
HAL Id: hal-00809123
https://hal.science/hal-00809123

Submitted on 8 Apr 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Traveling waves for the Nonlinear Schrödinger Equation
with general nonlinearity in dimension one

David Chiron

To cite this version:
David Chiron. Traveling waves for the Nonlinear Schrödinger Equation with general nonlinearity in
dimension one. Nonlinearity, 2012, 25 (3), pp.813-850. �10.1088/0951-7715/25/3/813�. �hal-00809123�

https://hal.science/hal-00809123
https://hal.archives-ouvertes.fr


Traveling waves for the Nonlinear Schrödinger Equation

with general nonlinearity in dimension one

D. Chiron∗

Abstract

We study the traveling waves of the Nonlinear Schrödinger Equation in dimension one. Through
various model cases, we show that for nonlinearities having the same qualitative behaviour as the standard
Gross-Pitaevkii one, the traveling waves may have rather different properties. In particular, our examples
exhibit multiplicity or nonexistence results, cusps (as for the Jones-Roberts curve in the three-dimensional
Gross-Pitaevskii equation), and a transonic limit which can be the modified (KdV) solitons or even the
generalized (KdV) soliton instead of the standard (KdV) soliton.

Key-words: traveling wave, Nonlinear Schrödinger Equation, Gross-Pitaevskii Equation, Korteweg-de Vries
soliton, (mKdV) solitons, (gKdV) soliton.

MSC (2010): 34B40, 34C99, 35B35, 35Q55.

1 Introduction

In this paper, we consider the Nonlinear Schrödinger Equation in dimension one

i
∂Ψ

∂t
+ ∂2

xΨ + Ψf(|Ψ|2) = 0. (NLS)

This equation appears as a relevant model in condensed matter physics: Bose-Einstein condensation and
superfluidity (see [28], [16], [18], [1]); Nonlinear Optics (see, for instance, the survey [22]). The nonlinearity
f may be f(%) = ±% or f(%) = 1 − %, in which case (NLS) is termed the Gross-Pitaevskii equation, or
f(%) = −%2 (see, e.g., [23]) in the context of Bose-Einstein condensates, and more generally a pure power.
The so-called “cubic-quintic” (NLS), where, for some positive constants α1, α3 and α5,

f(%) = −α1 + α3%− α5%
2

and f has two positive roots, is also of high interest in physics (see, e.g., [5]). We shall focus on the one
dimensional case, which appears quite often in Nonlinear Optics. In this context, the nonlinearity can take
various forms (see [22]):

f(%) = −α%ν − β%2ν , f(%) = −%0

2

( 1

(1 + 1
%0

)ν
− 1

(1 + %
%0

)ν

)
, f(%) = −α%

(
1 + γ tanh

(%2 − %2
0

σ2

))
... (1)

where α, β, γ, ν, σ are given constants (the second one, for instance, takes into account saturation effects).
For the first nonlinearity in (1), we usually have αβ < 0, hence it is close, in some sense, to the cubic-
quintic nonlinearity. Therefore, it is natural to allow the nonlinearity to be quite general. In the context of
Bose-Einstein condensation or Nonlinear Optics, the natural condition at infinity appears to be

|Ψ|2 → r2
0 as |x| → +∞,
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where r0 > 0 is such that f(r2
0) = 0. We shall assume throughout the paper f as smooth as required.

For solutions Ψ of (NLS) which do not vanish, we may use the Madelung transform

Ψ = a exp(iφ)

and rewrite (NLS) as an hydrodynamical system with an additional quantum pressure
∂ta+ 2∂xφ∂xa+ a∂2

xφ = 0

∂tφ+ (∂xφ)2 − f(a2)− ∂2
xa

a
= 0

or


∂tρ+ 2∂x(ρu) = 0

∂tu+ 2u∂xu− ∂x(f(ρ))− ∂x
(∂2

x(
√
ρ)

√
ρ

)
= 0

(2)

with (ρ, u) ≡ (a2, ∂xφ). When neglecting the quantum pressure and linearizing this Euler system around the
particular trivial solution Ψ = r0 (or (a, u) = (r0, 0)), we obtain the free wave equation

∂tā+ r0∂xū = 0

∂tū− 2r0f
′(r2

0)∂xā = 0

with associated speed of sound

cs ≡
√
−2r2

0f
′(r2

0) > 0

provided f ′(r2
0) < 0 (that is the Euler system is hyperbolic in the region ρ ' r2

0), which we will assume
throughout the paper. The speed of sound plays a crucial role in the existence of traveling waves for (NLS).

The Nonlinear Schrödinger equation formally preserves the energy

E(Ψ) ≡
∫
R
|∂xΨ|2 + V (|Ψ|2) dx,

where V (%) =

∫ r2
0

%

f(s) ds, as well as the momentum. The momentum is not easy to define in dimension

one for maps that vanish somewhere (see [6], [7]). However, if Ψ does not vanish, we may lift Ψ = aeiφ, and
then the momentum is defined (see [8]) by

P (Ψ) ≡
∫
R
〈iΨ, ∂xΨ〉

(
1− r2

0

|Ψ|2
)
dx =

∫
R

(a2 − r2
0)∂xφ dx,

where 〈·, ·〉 denotes the real scalar product in C.

1.1 The traveling waves

The traveling waves play an important role in the long time dynamics of (NLS) with nonzero condition at
infinity. These are solutions of (NLS) of the form

Ψ(t, x) = U(x− ct)

where c is the speed of propagation. The profile U has to solve the ODE

∂2
xU + Uf(|U |2) = ic∂xU (TWc)

together with the condition |U(x)| → r0 as x→ ±∞. We may without loss of generality assume that c ≥ 0
(otherwise we consider the complex conjugate U instead of U). Moreover, we shall restrict ourselves to finite
energy traveling waves, in the sense that ∂xU ∈ L2(R) and |U |2 − r2

0 ∈ L2(R). In what follows, (nontrivial)
traveling wave then means a (nontrivial) solution to (TWc) with |U(x)| → r0 as x→ ±∞ and finite energy.
Let U be such a traveling wave. Taking the scalar product of (TWc) with 2∂xU , we deduce

∂x

(
|∂xU |2 − V (|U |2)

)
= 0 in R,
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hence
|∂xU |2 = V (|U |2) in R, (3)

in view of the condition at infinity and since U has finite energy. Similarly, denoting U = U1 + iU2 and
taking the scalar product of (TWc) with iU and U respectively yields, for some constant K,

U1∂xU2 − U2∂xU1 =
c

2
(|U |2 − r2

0) +K in R (4)

after integration and

〈U, ∂2
xU〉+ |U |2f(|U |2) = −c(U1∂xU2 − U2∂xU1) in R. (5)

Equation (4) allows one to compute the phase of U when U does not vanish. Indeed, on each interval where
U does not vanish one may write U = aeiφ and (4) becomes

a2∂xφ =
c

2
η +K. (6)

Since we restrict ourselves to traveling waves with finite energy, we must have K = 0 in (4). Indeed,
|U | → r0 > 0 as |x| → +∞, hence U has a lifting U = aeiφ with a ≥ r0/2 for large |x|, say |x| ≥ R, and
since

∫
{|x|≥R}(∂xφ)2 + η2 dx ≤

∫
{|x|≥R}(2/r0)2|∂xU |2 + (|U |2 − r2

0)2 dx < ∞ by assumption, this imposes

K = 0. Therefore, combining (3), (4) (with K = 0) and using the identity ∂2
x(|U |2) = 2〈U, ∂2

xU〉+ 2|∂xU |2,
we infer that the function

η ≡ |U |2 − r2
0

solves the ODE
∂2
xη + c2η − 2V (r2

0 + η) + 2(r2
0 + η)f(r2

0 + η) = 0. (7)

This last equation can be written under the form of a Newton type equation

∂2
xη +

1

2
V ′(η)− (c2s − c2)η = ∂2

xη +
1

2

d

dη

[
V(η)− (c2s − c2)η2

]
= 0 (8)

involving the potential function

[−r2
0,+∞) 3 ξ 7→ Vc(ξ) ≡ V(ξ)− ε2ξ2 = V(ξ)− (c2s − c2)ξ2,

where the function V : [−r2
0,+∞)→ R is defined (see, e.g. [25], proof of Theorem 5.1) by

V(ξ) ≡ c2sξ
2 − 4(r2

0 + ξ)V (r2
0 + ξ).

This type of differential equation is very classical (see, e.g. [2]) and is associated to the first integral

(∂xη)2 + V(η)− (c2s − c2)η2 = 0, (9)

since η → 0 at ±∞. By drawing the potential

[−r2
0,+∞) 3 ξ 7→ Vc(ξ) = V(ξ)− (c2s − c2)ξ2

in (9), it is easy to see if there exists or not a solution η to (8) such that η → 0 at infinity (that is, |U | → r0

at infinity). Indeed, a nontrivial solution η to (7) with η → 0 at infinity exists if and only if Vc is negative
on some interval (ξ∗, 0) or (0, ξ∗), with ξ∗ ≥ −r2

0, Vc(ξ∗) = 0 and V ′c(ξ∗) > 0 (if ξ∗ > 0) or V ′c(ξ∗) < 0 (if
−r2

0 ≤ ξ∗ < 0). Moreover, it is easy to see that η is symmetric with respect to some point x0 (at which η is
maximum (ξ∗ > 0) or minimum (ξ∗ < 0)); we freeze the invariance by translation by imposing x0 = 0 (that
is, we require |U | to be even).

In order to compute U completely, we need to express the phase φ. Assume first c > 0. Then, we have

Vc(ξ) = V(ξ)− (c2s − c2)ξ2 = c2ξ2 − 4(r2
0 + ξ)V (r2

0 + ξ),

and thus Vc(−r2
0) = c2r4

0 > 0. If U is a traveling wave of speed c > 0, we then see from the Newton equation
(9) that we cannot have η = −r2

0 at some point x, hence U cannot vanish. Therefore, we may write U = aeiφ
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and (6) holds on R. Consequently, the momentum of U is well-defined. When c = 0, the picture is slightly
different. If ξ∗ > −r2

0, then we easily see that |U | is even and does not vanish, hence (6) (with c = 0) implies
φ = Cte in R, and such a solution is called a “bubble”; if ξ∗ = −r2

0, then we can construct by reflection an
odd traveling wave solution U , called a “kink” (the phase φ(x) = π1R∗−(x) is then singular at the origin).
Since the kink vanishes at the origin, its momentum can not be defined by the formula we have given.

