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Abstract. Molecules being often described using a graph representa-
tion, graph kernels provide an interesting framework which allows to
combine machine learning and graph theory in order to predict molecule’s
properties. However, some of these properties are induced both by the
covalent bound relationships between atoms and by constraints on the
relative positioning of these atoms. Graph kernels based solely on the
graph representation of a molecule do not encode the relative positioning
of atoms and are consequently unable to predict accurately molecule’s
properties connected with this relative positioning. In this report, or-
dered structured object are introduced in order to incorporate spatial
constraints within the graph kernel framework. The incorporation of this
new features within the graph kernel framework allows to predict accu-
rately stereo information hence overcoming the previous limitation.

Keywords: Graph kernel, Chemoinformatics, Chirality.

1 Introduction

The purpose of Chemoinformatic is to predict properties of molecules, in order
to facilitate drug design. Chemoinformatics is based on the similarity principle:
two structurally similar molecules should have similar properties.

One common method to predict chemical properties consist to design a vector
of descriptors from a molecule and use statistical machine learning algorithms
to predict molecule’s properties. Such methods [4, 3], can use structural infor-
mation, physical properties or biological activities in order to compute vectors
of descriptors. However, such an approach requires to either select a random set
of pre defined descriptors (before a variable selection step) or to use an heuristic
definition of appropriate descriptors by a chemical expert. In both cases, the
transformation of the graph into a finite vector of features induces a loss of
information.

Another approach consist to encode a molecule by a graph, and use it to
predict properties.

Definition 1. Molecular graph
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A molecular graph is a labeled graphG = (V,E, µ, ν) representing a molecule.
The unlabeled graph (V,E) encodes the structure of the molecule, each node
v ∈ V encoding an atom and each edge e = (v, w) ∈ E a bond between two
atoms v and w. µ associates to each vertex v ∈ V a label µ(v) encoding the
nature of the atom and ν associates to each edge e a type of bond ν(e) (single,
double, triple or aromatic).

Several methods based on graph theory use this representation to predict
properties. One approach consists to search subgraphs with a large difference
of frequencies between a set of positive and a set of negative examples [5]. An-
other approach consists to encode each class of molecules by a graph prototype
and to measure the structural similarity between each prototype and an input
molecule [6]. However, these methods can not be easily combined with machine
learning algorithms. This is not the case of graph kernel methods, which can
be coupled to machine learning algorithm provided that the kernel is definite
positive. Let G be the set of graph. A definite positive kernel is a symmetric
function k : G × G → R such that:

n∑
i=1

n∑
j=1

cicjk(Gi, Gj) ≥ 0 where n > 0, G1, . . . , Gn ∈ G, c1, . . . , cn ∈ R

Such a definite positive kernel corresponds to a scalar product between two
vectors ψ(G) and ψ(G′) in an Hilbert space.

A large family of graph kernel methods, associates a bag of patterns to each
graph, and define the kernel value from a measure of similarity between those
bags [7–9, 1]. In [7] a graph kernel is defined as a measure of similarity between
set of walks extracted from each graph. But those walks are linear features and
thus have limited expressiveness. An infinite set of tree patterns is used in [8]
to define kernels. However, the similarity between two graphs is based on an
implicit enumeration of their common tree patterns which does not allow to
readily analyze the influence of a pattern on the prediction. Finally [9] and [1]
are based on an explicit enumeration of patterns. In [9], a predefined set of
unlabeled subgraphs, called graphlets, is enumerated for each graph and in [1]
all subtrees of a labeled graphs up to size 6, called treelets are enumerated. One
advantage of [1] is that, unlike [9], the label of the graph are taken into account
by the graph similarity measure.

However, some molecules may have a same molecular formula, a same molec-
ular graph but a different relative positioning of their atoms. Such molecules are
said to be stereoisomers. Different stereoisomers may be associated to different
properties. However, usual graph kernels based on the molecular graph represen-
tation are not able to capture any dissimilarity between these molecules. From
a more local point of view, an atom or two connected atoms are called stereo-
centers if a permutation of the positions of two atoms belonging to the union of
their neighborhoods produces a different stereoisomer.

In order to get an intuition of stereoisomerism, let us consider an acyclic
molecular graph rooted on an atom of carbon with four neighbors, each neighbor
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Fig. 1. Two types of stereocenters.

being associated to a different subtree. Such an atom, called an asymmetric car-
bon, is a stereocenter and has two different spatial configurations of its neighbors
encoded by a same molecular graph (Figure 1(a)). Using molecule represented
in Figure 1(a), one configuration corresponds to the case where the three atoms
(Cl,F,Br) considered from the atom H are encountered in this order when turning
counter-clockwise around the central carbon atom. The alternative stereoisomer
corresponds to the case where this sequence of atoms is encountered clockwise
when considered from the same position. This example corresponds to a partic-
ular form of stereoisomerism, called chirality, where the molecule has no center
nor plane of symmetry. In this case, molecules are said to be chiral.

