zn ln(n/zn)

n

)(2−p)/2 ∞∑

j=j2+1

2−j(s+1/2−1/p)p

≤ C

(
zn ln(n/zn)

n

)(2−p)/2

2−j2(s+1/2−1/p)p ≤ C

(
zn ln(n/zn)

n

)2s/(2s+1)

.

So, for r ≥ 1, {p ≥ 2 and s > 0} or {p ∈ [1, 2) and s > 1/p},

S4 ≤ C

(
zn ln(n/zn)

n

)2s/(2s+1)

. (33)

It follows from (29), (30), (32) and (33) that

S ≤ C

(
zn ln(n/zn)

n

)2s/(2s+1)

. (34)
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Combining (26), (27), (28) and (34), we have, for r ≥ 1, {p ≥ 2 and s > 0}
or {p ∈ [1, 2) and s > 1/p},

E

(∫ 1

0

(
f̂H(x) − fν(x)

)2

dx

)
≤ C

(
zn ln(n/zn)

n

)2s/(2s+1)

.

This ends the proof of Theorem 2.
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