An immediate consequence of the fact that η obeys the Newton type equation (7) is the following result,
essentially proved in [25], for non existence of sonic or supersonic nontrivial traveling waves.

Theorem 1 ([25]) Let f ∈ C2(R+,R) be such that f ′(r2
0) < 0.

a) If c > cs, then there does not exist any nonconstant solution U of (TWc) such that |U | → r0 at ±∞.
b) A necessary and sufficient condition for the existence of a nonconstant solution U of (TWcs) satisfying
|U | → r0 at ±∞ is that there exists ξ∗ > 0 (resp. −r2

0 ≤ ξ∗ < 0) such that V < 0 in (0, ξ∗) and V(ξ∗) = 0 <
V ′(ξ∗) (resp. V < 0 in (ξ∗, 0) and V(ξ∗) = 0 > V ′(ξ∗)).

Proof. For sake of completeness, we recall the proof of [25], which follows immediately from the behaviour of
the function Vc at the origin. Indeed, note first that by definition of cs =

√
−2r2

0f
′(r2

0), we have by Taylor
expansion as ξ → 0

V(ξ) = c2sξ
2 − 4(r2

0 + ξ)V (r2
0 + ξ) = c2sξ

2 − 4(r2
0 + ξ)

(
− 1

2
f ′(r2

0)ξ2 +O(ξ3)
)

= O(ξ3),

hence
Vc(ξ) = V(ξ)− (c2s − c2)ξ2 = (c2 − c2s)ξ

2 +O(ξ3).

If c > cs, then it follows that Vc(ξ) > 0 for ξ small (depending on c), ξ 6= 0. Therefore, there can not exist
non trivial traveling wave with finite energy if c > cs. When c = cs, Vc = V and thus b) is the existence
criterion for an arbitrary c. �

Consequently, nontrivial traveling waves of finite energy do not exist outside the interval of speed c ∈
[0, cs].

1.2 Computation of energy and momentum

Since a traveling wave U of speed 0 < c < cs (and of finite energy) does not vanish, we may lift U = aeiφ

and we have the equations

a2∂xφ =
c

2
η and (∂xη)2 = ε2η2 − V(η) = −Vc(η).

Recall that we have imposed |U | (or η) to be even, hence it is standard to show (see, e.g. [2]) that if ξc 6= 0
is a simple zero of Vc (positive or negative) such that Vc is negative between 0 and ξc, then

∂xη = −sgn(ξc)
√
−Vc(η) in R+. (10)

Therefore, using the fact that η is even and the change of variable ξ = η(x) in R+, we get

P (U) =

∫
R

(a2(x)− r2
0)∂xφ(x) dx = c

∫ +∞

0

η2(x)

r2
0 + η(x)

dx = sgn(ξc)c

∫ ξc

0

ξ2

r2
0 + ξ

dξ√
ε2ξ2 − V(ξ)

,

where ξc is the zero of ξ 7→ ε2ξ2 − V(ξ) = −Vc(ξ) of interest. For the energy, we may first use (3) to infer

E(U) = 2

∫
R
V (a2) dx = 4 sgn(ξc)

∫ ξc

0

V (r2
0 + ξ)√

ε2ξ2 − V(ξ)
dξ,

after the same change of variable.
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1.3 The Gross-Pitaevskii nonlinearity

In this section, we consider the Gross-Pitaevskii nonlinearity f(%) = 1− %, that is

i
∂Ψ

∂t
+ ∂2

xΨ + Ψ(1− |Ψ|2) = 0. (GP)

We shall consider this model as a reference one, and this is why we detail some facts about it. For this
particular nonlinearity, we have r0 = 1, cs =

√
2 ' 1.4142, the functions V and V are, respectively,

V (%) =
1

2
(%− 1)2, V(ξ) = −2ξ3

and the graphs of f , V and V are

(a) (b) (c)

Figure 1: Graphs of (a) f , (b) V and (c) V.

Despite the fact that this model is widely used, it is also interesting since explicit computations of energy,
momentum and traveling waves can be carried out. Indeed, we may compute explicitely the traveling waves
for 0 < c < cs (see [30], [6])

Uc(x) =

√
2− c2

2
tanh

(
x

√
2− c2

2

)
− i c√

2
, (11)

which are unique up to translation or phase factor, and the energy and the momentum:

E(Uc) =
2

3
(2− c2)

3
2 P (Uc) = 2arctan

(√2− c2
c

)
− c
√

2− c2.

Here are some representations of the potentials Vc for different values of c.

(a) (b) (c)

Figure 2: The potential Vc with (a) ε = 0.3 (c ' 1.3820); (b) ε = 0.8 (c ' 1.1662); (c) ε = 1.2 (c ' 0.7483).
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For c ≥ cs, in view of Theorem 1, there does not exist nontrivial traveling waves. Plotting energy and
momentum with respect to the speed and the energy-momentum diagram gives:

(a) (b) (c)

Figure 3: (a) Energy and (b) momentum vs. speed c; (c) (E,P ) diagram.

In section 3, we shall study several model cases with a nonlinearity f which is qualitatively as the
Gross-Pitaevskii one in the sense that f is smooth and decreases to minus infinity, but for which the energy-
momentum diagrams are very different from the (GP) one (figure 3 (c)).

2 Mathematical results

This section is devoted to mathematical results concerning the traveling waves for (NLS).

2.1 Continuous dependence

For the ODE (TWc), we easily have a result of continuous dependence with respect to the parameter
c. Indeed, if a nonconstant traveling wave U∗ exists for a speed c∗ ∈ (0, cs), this means, working in hy-
drodynamical variables, that there exists an interval (ξ∗, 0) (resp. (0, ξ∗)) on which Vc∗ is negative and
Vc∗(ξ∗) = 0 < V ′c∗(ξ∗) (resp. Vc∗(ξ∗) = 0 > V ′c∗(ξ∗)). This is clearly not affected by a small perturbation of
c∗, so that a branch of traveling waves c 7→ Uc exists near the traveling wave U∗ = Uc∗ , and we have locally
uniqueness (recall that the invariance by translation is frozen by imposing |U | to be even) in the sense that
for c close to c∗ and some R > 0, there does not exist another traveling wave u 6= Uc with |u| even and
||u − Uc||L∞(R) ≤ R. Moreover, it is easy to prove for ηc and uc a uniform exponential decay for c near c∗.
By standard results on smooth dependence on the parameters for an ODE, if f is smooth, c 7→ (ηc, uc) is
smooth with values into any Sobolev space W s,p(R), s ∈ N, 1 ≤ p ≤ ∞ (we may also impose exponential
decay). We can then show the standard Hamilton group relation (see e.g. [19])

c∗ =
∂E

∂P |c=c∗
,

where the derivative is taken along this branch, or more precisely

dE

dc |c=c∗
= c∗

dP

dc |c=c∗
. (12)

Indeed, due to the uniform exponential decay at infinity, we may differentiate

dP (Uc)

dc
=

d

dc

∫
R

(a2
c − r2

0)∂xφc dx =

∫
R

2aca
′
c∂xφc + (a2

c − r2
0)∂xφ

′
c dx

where ′ denotes differentiation with respect to c, and similarly

dE(Uc)

dc
=

∫
R

2∂xac∂xa
′
c + 2aca

′
c(∂xφc)

2 + 2a2
c∂xφc∂xφ

′
c − 2aca

′
cf(a2

c) dx

=

∫
R

2a′c

{
− ∂2

xac − acf(a2
c) + cac∂xφc − ac(∂xφc)2

}
+ 2a2

c∂xφc∂xφ
′
c + 2caca

′
c∂xφc dx.

6



The integration by parts is justified by the exponential decay of a′c at infinity. Moreover, from (TWc) we
have

∂2
xac − ac(∂xφc)2 + acf(a2

c) + cac∂xφc = 0 and a2
c∂xφc =

c

2
(a2
c − r2

0).

Hence, the bracket term vanishes pointwise, and inserting the second equation yields

dE(Uc)

dc
= c

∫
R

(a2
c − r2

0)∂xφ
′
c + 2aca

′
c∂xφc dx = c

dP (Uc)

dc

as required.

The relation (12) imposes that critical points of the functions c 7→ E and c 7→ P (such as local maxima

or local minima), occur at the same time (for c 6= 0). Moreover, this also forces
dE

dc
to vanish for c → 0.

These two points can be cheked on the various model cases given in section 3.

2.2 Stability

In order to study the orbital stability or instability of these traveling waves, one may use a result of Z. Lin
(see [24]), which shows the orbital stability under the assumption

dP

dc
< 0

and instability under the hypothesis
dP

dc
> 0.

Here, the derivative is taken along the (local) branch. This result establishes rigorously the stability criterion
found in [8], [3]. On the energy-momentum diagram, this criterion reads as follows: if, on the local branch,

P 7→ E is concave in the sense that
d2E

dP 2
< 0, then the traveling wave is orbitally stable; and if P 7→ E

is convex in the sense that
d2E

dP 2
> 0, then the traveling wave is orbitally unstable. This point follows

immediately from the Hamilton group relation (12). Indeed, we have

d2E

dP 2
=

d

dP

(dE
dP

)
=

dc

dP
.

The result in [24] is proved for a nonlinearity for which we have existence of traveling waves for any c ∈ [0, cs),
but the arguments work for the nonlinearities f we are considering. Indeed, the analysis extends the results
of [9], [29], [17] and relies on some spectral properties of the linearized problem, for which Sturm-Liouville
theory still gives the existence of some simple negative eigenvalue associated to a positive function. As a
first step, we recall a local well-posedness result in the Zhidkov space

Z1 ≡
{
v ∈ L∞(R), ∂xv ∈ L2(R), |v|2 − r2

0 ∈ L2(R)
}

due to P. Zhidkov [32] (see also [13] and [14] for global well-posedness results).