Two carbons, connected by a double bond, can also define stereoisomers
(Figure 1(b)). Indeed, on the left side of Figure 1(b) both hydrogen atoms are
located on the same side of the double bond while they are located on opposite
sides on the stereoisomer represented on the right. In this case both carbon atoms
of the double bond correspond to a stereocenter. This example correspond to
another stereoisomerism form, called geometric isomerism, where stereoisomers
have at least one center or one plane of symmetry.

To distinguish those configurations, we introduce the two following subsets
of the set of vertices V of a molecular graph:

Definition 2. Potential Asymmetric Carbons

Let us denote VPAC the subset of V containing all vertices encoding atoms
of carbon with four neighbors:

VPAC = {v ∈ V | µ(v) = ’C’ and |V (v)| = 4}

Since being an atom with four neighbors is a necessary condition to define an
asymmetric carbon, the set VPAC contains all vertices which may encode such
atoms.

Definition 3. Set of double-bonds connecting carbon atoms
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The subset of V containing all atoms of carbon which share a double bond
with another carbon is noted VDB :

VDB =

v ∈ V | ∃e(v, w) ∈ E, ν(e) = 2,

 |V (v)| = |V (w)| = 3
and
µ(v) = µ(w) = ’C’


An atom of carbon with two double bounds must have a degree equal to two.
Hence, each vertex v belonging to VDB is incident to a single double bound and
we denote n=(v) the other carbon connected by this double bond. Note that
n=(v) ∈ VDB .

Brown et al. described in [2] a method which includes information related to
the spatial configuration of atoms within the tree-pattern kernel [8]. However,
this method only considers the direct neighbors of a stereocenter while, as shown
by Figure 2, the difference between two subtrees of a stereocenter may not be
located on the root of the subtree. In this last case [2] considers as identical two
different stereocenters and is thus unable to recover their different properties.

In this paper we propose a method to incorporate the spatial configuration
of atoms within a graph kernel based on a subtree enumeration [1]. This method
remains valid when the spatial configuration is not encoded in the direct neigh-
borhood of a stereocenter. In Section 2, we define a graph encoding of stereoiso-
mers and we introduce stereo vertices as vertices encoding stereocenters. Next,
in Section 3, we restrict our attention to acyclic molecules. Such a restriction
allows us to efficiently characterize a stereo vertex by a rooted tree. In Section 4,
we define the smallest tree characterizing a stereo vertex and use this informa-
tion to design a graph kernel between molecules. Finally, we demonstrate the
validity of our kernel through experiments in Section 5.

2 Encoding of stereoisomers

2.1 Ordered Structured Object

Definition 4. Structured Objects
A structured object S is an object to which we can associate an unique

labeled graph G(S) = (V,E, µ, ν).

A structured object can be for example a graph (associated to itself) or a
rooted tree (associated to an acyclic graph).



Incorporating stereo information within the graph kernel framework 5

An usual method in chemistry to encode stereoisometry consists to encode
a relative order on the neighborhood of each vertex. In order to encode such an
information, we introduce the notion of order on structured object.

Definition 5. Ordered Structured Objects

An ordered structured object S = (Ŝ, ord) is a structured object Ŝ, associated
to a graph G(S) = (V,E, µ, ν), together with a function ord which maps each
vertex v belonging to a subset Vord of V onto an ordered list of a subset of its
neighborhood V (v):

ord

{
Vord → V ∗

v → v1 . . . vn

where {v1, . . . , vn} ⊂ V (v) denotes a subset of the neighborhood of v.

We denote |ord(v)| = n the length of the ordered list for any v ∈ Vord. We
have thus 0 < |ord(v)| ≤ |V (v)|.

Note that, the notation Vord which denotes the subset of V for which function
ord is defined will be used in the remaining part of this document.

Definition 6. Set of Ordered Structured Objects

A set of ordered structured objects S is a set S = {S = (Ŝ, ord)} from which
we can define a set of isomorphism Isom(Ŝ, Ŝ′) ⊂ Isom(G(S), G(S′)) between
any two structured objects Ŝ and Ŝ′. This set of isomorphism must respects the
following properties:

1. ∀S1, S2 ∈ S 2, f ∈ Isom(Ŝ1, Ŝ2)⇔ f−1 ∈ Isom(Ŝ2, Ŝ1)

2. ∀S1, S2, S3 ∈ S 3, f ∈ Isom(Ŝ1, Ŝ2), g ∈ Isom(Ŝ2, Ŝ3)⇒ g ◦ f ∈ Isom(Ŝ1, Ŝ3)

3. ∀S ∈ S , Isom(Ŝ, Ŝ) is a group.