Theorem 2 ([32]) Let Ψin ∈ Z1. Then, there exists T∗ > 0 and a unique solution Ψ to (NLS) such that
Ψ|t=0 = Ψin and Ψ−Ψin ∈ C([0, T∗), H1(R)). Moreover, E(Ψ(t)) does not depend on t.

We can now state the stability/instability result of [24].

Theorem 3 ([24]) Assume that 0 < c∗ < cs is such that there exists a nontrivial traveling wave Uc∗ . Then,
there exists some small σ > 0 such that Uc∗ belongs to a locally unique continuous branch of nontrivial
traveling waves Uc defined for c∗ − σ ≤ c ≤ c∗ + σ.
(i) Assume

dP (Uc)

dc |c=c∗
< 0.

7



Then, Uc∗ = a∗e
iφ∗ is orbitally stable in the sense that for any ε > 0, there exists δ > 0 such that if

Ψin = aineiφ
in ∈ Z1 verifies1 ∣∣∣∣ain − a∗

∣∣∣∣
H1(R)

+
∣∣∣∣∂xφin − ∂xφ∗

∣∣∣∣
L2(R)

≤ δ,

then, the solution Ψ to (NLS) such that Ψ|t=0 = Ψin never vanishes, can be lifted Ψ = aeiφ, and we have

sup
t≥0

inf
y∈R

{∣∣∣∣a(t)− a∗(· − y)
∣∣∣∣
H1(R)

+
∣∣∣∣∂xφ(t)− ∂xφ∗(· − y)

∣∣∣∣
L2(R)

}
≤ ε.

(ii) Assume
dP (Uc)

dc |c=c∗
> 0.

Then, Uc∗ = a∗e
iφ∗ is orbitally unstable in the sense that there exists ε > 0 such that, for any δ > 0, there

exists Ψin = aineiφ
in ∈ Z1 verifying∣∣∣∣ain − a∗

∣∣∣∣
H1(R)

+
∣∣∣∣∂xφin − ∂xφ∗

∣∣∣∣
L2(R)

≤ δ,

but such that if Ψ denotes the solution to (NLS) with Ψ|t=0 = Ψin, then there exists t > 0 such that Ψ does
not vanish on the time interval [0, t] but

inf
y∈R

{∣∣∣∣a(t)− a∗(· − y)
∣∣∣∣
H1(R)

+
∣∣∣∣∂xφ(t)− ∂xφ∗(· − y)

∣∣∣∣
L2(R)

}
≥ ε.

In particular, for the Gross-Pitaevskii nonlinearity, Theorem 3 shows that the traveling waves with speed
c ∈ (0, cs) are orbitally stable, since the energy-momentum diagram is strictly concave. This was also shown
in [6] using a variational characterization of these traveling waves, namely that they minimize the energy at
fixed momentum.

Remark 1 Theorem 3 does not work for c = cs, since the spectral decomposition in [24] is then no longer
true, hence it is not clear to know what happens for sonic traveling waves, if they exist. Furthermore, the

above result does not say anything in the degenerate case
dP

dc
= 0.

Concerning the stationnary traveling wave solutions (c = 0), we quote the paper [11] for instability of
the bubble (U is even and does not vanish). Concerning the kink (U is odd), the paper [12] gives a linear
stability criterion through the so called Vakhitov-Kolokolov function, and proves nonlinear instability when
linear instability holds, justifying that a kink can be unstable (as was suggested for the first time by [21]
for the saturated (NLS)). Note that the approach of [24], that is Theorem 3, relies on the hydrodynamical
formulation of (NLS), hence can not be used for the kink. For the Gross-Pitaevskii nonlinearity, the kink was
shown to be stable in [7] using a variational characterization (the kink minimizes the energy with a suitable
constraint on the momentum), and in the paper [15] in a different functional space using inverse scattering.
In some forthcoming work, we shall give some results on the stability of the traveling waves in the cases left
open by Theorem 3.

2.3 Transonic limit

In the transonic limit c → cs, the traveling waves are expected to be close, up to rescaling, to the (KdV)
soliton. The formal derivation is as follows (see [31], [20] and [4] for the time dependent derivation, useful
for the analysis of modulations). This corresponds to the case where

ε ≡
√

c2s − c2

is small. We insert the ansatz

U(x) = r0

(
1 + ε2Aε(z)

)
exp(iϕε(z)) z ≡ εx (13)

1From the embedding H1(R) ↪→ L∞(R), since Uc∗ does not vanish and |Ψin| is close in H1(R) to |Uc∗ | by the first term,

Ψin does not vanish and can be lifted: Ψin = aineiφ
in

8



into (2): 
−
√
c2s − ε2 ∂zAε + 2ε2∂zϕε∂zAε + (1 + ε2Aε)∂

2
zϕε = 0

−
√

c2s − ε2 ∂zϕε + ε2(∂zϕε)
2 − 1

ε2
f
(
r2
0(1 + ε2Aε)

2
)
− ε2 ∂2

zAε
1 + ε2Aε

= 0.

(14)

Moreover, Taylor expansion gives

f
(
r2
0(1 + α)2

)
= −c2sα+

(
− c2s

2
+ 2f ′′(r2

0)
)
α2 + f3(α),

with f3(α) = O(α3) as α → 0. If ϕε → ϕ and Aε → A in some suitable sense, both equations of (14) give
to leading order the constraint

∂zϕ = csA. (15)

We now add
√
c2s − ε2/c2s times the first equation of (14) and ∂z1/c

2
s times the second one and divide by ε2

to deduce

1

c2s
∂zAε +

{
2

√
c2s − ε2

c2s
∂zϕε∂zAε +

√
c2s − ε2

c2s
Aε∂

2
zϕε +

1

c2s
∂z[(∂zϕε)

2] +
[1

2
− 2r4

0

f ′′(r2
0)

c2s

]
∂z(A

2
ε)
}

− 1

c2s
∂z

( ∂2
zAε

1 + ε2Aε

)
= − 1

c2sε
4
∂z[f3(ε2Aε)].

Passing to the formal limit ε→ 0 and using (15), we infer

1

c2s
∂zA+ ΓA∂zA−

1

c2s
∂3
zA = 0, with Γ ≡ 6− 4r4

0

c2s
f ′′(r2

0). (16)

This is the (KdV) solitary wave equation, for which the only nontrivial solution is, up to a space translation,

w(z) ≡ − 3

c2sΓ cosh2(z/2)
.

For instance, for the Gross-Pitaevskii equation we have f(%) = 1 − %, c2s = 2, Γ = 6 and the explicit
formula (11) implies, with 2− c2 = ε2,

|Uc|2(x) =
ε2

2
tanh2

(εx
2

)
+

2− ε2

2
= 1− ε2

2 cosh2(εx/2)
,

so that (
1 + ε2Aε(z = εx)

)2

= |Uc|2(x) = 1 + 2ε2w(εx)

and thus the convergence of Aε to w follows.

For a general nonlinearity f , we have the following result.

Theorem 4 We assume f ∈ Cn(R+,R) for some n ≥ 3, and Γ 6= 0. Then, there exists δ > 0 and 0 < ε0 < cs
with the following properties. For any 0 < ε ≤ ε0 (or, equivalently, c0 ≡ c(ε0) ≤ c(ε) < cs), there exists
a solution Uc(ε) to (TWc(ε)) satisfying || |Uc(ε)| − r0||L∞(R) ≤ δ. If 0 < ε < ε0 and if u is a nonconstant
traveling wave of speed c(ε) verifying || |u| − r0 ||L∞(R) ≤ δ, then there exists θ ∈ R and y ∈ R such that

u(x) = eiθUc(ε)(x− y). The map Uc(ε) can be written

Uc(ε)(x) = r0

(
1 + ε2Aε(z)

)
exp(iεϕε(z)), z ≡ εx,

and for any s ∈ N, 0 ≤ s ≤ n+ 2 and 1 ≤ p ≤ ∞,

∂zϕε → csw and Aε → w in W s,p(R) as ε→ 0.

9



Finally, as ε→ 0,

E(Uc(ε)) ∼ csP (Uc(ε)) ∼
48r2

0

c2sΓ
2

(
c2s − c2(ε)

) 3
2

= ε3 48r2
0

c2sΓ
2

and

E(Uc(ε))− c(ε)P (Uc(ε)) ∼
48r2

0

5c4sΓ
2

(
c2s − c2(ε)

) 5
2

=
48r2

0

5c4sΓ
2
ε5.

Proof. The potential function V has the Taylor expansion near ξ = 0:

V(ξ) = c2sξ
2 − 4(r2

0 + ξ)V (r2
0 + ξ) = c2sξ

2 − 4(r2
0 + ξ)

(
− 1

2
f ′(r2

0)ξ2 − 1

6
f ′′(r2

0)ξ3 +O(ξ4)
)

= − c2sΓ

6r2
0

ξ3 +O(ξ4),

by definition of cs and Γ. Therefore, since Γ 6= 0 by hypothesis,

Vc(ε)(ξ) = V(ξ)− ε2ξ2 = −ε2ξ2 − c2sΓ

6r2
0

ξ3 +O(ξ4) as ξ → 0.

Then, with Γ > 0 for instance and for small ε > 0, the potential function Vc(ε) has the following graph:

0

ξ ε
ξ

Figure 4: Graph of V(ξ)− ε2ξ2.

The first negative zero ξε of Vc(ε) has the expansion

ξε = −6r2
0

c2sΓ
ε2 +O(ε3).

For ε > 0 small, the function Vc(ε) is negative in (ξε, 0) and ξε is a simple zero: there exists a continuous
branch of traveling waves Uc(ε) for ε > 0 small enough, and there holds

ξε ≤ |Uc(ε)|2 − r2
0 = ηc(ε) ≤ 0

in R. On the other hand, V is negative in some interval (0, ξ∗) with ξ∗ > 0 (and possibly ξ∗ = +∞). Hence,
if u is a nontrivial traveling wave with |u| ≥ r0 and ε small, then η = |u|2− r2

0 has to reach values ≥ ξ∗, and
then |||u| − r0||L∞(R) ≥ δ for some δ > 0. Moreover, it comes from (10) that, for x ≥ 0,

x =

∫ ηc(ε)(x)

ξε

dξ√
−Vc(ε)(ξ)

. (17)

We now scale
Uc(ε)(x) = r0

√
1 + ε2Aε(z) exp(iεϕε(z)), z = εx.

The way we write the amplitude is slightly different from (13), but Aε and Aε are related by the formulas

Aε = 2Aε + ε2A2
ε or Aε =

√
1 + ε2Aε − 1

ε2
=

Aε
1 +
√

1 + ε2Aε
. (18)

10



This way of writting the amplitude is well-adapted to the Newton equation on η = |U |2−r2
0, which involves the

density |U |2. Moreover, it is clear that in order to show compactness on Aε, it suffices to show compactness
on Aε in R+ (this is an even function), which will be done by using Ascoli’s theorem. Then, we immediately
have

− 6

c2sΓ
+O(ε) =

ξε
r2
0ε

2
≤ Aε(z) =

ηc(ε)(z/ε)

ε2r2
0

≤ 0

and, from (17), with ξ = r2
0ε

2ζ and for z ≥ 0,

z =

∫ Aε(z)

ξε/(r2
0ε

2)

dζ√
ζ2 +

c2sΓ

6
ζ3 +O(ε2ζ4)

. (19)

Here, the “O(ε2ζ4)” is uniform in ζ (which remains in a compact set independent of ε small). Notice that
as A → 0−,∫ A

ξε/(r2
0ε

2)

dζ√
ζ2 +

c2sΓ

6
ζ3 +O(ε2ζ4)

=

∫ 1
c2
sΓ

ξε/(r2
0ε

2)

dζ√
ζ2 +

c2sΓ

6
ζ3 +O(ε2ζ4)

−
∫ A

1
c2
sΓ

dζ

ζ

√
1 +

c2sΓ

6
ζ +O(ε2ζ2)

= − ln |A|+O(1)

uniformly in ε (sufficiently small). It then follows that for some constant C > 0, we have

−Ce−|z| ≤ Aε(z) ≤ 0,

and, from (10), a similar estimate holds for ∂zAε. It is then possible to pass to the limit (using Ascoli’s
theorem and the uniform exponential decay) to infer that for some sequence εj → 0, Aεj converges to some
A uniformly in R such that

z =

∫ A(z)

−6/(c2sΓ)

dζ√
ζ2 +

c2sΓ

6
ζ3

.

Hence A = 2w, where w is the (KdV) soliton. From the uniqueness of the limit, we deduce that the full
familly (Aε)ε>0 converges to 2w. Taking the derivatives of the first integral (9), it is easy to infer that all the
derivatives of Aε satisfy some uniform exponential decay, hence the convergence of Aε to 2w in the Sobolev
spaces W s,p(R), s ∈ N, 0 ≤ s ≤ n+ 2, 1 ≤ p ≤ ∞ follows. The convergence of Aε follows from the formula
(18) and the convergence for the derivative of the phase follows from equation (6), which rescales as

∂zϕε = c(ε)
Aε

2(1 + ε2Aε)
.

For the convergences, the proof is complete when Γ > 0, and the case Γ < 0 is analoguous. It remains to
compute the asymptotic behaviour of the energy and momentum, which are of course related to the ones of
the (KdV) soliton w. Indeed, by using the variable ξ = ε2r2

0ζ one has

P (Uc(ε)) = sgn(ξε)c(ε)

∫ ξε

0

ξ2

r2
0 + ξ

dξ√
ε2ξ2 − V(ξ)

= sgn(ξε)r
2
0ε

3c(ε)

∫ ξε/(ε
2r2

0)

0

ζ2

1 + ε2ζ

dζ√
ζ2 +

c2sΓ

6
ζ3 +O(ε2ζ4)

∼ r2
0ε

3cs

∫ −6/(c2sΓ)

0

ζdζ√
1 +

c2sΓ

6
ζ

= r2
0ε

3 48

c3sΓ
2
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and the computation for the energy is similar. Finally, from the expressions of energy and momentum given
in subsection 1.2, the definition of Vc, and using the variable ξ = ε2r2

0ζ, it follows,

E(Uc(ε))− c(ε)P (Uc(ε)) = sgn(ξε)

∫ ξε

0

√
−V(ξ)

r2
0 + ξ

dξ

= sgn(ξε)ε
5r4

0

∫ ξε/(ε
2r2

0)

0

√
ζ2 +

c2sΓ

6
ζ3 +O(ε2ζ4)

1 + ε2ζ
dζ

∼ ε5r4
0

∫ −6/(c2sΓ)

0

√
ζ2 +

c2sΓ

6
ζ3 dζ =

48r2
0

5c4sΓ
2
ε5.

The proof is complete. �

So far, the degenerate case Γ = 0 has not been thoroughly investigated. We would like to emphasize
that the coefficient Γ involves the second order derivative of f at % = r2

0. Even though the case Γ = 0 is
not generic, we shall see that the qualitative behaviour of the traveling waves to (NLS) can be extremely
different from the well-known Gross-Pitaevskii case f(%) = 1− %. The coefficient Γ is actually linked to the
function V appearing in (9) by the equality

V(3)(0) = 12f ′(r2
0) + 4r2

0f
′′(r2

0) = −Γc2s
r2
0

.

When Γ = 0, the nonlinear term in the (KdV) solitary wave (16) disappears, and there is no soliton. In
order to see the nonlinear terms, we have to assume (Aε, ϕε) larger and expand further the nonlinearity. We
thus make the ansatz

U(x) = r0

(
1 + εAε(z)

)
exp(iϕε(z)) z ≡ εx,

plug this into (2) and obtain
−c(ε)∂zAε + 2ε∂zϕε∂zAε + (1 + εAε)∂

2
zϕε = 0

−c(ε)∂zϕε + ε(∂zϕε)
2 − 1

ε
f
(
r2
0(1 + εAε)

2
)
− ε2 ∂2

zAε
1 + εAε

= 0.

(20)

Here again, if Aε → A and ϕε → ϕ as ε→ 0, we infer that at leading order, for both equations, the constraint
(15) holds. However, we shall need a second order expansion: we thus write the Taylor expansion

f
(
r2
0(1 + α)2

)
= −c2sα−

( c2s
2
− 2r4

0f
′′(r2

0)
)
α2 +

(
2r2

0f
′′(r2

0) +
4

3
r6
0f
′′′(r2

0)
)
α3 + f4(α),

with f4(α) = O(α4) as α→ 0, and keep the terms of order ε0 and ε1 in (20). Since c2(ε) = c2s − ε2, we get
∂2
zϕε − c(ε)∂zAε + 2ε∂zϕε∂zAε + εAε∂

2
zϕε = O(ε2)

c2(ε)Aε − c(ε)∂zϕε + ε(∂zϕε)
2 + ε

( c2s
2
− 2r4

0f
′′(r2

0)
)
A2
ε = O(ε2).

Since Γ = 0, we have
2r4

0f
′′(r2

0) = 3c2s. (21)

Therefore, each of the two equations in the above system reduce to

∂zϕε − c(ε)Aε = ∂zϕε − csAε +O(ε2) = −3ε

2
csA

2
ε +O(ε2). (22)

Adding c(ε)/c2s times the first equation of (20) and ∂z/c
2
s times the second one and dividing by ε2, we get

1

c2s
∂zAε −

1

c2s
∂z

( ∂2
zAε

1 + εAε

)
− 1

c2s

(
6r2

0f
′′(r2

0) + 4r6
0f
′′′(r2

0)
)
A2
ε∂zAε −

1

c2sε
3
∂z[f4(εAε)]

+
1

ε

{
2
c(ε)

c2s
∂zϕε∂zAε +

c(ε)

c2s
Aε∂

2
zϕε +

1

c2s
∂z[(∂zϕε)

2] +
[1

2
− 2r4

0f
′′(r2

0)

c2s

]
∂z(A

2
ε)
}

= 0. (23)
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We must treat carefully the bracket terms, which are formally singular, but the leading order terms cancel
out by (15). Using (21) and (22), the bracket term in (23) is

1

ε

{ 2

cs
∂zAε

(
csAε −

3ε

2
csA

2
ε

)
+

1

cs
Aε∂z

(
csAε −

3ε

2
csA

2
ε

)
+

1

c2s
∂z[(csAε −

3ε

2
csA

2
ε)

2]− 5Aε∂zAε

}
+O(ε)

= −15A2
ε∂zAε +O(ε).

As a consequence, passing to the (formal) limit ε→ 0 in (23) yields

1

c2s
∂zA−

1

c2s
∂3
zA+ Γ′A2∂zA = 0, with Γ′ ≡ −4r6

0f
′′′(r2

0)

c2s
− 24.

This equation is the solitary wave equation for the (KdV) equation with cubic nonlinearity, often called
modified Korteweg-de Vries equation (mKdV). The sign of Γ′ plays a fundamental role: if Γ′ > 0, the
underlying (mKdV) equation is defocusing and has no soliton, whereas if Γ′ < 0, we have a focusing equation
with two opposite solitons

±w′(z) ≡ ±
√
−6/(Γ′c2s)

cosh(z)
.

Indeed, since the nonlinearity is cubic, A 7→ −A leaves the equation invariant. For this transonic limit, we
can prove the following result.

Theorem 5 We assume that, for some n ∈ N, n ≥ 4, f ∈ Cn(R+,R) and that Γ = 0 > Γ′. Then, there
exists 0 < ε0 < cs such that for every 0 < c0 ≡ c(ε0) < c(ε) < cs, there exist exactly two traveling waves
U±c(ε) with speed c(ε) (up to phase factor and translation). Moreover,

U±c(ε)(x) = r0

(
1 + εA±ε (z)

)
exp(iϕ±ε (z)), z = εx,

with
A±ε → ±w′ and ∂zϕ

±
ε /cs → ±w′

in all spaces W s,p(R), s ∈ N, 0 ≤ s ≤ n+ 2, 1 ≤ p ≤ ∞. Furthermore, as ε→ 0,

E(U±c(ε)) ∼ csP (U±c(ε)) ∼ −
24r2

0

Γ′

(
c2s − c2(ε)

) 1
2

= −24r2
0

Γ′
ε

and

E(U±c(ε))− c(ε)P (U±c(ε)) ∼ −
8r2

0

c2sΓ
′

(
c2s − c2(ε)

) 3
2

= − 8r2
0

c2sΓ
′ ε

3.