4. ∀(S, S′) ∈ S 2,∀f ∈ Isom(Ŝ, Ŝ′){
f(Vord) = V ′ord

∀v ∈ Vord, |ord(v)| = |ord′(f(v))|

The first three conditions impose that our restricted set of isomorphim re-
lationships satisfies the usual properties of isomorphisms: the inverse and the
composition of two isomorphisms is still an isomorphism (conditions 1 and 2)
and considering a set of automorphisms, the identity belongs to our valid set of
isomorphisms (condition 3). The last condition imposes that the set of vertices
on which the function ord is defined remains stable by an isomorphims. It further
imposes that an isomorphism does not modify the number of vertices on which
the order relationship is defined for each vertex.

Definition 7. Isomorphism between ordered structured objects

Let us consider a set of ordered structured objects S . Two ordered structured
objects S = (Ŝ, ord) and S′ = (Ŝ′, ord′) are said to be isomorphic S '

o
S′ iff there

is an isomorphism between the structured objects Ŝ and Ŝ′ which is coherent
with the order on the subsets of the neighborhoods:
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S '
o
S′ ⇔ ∃f ∈ Isom(Ŝ, Ŝ′) s.t.

∀v ∈ Vord with ord(v) = v1 . . . vn, ord
′(f(v)) = f(v1) . . . f(vn)

In this case, f is called an ordered isomorphism between S and S′, and we denote
IsomOrd(S, S′) ⊂ Isom(Ŝ, Ŝ′) the set of ordered isomorphism between S and S′.

Proposition 1. Ordered structured object isomorphism induces an equivalence
relationship.

Proof. Let us consider a set of ordered structured objects S . We have thus to
show that the structured object isomorphism relationship is reflexive, symmetric
and transitive:

1. The isomorphism between structured object is reflexive.
Let S = (Ŝ, ord) ∈ S an ordered structured object associated to a graph
G(S) = (V,E, µ, ν), and let f denotes the identity function on V ( f(v) =
v,∀v ∈ V ).
Then f ∈ Isom(Ŝ, Ŝ) (Definition 6, condition 3) and:

∀v ∈ Vord ⊂ V, f(v1) . . . f(vn) = ord(f(v)) = ord(v) = v1 . . . vn

where {v1, . . . , vn} ⊂ V (v) denotes a subset of the neighborhood of v.
Therefore, S '

o
S.

2. The isomorphism between ordered structured object is symmetric.
Let Sa = (Ŝa, orda) ∈ S and Sb = (Ŝb, ordb) ∈ S two ordered struc-
tured object, respectively associated toG(Sa) = (Va, Ea, µa, νa) andG(Sb) =
(Vb, Eb, µb, νb), such that Sa '

o
Sb and let us further denote by f the ordered

isomorphism between Sa and Sb.
By definition f is also an isomorphism between Ŝa and Ŝb, therefore it exists
(Definition 6, condition 1) an isomorphism f−1 between Ŝb and Ŝa. Let us
consider a vertex vb in Vordb ⊂ Vb and va = f−1(vb) ∈ Vorda (Definition 6,
condition 4). Since Sa '

o
Sb, we have:{

orda(va) = va1 . . . van and
ordb(vb) = ordb(f(va)) = vb1 . . . vbn with vbi = f(vai),∀i ∈ {1, . . . , n}

Hence:{
ordb(vb) = vb1 . . . vbn and
orda(va) = orda(f−1(vb)) = va1 . . . van = f−1(vb1) . . . f−1(vbn)

Thus Sb '
o
Sa and f−1 is an ordered isomorphism between Sb and Sa.

3. The isomorphism between ordered structured object is transitive.
Let Sa = (Ŝa, orda) ∈ S , Sb = (Ŝb, ordb) ∈ S and Sc = (Ŝc, ordc) ∈ S
three ordered structured object, respectively associated toG(Sa) = (Va, Ea, µa, νa),
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G(Sb) = (Vb, Eb, µb, νb) and G(Sc) = (Vc, Ec, µc, νc), such that Sa '
o
Sb and