Proof. In the case Γ = 0, we recall that we have 2r4
0f
′′(r2

0) = 3c2s, hence

V(ξ) =
(2

3
f ′′(r2

0) +
1

6
f (3)(r2

0)
)
ξ4 +O(ξ5) = − Γ′c2s

24r4
0

ξ4 +O(ξ5),

and thus Vc(ε) has a graph (for small ε) of the following type:

0
ξ ε
−

ξε
+

ξ

Figure 5: Graph of V(ξ)− ε2ξ2.
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with two zeros ξ±ε = ±2r2
0ε
√
−6
c2sΓ′ + O(ε2). Therefore we have two branches of traveling waves and we

shall focus on the one corresponding to the interval (0, ξ+
ε ). For the proof of the convergence, we scale

U+
c(ε)(x) = r0

√
1 + εA+

ε (z) exp(iϕ+
ε (z)), z = εx,

so that (17) becomes, with ξ = r2
0εζ,

z = −
∫ A+

ε (z)

ξ+
ε /(r

2
0ε)

dζ√
ζ2 − Γ′c2s

24
ζ4 +O(εζ5)

.

Passing to the limit as before implies A+
ε → A+ uniformly in R, with

z = −
∫ A+(z)

2
√
−6/(c2sΓ′)

dζ√
ζ2 +

Γ′c2s
24

ζ4

,

that is A+ = 2w′. The proof of the convergences is then as for Theorem 4. We now compute as before the
asymptotics of the momentum setting ξ = r2

0εζ:

P (U+
c(ε)) = c(ε)

∫ ξ+
ε

0

ξ2

r2
0 + ξ

dξ√
ε2ξ2 − V(ξ)

= r2
0εc(ε)

∫ ξ+
ε /(εr

2
0)

0

ζ2

1 + εζ

dζ√
ζ2 +

Γ′c2s
24

ζ4 +O(εζ5)

∼ r2
0εcs

∫ √
−24

c2
sΓ′

0

ζdζ√
1 +

Γ′c2s
24

ζ2

= −ε24r2
0

csΓ′
.

Finally,

E(U+
c(ε))− c(ε)P (U+

c(ε)) ∼ r
2
0ε

3

∫ √
−24

c2
sΓ′

0

√
ζ2 +

Γ′c2s
24

ζ4 dζ = − 8r2
0

c2sΓ
′ ε

3.

The proof is complete. �

Of course, we can go further and assume that Γ′ vanishes. If f is sufficiently smooth and

V(ξ) =
Kξm

r2m−4
0

+O(ξm+1) as ξ → 0,

with K 6= 0 and m ∈ N, m ≥ 3, the natural ansatz will be

Uc(ε)(x) = r0

(
1 + ε

2
m−2Aε(z)

)
exp(iε

4−m
m−2ϕε(z)), z = εx.

Indeed, this is for ξ ' ε
2

m−2 that ξm ' ε2ξ2. We will then have zero, one or two branches of solutions
depending on the sign of K and whether m is odd or even. The resulting equation will then be

1

c2s
∂zA+ Γ(m)Am−2∂zA−

1

c2s
∂3
zA = 0,

where Γ(m) is proportional to K, which is the (gKdV) solitary wave equation. If the (gKdV) equation has
solitary waves (that is m odd or (m even and K > 0)), the expansion of the energy and momentum will
give, by similar computations,

E(Uc(ε)) = E0ε
6−m
m−2 +O(ε

8−m
m−2 ) and P (Uc(ε)) = P0ε

6−m
m−2 +O(ε

8−m
m−2 ),
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with E0 = csP0, and we shall have

E(Uc(ε))− c(ε)P (Uc(ε)) = sgn(ξε)

∫ ξε

0

√
ε2ξ2 +Kξm/r2m−4

0 +O(ξm+1)

r2
0 + ξ

dξ ∼ r2
0ε

m+2
m−2S(K, cs),

where S(K, cs) is an integral depending only on K and cs. Notice that the smallest integer m for which
energy and momentum diverge to +∞ as ε→ 0 is m = 7. Moreover, we see that

E(Uc(ε))−csP (Uc(ε)) = E(Uc(ε))−c(ε)P (Uc(ε))−(cs−c(ε))P (Uc(ε)) = O(ε
m+2
m−2 )+O(ε2)×O(ε

6−m
m−2 ) = O(ε

m+2
m−2 )

tends to zero as ε→ 0, hence the straight line E = csP is always an asymptote for m ≥ 7 (with P (Uc(ε))� 1
and E(Uc(ε))� 1 for ε� 1).

Concerning the stability of the solitary wave in the transonic limit, we would like to mention some stability
results of the (gKdV) soliton (with speed 1

c2s
) in the (gKdV) equation

∂τA−
1

c2s
∂3
zA+ Γ(m)Am−2∂zA = 0

when this soliton exists, that is m odd or m even and Γ(m) < 0. It is known to be stable in the subcritical
case, i.e. for m ≤ 5, (see [9]) and unstable if m ≥ 6 (cf. [9] for the supercritical case m ≥ 7 and [26] for
the critical case m = 6). Furthermore, in the critical case (m = 6), blow-up in finite time do occur for some
initial data close to the (gKdV) soliton ([27]). Notice that for the critical case m = 6 (and Γ(6) < 0), E(Uc(ε))
and P (Uc(ε)) converge to some finite positive limits as ε→ 0, with lim

ε→0
E(Uc(ε)) = cs lim

ε→0
P (Uc(ε)) > 0 (since

E(Uc(ε)) − csP (Uc(ε)) always tends to 0). This means that in the (focusing) critical case m = 6, the curve
c 7→ (E,P ) has a stopping point located on the straight line E = csP .

3 Study of some model cases

In this section, we consider some particular but relevant nonlinearities and for each of them we find all non
constant traveling waves to (NLS) satisfying the condition |U(x)| → r0 as x → ±∞. We shall always have
r0 = 1. To be consistent with the (KdV) limit, we always relate the speed c to ε by

c2s = c2 + ε2,

but ε needs not to be small. Our starting point is the case ε = 0 (that is c = cs). We then let ε ∈ [0, cs]
increase from 0 to cs. For some values of ε (or c), we draw the potential

[−1,+∞) 3 ξ 7→ Vc(ξ) ≡ V(ξ)− ε2ξ2 = V(ξ)− (c2s − c2)ξ2

in (9), from which it is easy to see if there exists or not a solution to (8) with |U | → r0 at infinity. For
the selected representative values of ε (or c), we represent the qualitative behaviour of the squared modulus
|U |2 = r2

0 + η of the solution (there is no need to integrate numerically the ODE, since the global shape
of |U |2 follows immediately from the graph of Vc). For the diagrams of energy/momentum/speed, we have
computed numerically the energy and momentum using the formulae in subsection 1.2. It may happen that
for some particular values of ε (or c) the integrals tend to infinity rather slowly, and then it is difficult to
capture this divergence numerically.

The choices of each nonlinearity has been done in order to illustrate in particular the different behaviours
described through the transonic limit, hence we construct some f ’s with Γ = 0 and both signs of Γ′, and very
degenerate situations corresponding to a transonic limit governed by some (gKdV) solitary wave equation.
The first three model cases are based on a polynomial nonlinearity f of degree three, thus we call them
cubic-quintic-septic nonlinearities.
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3.1 Example 1: a cubic-quintic-septic nonlinearity (I)

We consider the nonlinearity

f(%) ≡ −(%− 1) +
3

2
(%− 1)2 − 3

2
(%− 1)3.

Then, we compute

V (%) =
1

2
(%− 1)2 − 1

2
(%− 1)3 +

3

8
(%− 1)4 and V(ξ) =

ξ4

2
− 3ξ5

2
,

so that r0 = 1, c2s = 2, Γ = 0 and Γ′ = −6, and the graphs of f , V and V are

(a) (b) (c)

Figure 6: Graphs of (a) f , (b) V and (c) V

This model case has been chosen in order to illustrate a case where Γ = 0 and Γ′ < 0, for which, according
to Theorem 5, we have two branches of solutions in the transonic limit. Actually, for ε small, we have

Vc(ξ) =
ξ4

2
− 3ξ5

2
− ε2ξ2,

and this function, for ε small enough, has two zeros

ξ+
ε =

√
2ε+O(ε2) ξ−ε = −

√
2ε+O(ε2)

near the origin, with Vc(ξ) < 0 in (ξ−ε , 0) and in (0, ξ+
ε ). It follows that there exist two traveling waves with

speed c, one with |U | > r0 (for the (0, ξ+
ε ) part, called the upper solution), and one with |U | < r0 (for the

(ξ−ε , 0) part, called the lower solution).
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1.08

0.93

(a) (b)

Figure 7: Graphs of (a) Vc and (b) |U |2 for c =
√

2− 0.052 ' 1.4133 < cs =
√

2 ' 1.4142

We then increase ε.

x
0

|U|
2

2
r
0

1=

1.12

0.91

(a) (b)

Figure 8: Graphs of (a) Vc and (b) |U |2 for c =
√

2− 0.072 ' 1.4124 < cs =
√

2 ' 1.4142
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x
0

|U|
2

2
r
0

1=

0.89

1.20

(a) (b)

Figure 9: Graphs of (a) Vc and (b) |U |2 for c =
√

2− 0.092 ' 1.1411347 < cs =
√

2 ' 1.4142

We observe that if we now increase slightly ε, the potential Vc will have a double positive root that can
be computed explicitely. Indeed, one has

2Vc(ξ) = ξ4 − 3ξ5 − 2ε2ξ2 = ξ2(ξ2 − 3ξ3 − 2ε2),

and the discriminant of the cubic polynomial in parenthesis vanishes only for ε = ε0 ≡ 2
9
√

6
' 0.0907. The

double positive root is then 2
9 ' 0.222, and this corresponds to the critical speed c0 =

√
2− ε2

0 ' 1.4113007.
For 0 < ε < ε0, the potential Vc remains negative on two intervals (ξ−ε , 0) and (0, ξ+

ε ), and there exist exactly
two solutions to (TWc). As ε → ε−0 , the squared modulus of the upper solution in figure 9 tends to the
constant r2

0 + 2
9 ' 1.222 locally in space. From (6) (with K = 0), it follows that, locally in space,

φ′ →
√

2− ε2
0

2

2/9

1 + 2/9
=

1

11

√
484

243
.