Sb '
o
Sc. We denote by f the ordered isomorphism between Sa and Sb, and

by g the ordered isomorphism between Sb and Sc.
As the isomorphism between structured objects is transitive we have g ◦ f ∈
Isom(Ŝa, Ŝc) (Definition 6, condition 2).
Let us consider a vertex va in Vorda ⊂ Va with vb = f(va) ∈ Vordb ⊂ Vb and
vc = g(vb) = g ◦ f(va) ∈ Vordc ⊂ Vc. We have since Sa '

o
Sb and Sb '

o
Sc:

orda(va) = va1 . . . van and
ordb(f(va)) = ordb(vb) = f(va1) . . . f(van) =

not.
vb1 . . . vbn,

ordc(g(vb)) = g(vb1) . . . g(vbn)

Therefore:

ordc(g(vb)) = ordc(g ◦ f(va)) = g ◦ f(va1) . . . g ◦ f(van)

Thus Sa '
o
Sc and g ◦ f is an ordered isomorphism between Sa and Sc.

In conclusion, the isomorphism between ordered structured objects is reflexive,
symmetric and transitive. It is therefore, an equivalence relationship.

2.2 Re-ordering function

A spatial configuration of atoms may be encoded by several equivalent orders. We
thus introduce the notion of re-ordering function, which associates to each vertex
of an ordered structured object a permutation on a subset of its neighborhood.

Definition 8. Re-ordering functions
Let us consider a set of ordered structured objects S . A re-ordering func-

tion σS on an ordered structured object S = (Ŝ, ord), associated to a graph
G(S) = (V,E, µ, ν), associates to each vertex v ∈ Vord a permutation ϕv on
{1, . . . , |ord(v)|}.

σS

{
Vord → P
v → ϕv ∈ Π|ord(v)|

where Πn is the group of permutations of n elements and P is the union of Πn

for all n ∈ N.

Application of a re-ordering function on an ordered structured object provides
a new ordered structured object defined as follows:

Definition 9. Re-ordered structured objects
Let us consider a set of ordered structured objects S . Let S = (Ŝ, ord) de-

notes an ordered structured object, σS(S) = (Ŝ, ordσS
) is defined as the ordered

structured object obtained after applying the re-ordering function σS on the
order of the object:

∀v ∈ Vord s.t.

ord(v) = v1, . . . , vn
and
σS(v) = ϕv,

 ordσS
(v) = vϕv(1), . . . , vϕv(n)
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Note that Ŝ = σ̂S(S). In other words, a re-ordering of an ordered structured
object does not change the associated structured object. Re-ordering operations
being defined as functions, these functions may be combined using composition
operations:

Definition 10. Composition of re-ordering functions
Let us consider a set of ordered structured objects S . Let σS and σ′S denote

two re-ordering functions on an ordered structured object S = (Ŝ, ord). The
composition of σS and σ′S is a re-ordering function denoted by σS ◦ σ′S and
defined as follows:

σS ◦ σ′S
(
Vord → P
v → σS(v) ◦ σ′S(v) ∈ Π|ord(v)|

where Πn is the group of permutations of n elements and P is the union of Πn

for all n ∈ N.
The identity for the composition is the re-ordering function IdS such that

∀v ∈ Vord, IdS(v) = Id|ord(v)| where Idn is the identity permutation on Πn.

2.3 Structured object having equivalent order

Re-ordering functions previously defined may apply any re-ordering on a struc-
tured object hence removing the notion of order on these objects. In order to
obtain a useful notion of re-ordering, we have to define more precisely which
properties should satisfies a valid family of re-ordering functions.

Definition 11. Valid re-orderings
Let us consider a set of ordered structured objects S . For each S = (Ŝ, ord) ∈

S , let us denote by ΣS a set of re-ordering functions on S. A valid family of
re-ordering functions is a set Σ = {ΣS , S ∈ S } which satisfies the two following
properties :

– For any S ∈ S , ΣS is a group for the composition.
– For any two ordered structured objects S = (Ŝ, ord) and S′ = (Ŝ′, ord′)

whose associated un-order structured objects are isomorphic by a function
f , any re-ordering function σ ∈ ΣS is equal, up to the isomorphism f−1, to
a re-ordering function of ΣS′ .

∀f ∈ Isom(Ŝ, Ŝ′),
∀σ ∈ ΣS

)
σ ◦ f−1 ∈ ΣS′ .