In particular, as ε→ ε−0 , the traveling wave associated to the upper solution converges, locally in space, to

11

9
exp

( ix
11

√
484

243

)
(up to a phase factor), which is a nontrivial solution of (TWc0) but not a traveling wave (it does not have
neither modulus one at infinity nor finite energy). We recall that the invariance by translation is frozen by
imposing that |U |2 is even. It is straightforward to show that for this solution, both energy and momentum
diverge to +∞. For our nonlinearity, it turns out that for ε ≥ ε0, we do not have any nontrivial traveling
wave with modulus > r0, that is associated to the part ξ > 0 for Vc. However, the solution in the part ξ < 0
for Vc remains.
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0
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2

2
r
0

1=

0.22

(a) (b)

Figure 10: Graphs of (a) Vc and (b) |U |2 for c =
√

2− 12 = 1 < cs =
√

2 ' 1.4142

x
0

|U|
2

2
r
0

1=

0.03

(a) (b)

Figure 11: Graphs of (a) Vc and (b) |U |2 for c =
√

2− 1.352 ' 0.421 < cs =
√

2 ' 1.4142

Using the numerical values we have obtained, we may now plot for the two branches of traveling waves
the energy and momentum with respect to the speed, as well as the energy-momentum diagram.
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Figure 12: (a) Energy (*) and momentum (+) for the lower branch; (b) Energy (♦) and momentum (�) for
the upper branch.
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Figure 13: The numerical (E,P ) diagram

As ε→ ε−0 and for the upper solution, both energy and momentum diverge to +∞. From the expressions
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in subsection 1.2, it follows that

P = −E0

c0
ln
( c
c0
− 1
)

+ P1 +O(c− c0) and E = −E0 ln
( c
c0
− 1
)

+ E1 +O(c− c0)

as c → c+0 , for some constants E0 > 0, E1 and P1. This divergence is therefore not easy to capture
numerically. Note however that this shows that we have an asymptote E −E1 = c0(P − P1). The graphs of
E and P with respect to the speed c and the full (E,P ) diagram (where the straight dashed line is E = csP )
for this example have the following shape.
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Figure 14: (a) Energy (dashed curve) and momentum (full curve) vs. speed; (b) (E,P ) diagram

Comments. Let us point out some qualitative facts that we can observe from this example. We have con-
structed the nonlinearity f so that the potential V has the same qualitative behaviour as the one associated
to the Gross-Pitaevskii nonlinearity (f is decreasing, tends to −∞ at +∞). However, due to the cancellation
of the coefficient Γ, which is a second order condition on f at % = r2

0, we have two solutions in the transonic
limit c → cs. To our knowledge, this is the first multiplicity result of this type. On the other hand, there
exist solutions with high energy and momentum. Furthermore, we see that it may happen that a familly of
traveling waves solutions to (TWc) with modulus tending to r0 at infinity converges as c→ c0 ∈ (0, cs) to a
nontrivial solution to (TWc0) which does not have modulus r0 at infinity. Therefore, for a general smooth
decreasing nonlinearity f , this example shows that it is not true that the (exponential) decay of the traveling
waves at infinity can be made uniform for speeds in a compact interval [cmin, cmax] ⊂ (0, cs).

3.2 Example 2: a cubic-quintic-septic nonlinearity (II)

Here, we consider
f(%) ≡ −4(%− 1)− 36(%− 1)3.

We compute

V (%) = 2(%− 1)2 + 9(%− 1)4 and V(ξ) = −8ξ3 − 36ξ4 − 36ξ5,

thus r0 = 1, c2s = 8, Γ = 6, and the graphs of f , V and V are
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(a) (b) (c)

Figure 15: Graphs of (a) f , (b) V and (c) V

Compared to example 1, this time the potential Vc will have, for some 0 < c < cs, a double root located
in the part ξ < 0. Observe that V(−0.25) > 0. Here again, we let ε ∈ [0, cs] increase.
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|U|
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r
0

1=

0.96

(a) (b)

Figure 16: Graphs of (a) Vc and (b) |U |2 for c =
√

8− 0.52 ' 2.7839 < cs =
√

8 ' 2.8284
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0

1=

0.87

(a) (b)

Figure 17: Graphs of (a) Vc and (b) |U |2 for c =
√

8− 0.7122 ' 2.7373 < cs =
√

8 ' 2.8284

Here, we find a situation similar to Example 1. If we slightly increase ε, the potential Vc will have a
double root. Here again, we may compute explicitely the critical value ε0 noticing that we have

Vc(ξ) = −36ξ2(ξ3 + ξ2 + 2ξ/9 + ε2/36),

and it is easily checked that the discriminant of the cubic polynomial in parenthesis is (ε2/16−4/35)/92 and
thus vanishes only for ε = ε0 ≡ 2 4

√
4/35 ' 0.7163, which corresponds to the critical speed c0 =

√
8− ε2

0 '
2.7362. The negative double root is then ' −0.1409. In figure 17, we are just before this critical value, and
this forces η = |U |2−r2

0 (or |U |2) to stay on a rather long range of x close to the value ' −0.14 (or 0.86). As
for example 1, as ε→ ε−0 , the traveling wave solution converges, locally in space, to a function of the type

α exp(iβx),

for some constants α ' 0.9269 and β ' −0.2244.
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(a) (b)

Figure 18: Graphs of (a) Vc and (b) |U |2 for c = c0 ≡
√

8− ε2
0 ' 2.7362 < cs =

√
8 ' 2.8284

In figure 18, we are exactly on the critical value ε = ε0 = 2 4
√

4/35 ' 0.7163. The potential Vc0 is negative
between 0 and the negative root ' −0.1409, but this root is a double root: no traveling wave exists for this
critical value c = c0.
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Figure 19: Graphs of (a) Vc and (b) |U |2 for c =
√

8− 0.722 ' 2.735 < cs =
√

8 ' 2.8284

For figure 19, we have ε slightly greater than ε0: the potential Vc is then negative between 0 and
' −0.7187, but has a local maximum at ' −0.14, which is very close to zero, namely ' −0.000102. The
minimum value of η = |U |2 − r2

0 (or |U |2) is then ' −0.7187 (or ' 0.28), but η (or |U |2) remains close to
' −0.14 (or ' 0.86) for two quite large x intervals. If we decrease ε to ε0, we see that η converges, locally
in space, to the homoclinic solution (which remains between ' −0.1409 and ' −0.7187) associated to the
double negative root ' −0.1409 of Vc0 . In figure 15 (c), it can be noticed that there exists a solution to
(TWcs) (but not a traveling wave) with periodic modulus corresponding to the region ξ ∈ (−2/3,−1/3) in
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which V is < 0, with V(−2/3) = 0 > V ′(−2/3) and V(−1/3) = 0 < V ′(−1/3). As ε increases up to ε0, the
period increases to infinity. For ε = 1.5, the picture is the following.
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0
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(a) (b)

Figure 20: Graphs of (a) Vc and (b) |U |2 for c =
√

8− 1.52 ' 2.3979 < cs =
√

8 ' 2.8284

We now show the graphs of energy and momentum for the two branches of solutions (for the numerical
values we have obtained) with respect to the speed: c0 < c < cs for the first branch, 0 ≤ c < c0 for the
second one, as well as the (E,P ) diagram.

2.73 2.74 2.75 2.76 2.77 2.78 2.79 2.80 2.81 2.82 2.83

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

first branch

speed

0.0 0.5 1.0 1.5 2.0 2.5 3.0

2

3

4

5

6

7

8

9

second branch

speed

(a) (b)

Figure 21: (a) Energy (*) and momentum (+) for the first branch; (b) Energy (♦) and momentum (�) for
the second branch.
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Figure 22: Energy (dashed curve) and momentum (full curve)

We observe a cusp for some speed ccusp ' 2.55. This corresponds to the common minimum of both
energy and momentum in figure 21 (b).

Concerning the behaviour when c→ c0, we have expansions similar to those for example 1:

P = −E
+
0

c0
ln
( c
c0
− 1
)

+ P+
1 +O(c− c0), E = −E+

0 ln
( c
c0
− 1
)

+ E+
1 +O(c− c0) as c→ c+0

P = −E
−
0

c0
ln
(

1− c

c0

)
+ P−1 +O(c0 − c) E = −E−0 ln

(
1− c

c0

)
+ E−1 +O(c0 − c) as c→ c−0 ,

for some constants E±0 > 0, E±1 and P±1 . Notice that this means that the divergence of the energy and the
momentum for the first branch is extremely slow, hence very difficult to capture numerically. The constants
E±0 > 0 verify E−0 = 2E+

0 . Moreover, from the expressions of the energy and momentum in subsection 1.2,
it comes

E(Uc)− c0P (Uc) = 4 sgn(ξc)

∫ ξc

0

V (r2
0 + ξ)√
−Vc(ξ)

dξ − cc0 sgn(ξc)

∫ ξc

0

ξ2

(1 + ξ)
√
−Vc(ξ)

dξ

= c(c− c0)sgn(ξc)

∫ ξc

0

ξ2

(1 + ξ)
√
−Vc(ξ)

dξ + sgn(ξc)

∫ ξc

0

√
−Vc(ξ)
1 + ξ

dξ,

where we use the expression of Vc in the before last equality. The first integral diverges as O
(

ln
∣∣∣ c
c0
− 1
∣∣∣)

as c→ c±0 , hence the first term has a contribution O
(
|c− c0| ln

∣∣∣ c
c0
− 1
∣∣∣)� 1. Therefore, as c→ c0,

E(Uc)− c0P (Uc) = sgn(ξc)

∫ ξc

0

√
−Vc(ξ)
1 + ξ

dξ +O
(
|c− c0| ln

∣∣∣ c
c0
− 1
∣∣∣)→ sgn(ξc0)

∫ ξc0

0

√
−Vc0(ξ)

1 + ξ
dξ.

This means that we have an asymptote for c→ c±0

E = c0P + E0, E0 ≡ sgn(ξc0)

∫ ξc0

0

√
−Vc0(ξ)

1 + ξ
dξ > 0

(hence the constants E±1 and P±1 verify E±1 − c0P
±
1 = E0).

The full (E,P ) diagram (here again, the straight dashed line is E = csP ) has thus the following shape.
It is difficult to check numerically that the two curves actually cross, since the divergence is extremely slow.

However, for the first branch, the curve P 7→ E is concave. Indeed, we have seen in subsection 2.1 that
dE

dP
= c

and c decreases along this branch. Moreover, a numerical integration gives E0 ' 0.0512. Since E = E0 +c0P
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is an asymptote, by concavity, all points (P,E) on the first branch verify c0P ≤ E ≤ E0 +c0P . In particular,
for P = P (Uc=0) ' 3.127, we deduce that the solution of the first branch has an energy ≥ c0×3.127 ' 8.5557.
However, the solution for c = 0 has an energy 7.5023 < 8.5557. Thus, for the same momentum ' 3.127, the
solution for c = 0 is strictly below the corresponding solution for c ' c0 on the first branch.
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Figure 23: (a) Energy (dashed curve) and momentum (full curve) vs. speed; (b) (E,P ) diagram

Comments. This example shows that, contrary to what is usually expected, the set of speeds for which
there exist nontrivial traveling waves may be different from [0, cs) (here this set is [0, c0) ∪ (c0, cs) for some
0 < c0 < cs). Furthermore, we observe a cusp as it is the case for the three-dimensional traveling waves for
the Gross-Pitaevskii equation (see [19]). To our knowledge, this is the first mathematical evidence of such a
cusp for a nonlinearity f such that the potential V is nonnegative (see however the case of the cubic-quintic

nonlinearity in subsection 3.6). Let us emphasize that Theorem 3 does not apply when
dP

dc
= 0, which is

what happens at the cusp. Therefore, the stability of the solution associated to the cusp is not known.
Finally, we observe two branches of solutions that cross at some point, which, to our knowledge, has never
been observed.

3.3 Example 3: a cubic-quintic-septic nonlinearity (III)

We consider here

f(%) ≡ −1

2
(%− 1) +

3

4
(%− 1)2 − 2(%− 1)3,

for which

V (%) =
1

4
(%− 1)2 − 1

4
(%− 1)3 +

1

2
(%− 1)4 and V(ξ) = −ξ4 − 2ξ5,

thus r0 = 1, c2s = 1, Γ = 0, Γ′ = 24 > 0, and the graphs of f , V and V are
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(a) (b) (c)

Figure 24: Graphs of (a) f , (b) V and (c) V

This nonlinearity was chosen in order to illustrate the case Γ = 0 and Γ′ > 0, in which case the modified
Korteweg-de Vries equation (mKdV) is defocusing and has no solitary wave. Here again, we let ε ∈ [0, cs]
increase from 0 to cs = 1, but start with ε = 0.
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0.5
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Figure 25: Graphs of (a) Vc and (b) |U |2 for c = cs = 1

For this nonlinearity f , it turns out that there exists exactly one (up to translations in space and
the multiplication by a phase factor) sonic nonconstant traveling wave (figure 25). In particular, in the
transonic limit, the traveling waves converge to this particular solution, which has nonzero energy (= 1.6)
and momentum (= π/2).
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Figure 26: Graphs of (a) Vc (red) (b) |U |2 for c =
√

1− 0.32 ' 0.9539 < cs = 1
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Figure 27: Graphs of (a) Vc and (b) |U |2 for c =
√

1− 0.62 = 0.8 < cs = 1
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Figure 28: Graphs of (a) Vc and (b) |U |2 for c =
√

1− 0.952 ' 0.3122 < cs = 1

The graphs of energy and momentum of the solutions with respect to the speed, and the (E,P ) diagram
(the straight line is E = csP ) are thus

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

1.0

1.5

2.0

2.5

3.0

3.5

speed

1.0 1.5 2.0 2.5 3.0 3.5

1.0

1.5

2.0

2.5

3.0

3.5

momentum

en
er

gy

(a) (b)

Figure 29: (a) Energy (*) and momentum (+) vs. speed; (b) (E,P ) diagram

The diagrams are therefore of the following type.
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Figure 30: (a) Energy (dashed curve) and momentum (full curve) vs. speed; (b) (E,P ) diagram

Comments. In the (E,P ) diagram above, we see that there do not exist traveling waves with small energy
or momentum. In the transonic limit, we have convergence to a sonic nontrivial traveling wave Ucs . Notice
that from the expressions of the energy and the momentum in subsection 1.2, it follows that for this sonic
wave,

E(Ucs)− csP (Ucs) = sgn(ξcs)

∫ ξcs

0

√
−V(ξ)

r2
0 + ξ

dξ > 0

since ξcs 6= 0. Moreover, this gives another example where we observe a cusp.

3.4 Example 4: a degenerate case

We investigate now the case

f(%) ≡ −2(%− 1) + 3(%− 1)2 − 4(%− 1)3 + 5(%− 1)4 − 6(%− 1)5,

for which

V (%) = (%− 1)2 − (%− 1)3 + (%− 1)4 − (%− 1)5 + (%− 1)6 and V(ξ) = −4ξ7,

thus r0 = 1, c2s = 4, Γ = Γ′ = 0 and the graphs of f , V and V are

(a) (b) (c)

Figure 31: Graphs of (a) f , (b) V and (c) V

Let us point out that the function V is very flat at the origin, namely V(ξ) = −4ξ7. As we have seen,
the behaviour of V at the origin is related to the coefficients Γ, Γ′ , ... . The nonlinearity we consider
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here corresponds to the very degenerate situation where Γ = Γ′ = Γ′′ = ... = Γ(6) = 0 but Γ(7) < 0, so
that the transonic limit is governed by the first supercritical (gKdV) equation with nonlinearity Γ(6)A5∂zA.
This choice was motivated by the fact that it is the first integer for which we see a supercritical (gKdV)
equation in the transonic limit, with energy and momentum diverging to +∞. The graphs of the potential
functions Vc will be qualitatively as for the Gross-Pitaevskii nonlinearity (figure 2) and thus we omit them.
The graphs of energy and momentum of the solutions with respect to the speed, and the (E,P ) diagram (the
straight line is E = csP ) are given below. Let us mention that for the numerical integration of the energy
and momentum, since V(ξ) = −4ξ7 is very flat near ξ = 0, we use the fact that the nontrivial zero ξ of the

polynomial V(ξ)− ε2ξ2 = −4ξ7 − ε2ξ2 is simply ξε = −(ε2/4)
1
5 , and use the change of variable ξ = ξεt and

simplify the expression before performing the numerical integration.
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Figure 32: (a) Energy (*) and momentum (+) vs. speed; (b) (E,P ) diagram

Qualitatively, the diagrams have therefore the following behaviour.
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Figure 33: (a) Energy (dashed curve) and momentum (full curve) vs. speed; (b) (E,P ) diagram

Comments. As in example 3, there do not exist traveling waves with small energy or momentum and we
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have a cusp in the (E,P ) diagram. Moreover, the transonic limit provides a branch with diverging energy
and momentum (see the end of section 2.3). The divergence is not easy to see numerically since it is of order

ε−
1
5 = (c2s − c2)−

1
10 ' (cs − c)−

1
10 . However, we have seen that the straight line E = csP is an asymptote.

3.5 Example 5: a saturated nonlinearity

In this example, we take, for some %0 > 0,

f(%) ≡ exp
(1− %

%0

)
− 1.

This type of nonlinearity saturates when % is large and can be found, for instance, in [20]. For this f , we
have

V (%) = %0

{
exp

(1− %
%0

)
− 1− 1− %

%0

}
and V(ξ) =

2

%0
ξ2 − 4%0(1 + ξ)

{
exp

(
− ξ

%0

)
− 1 +

ξ

%0

}
,

thus r0 = 1, c2s = 2/%0, Γ = 6− 2

%0
. Therefore, the coefficient Γ changes sign for %0 = 1/3. It should be

noticed that V (%) grows just linearly at infinity, and that, for large ξ, V(ξ) tends to +∞ quadratically if
%0 > 1/2 and to −∞ when %0 ≤ 1/2 (quadratically if %0 < 1/2 and linearly for %0 = 1/2). For %0 > 0, the
graphs of f and V are typically

(a) (b)

Figure 34: Graphs of (a) f and (b) V

The graph of V depends on the sign of Γ and whether %0 is less or larger than 1/2.

(a) (b) (c) (d)

Figure 35: Graphs of V for (a) %0 = 0.2; (b) %0 = 1/3; (c) %0 = 0.4; (d) %0 = 1
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We pursue the study in the case %0 = 0.4, thus c2s = 5, Γ = 1. Notice that we have then a sonic traveling
wave solution as in example 3. In order to see what happens, we draw the potentials Vc by hand: the scales
are not respected, but the abscissae we indicate are correct. We begin with the solution in the domain ξ < 0,
where we have a situation similar to the Gross-Pitaevskii case.

ε=0.3

ε=0.7

ε=0.9

−1

0−0.44

ε=1.2

−0.6
−0.09

−0.33

0 x

ε=0.7

ε=0.9

ε=1.2

ε=0.3

|U|
2

r  = 1
0

2

(a) (b)

Figure 36: Region ξ < 0: (a) graphs of Vc; (b) corresponding |U |2 (scales are not respected)

We then turn to the part where ξ > 0, for which we have a traveling wave with speed c = cs.

ε=0.3

ε=0.9

ε=0.7

0 1.5 3.9 12

ε=1.2

0 x

ε=0.7

ε=0.9

ε=0.3

ε=0

r  = 1
0

2

|U|
2

(a) (b)

Figure 37: region ξ > 0: (a) graphs of Vc; (b) corresponding |U |2 (scales are not respected)

Notice that 2
%0
− 4 = 1 and for ε ≥ 1, there no longer exist nontrivial traveling waves. This can be seen

from the fact that, for ε 6= 1, we have Vc(ξ) ∼
( 2

%0
− 4− ε2

)
ξ2 = (1− ε2)ξ2 as ξ → +∞, and the coefficient

1 − ε2 changes sign at ε = 1. Actually, for 0 ≤ ε < 1, the potential Vc is negative in (0, ξε) and positive in
(ξε,+∞), for some positive number ξε such that ξε ' 1.8

1−ε as ε→ 1− (or equivalently c→ 2+). In figure 37,

it then follows that the maximum value of |U |2, namely r2
0 + ξε = 1 + ξε, diverges like 1.8

1−ε as ε → 1−. For
ε ≥ 1, Vc is negative in (0,+∞). The diagrams we obtain are as follows. Notice that in (b), the divergence
is rather strong and hence easily seen numerically (we are actually able to compute much larger values of E
and P ).
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Figure 38: (a) Energy (*) and momentum (+) vs. speed for the first branch; (b) energy (♦) and momentum
(�) vs. speed for the second branch
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Figure 39: (E,P ) diagram for the first branch (+) and the second branch (�)

The global behaviour of the diagrams is then:
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Figure 40: (a) Energy (dashed curve) and momentum (full curve) vs. speed; (b) (E,P ) diagram

Comments. We point out that two facts are combined in this example. The first one is that for %0 =
0.4 ∈ (1/3, 1/2), we have two solutions for speeds c close to cs (this is also the case when %0 = 1/3, as in
example 1): one with small energy, and the other one with an energy of order one. On the other hand,
due to the saturation effect, the traveling wave solutions are not uniformly bounded: we obtain a branch of
solutions that blows up in L∞(R) like in figure 37. This phenomenon also holds for %0 < 1/2 but not for
the second nonlinearity in (1). These two effects can of course be encontered separately. We also would like
to point out that we have nontrivial traveling waves only for 0 < P ≤ π ' 3.14 and P ≥ 4.33, but not for
3.14 ≤ P ≤ 4.33.

3.6 Example 6: the cubic-quintic nonlinearity

We consider finally the cubic-quintic nonlinearity

f(%) ≡ −(%− 1)− 3(%− 1)2,

for which

V (%) =
1

2
(%− 1)2 + (%− 1)3 and V(ξ) = −6ξ3 − 4ξ4,

thus r0 = 1, c2s = 2, Γ = 24 and the graphs of f , V and V are

(a) (b) (c)

Figure 41: Graphs of (a) f , (b) V and (c) V

36



This nonlinearity was extensively studied in the physical literature. We just recall the study in [5] (see
also other papers by I. Barashenkov and co-authors). An important feature is that f is increasing near % = 0
and that the potential V takes negative values near the origin. The energy and momentum with respect to
the speed c and the (E,P ) diagram for this case (see [5]) are given below.
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Figure 42: (a) Energy (dashed curve) and momentum (full curve), (b) (E,P ) diagram

Comments. This nonlinearity provides an example of a cusp where E and P both reach a local maximum.
As c→ 0, the traveling wave Uc is clearly such that |U |2 takes some values in the region where V < 0. This
time, the stationnary solution U0 is a bubble and not a kink as in the other examples. In example 2, there
is some speed c = c0 ∈ (0, cs) which is missing in the spectrum of speeds. It is possible to make c0 = 0 by
taking a degenerate situation of the cubic-quintic nonlinearity for which % = 0 is a zero of V , that is

f(%) = −2(%− 1)− 3(%− 1)2, V (%) = %(%− 1)2, Vc(ξ) = ξ2
[
c2 − 4(1 + ξ)2

]
.

3.7 Conclusions

We have studied the qualitative properties of the traveling waves of the Nonlinear Schrödinger equation with
nonzero condition at infinity for a general nonlinearity. If the energy-momentum diagram is well-known
for the Gross-Pitaevskii equation, we have shown that the qualitative properties of the traveling waves
solutions can not be easily deduced from the global shape of the nonlinearity. In particular, through various
model cases for which the nonlinearity is smooth and decreasing (as is the Gross-Pitaevkii one), we have
put forward a great variety of behaviours: multiplicity of solutions; branches with diverging energy and
momentum; nonexistence of traveling wave for some c0 ∈ (0, cs); branches in the (E,P ) diagram that cross;
existence of sonic traveling wave; transonic limit governed by the (mKdV) equation, or more generally by
the (gKdV) solitary wave equation instead of the usual (KdV) one; existence of cusps... In [10], we perform
numerical simulations in dimension two for the model cases we have studied here.
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[6] F. Béthuel, P. Gravejat and J-C. Saut, Existence and properties of travelling waves for the
Gross-Pitaevskii equation. Stationary and time dependent Gross-Pitaevskii equations, 55-103, Contemp.
Math., 473, Amer. Math. Soc., Providence, RI, (2008).

[7] F. Béthuel, P. Gravejat, J-C. Saut and D. Smets, Orbital stability of the black soliton to the
Gross-Pitaevskii equation, Indiana Math. Univ. J. 57, 6, (2008) 2611-2642.

[8] M. Bogdan, A. Kovalev and A. Kosevich, Stability criterion in imperfect Bose gas Fiz. Nizk.
Temp. 15 (1989) 511-513 [in Russian].

[9] J. Bona, P. Souganidis and W. Strauss, Stability and instability of solitary waves of Korteweg-de
Vries type. Proc. R. Soc. Lond. A, 411 (1987), 395-412.

[10] D. Chiron and C. Scheid, Traveling waves for the Nonlinear Schrödinger Equation with general
nonlinearity in dimension two. Work in progress.

[11] A. De Bouard, Instability of stationary bubbles. SIAM J. Math. Anal. 26, no. 3 (1995), 566-582.

[12] L. Di Menza and C. Gallo, The black solitons of one-dimensional NLS equations. Nonlinearity 20,
no. 2 (2007), 461-496.

[13] C. Gallo, The Cauchy problem for defocusing nonlinear Schrödinger equations with non-vanishing
initial data at infinity. Comm. Partial Differential Equations 33, no. 4-6 (2008), 729-771.

[14] P. Gérard, The Gross-Pitaevskii equation in the energy space. in Stationary and time dependent
Gross-Pitaevskii equations, 129-148, Contemp. Math., 473, Amer. Math. Soc., Providence, RI, (2008).

[15] P. Gérard and Z. Zhang, Orbital stability of traveling waves for the one-dimensional Gross-Pitaevskii
equation. J. Math. Pures Appl. (9) 91, no. 2 (2009), 178-210.

[16] V. Ginzburg and L. Pitaevskii, On the theory of superfluidity. Sov. Phys. JETP 34 (1958), 1240.

[17] M. Grillakis, J. Shatah and W. Strauss, Stability theory of solitary waves in the presence of
symmetry I, J. Funct. Anal. 74 (1987), 160-197.

[18] E. Gross, Hydrodynamics of a superfluid condensate, J. Math. Phys. 4 (2) (1963), 195-207.

[19] C. Jones and P. Roberts, Motion in a Bose condensate IV. Axisymmetric solitary waves. J. Phys.
A: Math. Gen., 15 (1982), 2599-2619.

[20] Y. Kivshar, D. Anderson and M. Lisak, Modulational instabilities and dark solitons in a general-
ized nonlinear Schrödinger equation. Phys. Scr. 47 (1993), 679-681.

[21] Y. Kivshar and W. Krolikowski, Instabilities of dark solitons. Optics Letters, 20, 14 (1995),
1527-1529.

[22] Y. S. Kivshar and B. Luther-Davies, Dark optical solitons: physics and applications. Physics
Reports 298 (1998), 81-197.

[23] E. B. Kolomeisky, T. J. Newman, J. P. Straley and X. Qi, Low-Dimensional Bose Liquids:
Beyond the Gross-Pitaevskii Approximation. Phys. Rev. Lett. 85 (2000), 1146-1149.

38



[24] Z. Lin, Stability and instability of traveling solitonic bubbles. Adv. Differential Equations 7, no. 8
(2002), 897-918.

[25] M. Mariş, Nonexistence of supersonic traveling waves for nonlinear Schrödinger equations with nonzero
conditions at infinity. SIAM J. Math. Anal. 40, no. 3 (2008), 1076-1103.

[26] Y. Martel and F. Merle, Instability of solitons for the critical generalized Korteweg-de Vries equa-
tion. Geom. Funct. Anal. 11, no. 1 (2001), 74-123.

[27] Y. Martel and F. Merle, Blow up in finite time and dynamics of blow up solutions for the L2-critical
generalized KdV equation. J. Amer. Math. Soc. 15, no. 3 (2002), 617-664.

[28] P. Roberts and N. Berloff, Nonlinear Schrödinger equation as a model of superfluid helium. In
”Quantized Vortex Dynamics and Superfluid Turbulence” edited by C.F. Barenghi, R.J. Donnelly and
W.F. Vinen, Lecture Notes in Physics, volume 571, Springer-Verlag, 2001.

[29] P. Souganidis and W. Strauss, Instability of a class of dispersive solitary waves. Proc. Roy. Soc.
Edinburgh A, 114 (1990), 195-212.

[30] T. Tsuzuki, Nonlinear waves in the Pitaevskii-Gross equation. J. Low Temp. Phys. 4, no. 4 (1971),
441-457.

[31] V. Zakharov and A. Kuznetsov, Multi-scale expansion in the theory of systems integrable by the
inverse scattering transform. Physica D, 18 (1-3) (1986), 455-463.

[32] P. Zhidkov, Korteweg-de-Vries and Nonlinear Schrödinger Equations: Qualitative Theory. Lecture
Notes in Mathematics 1756, (2001) Springer-Verlag.

39