The first constraint of Definition 11 states that the set of re-ordering functions
of an ordered structured objects may be combined freely using composition oper-
ations. The second constraint, involves that two ordered structured objects with
isomorphic un-ordered structured objects should have, up to the isomorphism
function, equivalent set of re-ordering functions. Note that this last constraint
is equivalent to the following equation:

∀f ∈ Isom(Ŝ, Ŝ′),
∀σ ∈ ΣS

)
∃σ′ ∈ ΣS′ |σ′ ◦ f = σ
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Proposition 2. Let us consider a set of ordered structured objects S , and a
valid family of re-ordering functions Σ. The group of re-ordering functions Σσ(S)
of any re-ordered structured object σ(S) is equal to the group ΣS of re-ordering
functions of S:

∀S ∈ S ,
∀σ ∈ ΣS ,

)
Σσ(S) = ΣS

Proof. Let us consider σ ∈ ΣS . Since S and σ(S) only differ by the order defined
on each vertices, the identity function Id is a valid isomorphism between the un-
order structured objects associated to σ(S) and S. Then, using Definition 11,
for any σ′ ∈ Σσ(S), it exists a re-ordering function σ′′ ∈ ΣS such that:

∀v ∈ Vord, σ′(v) = σ′′(Id(v)) = σ′′(v)

We have thus σ′ = σ′′ and thus Σσ(S) ⊂ ΣS . The reverse inclusion is shown in
the same way.

Definition 12. Equivalent orders
Let us consider a set of ordered structured objects S and two of its ordered

structured objects Sa = (Ŝa, orda) ∈ S and Sb = (Ŝb, ordb) ∈ S . These struc-
tured objects are said to be equivalent Sa '

Σ
Sb according to a valid family of

re-ordering functions Σ if:

∃σ ∈ ΣSa ∈ Σ, σ(Sa) '
o
Sb (1)

In other word, we consider that two ordered structured objects are equiva-
lent if, up to a valid re-ordering σ we can establish an ordered structured object
isomorphism f between them. In that case the ordered isomorphism f is called
an equivalent ordered isomorphism through σ between Sa and Sb and we de-
note IsomEqOrdσ(Sa, Sb) the set of equivalent ordered isomorphism through σ
between Sa and Sb. We further denote by IsomEqOrd(Sa, Sb) the union of all
IsomEqOrdσ(Sa, Sb) for all σ ∈ ΣSa .

IsomEqOrd(Sa, Sb) =
⋃

σ∈ΣSa

IsomEqOrdσ(Sa, Sb)

We will now prove that the equivalence order relationship is, as suggested by
its name, an equivalence relationship.

Proposition 3. Let S be a set of ordered structured objects and Σ denotes a
valid family of re-ordering functions. The equivalent order relationship based on
this family is reflexive.

∀S ∈ S , S '
Σ
S

Proof. Let Σ denotes a valid family of re-ordering functions and S = (Ŝ, ord)
an ordered structured object.
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By Definition 11, ΣS is a group and therefore IdS ∈ ΣS . We have by defini-
tion of IdS (Definition 10):

∀v ∈ Vord, ordIdS (v) = ord(v).

We have by Definition 7, IdS(S) '
o
S with IdS ∈ ΣS .

Thus S '
Σ
S.

Lemma 1. Let S be a set of ordered structured objects and Σ a valid family
of re-ordering functions. Let us consider two ordered structured objects Sa =
(Ŝa, orda) ∈ S and Sb = (Ŝb, ordb) ∈ S such that Sa '

o
Sb. Let σa ∈ ΣSa and

σb ∈ ΣSb
two re-ordering functions such that:

∀v ∈ Vorda , σa(v) = σb(f(v)),

where f is an ordered isomorphism between Sa and Sb.
Then we have σa(Sa) '

o
σb(Sb).

Proof. Let us consider f ∈ IsomOrd(Sa, Sb), and a vertex v ∈ Vorda with u =
f(v). We have by Definition 7:

∀v ∈ Vorda
{
orda(v) = v1 . . . vn and
ordb(u) = u1 . . . un, with ui = f(vi),∀i ∈ {1, . . . , n}

Let us further denote by ϕv the permutation defined on vertex v both by σa
and σb: ϕv = σa(v) = σb(f(v)).

Given the re-ordered structured objects σa(Sa) = (Ŝa, ordσa
) and σb(Sb) =

(Ŝb, ordσb
) we have by Definition 9:{

ordσa(v) = vϕv(1) . . . vϕv(n) and
ordσb

(u) = uϕv(1) . . . uϕv(n).

Since sequences v1 . . . vn and u1 . . . un satisfy ui = f(vi) and since a same per-
mutation ϕv is applied on both sequences we have:

∀i ∈ {1, . . . , n} uϕv(i) = f(vϕv(i))

The isomorphism f maps thus the order encoded by σa(Sa) around each vertex
of Sa onto the order defined by σb(Sb) on the corresponding vertex of Sb.

Moreover, since f is an isomorphism between ordered structured objects, it
also corresponds to an isomorphism between un-ordered structured objects and
we have by Definition 7, σa(Sa) '

o
σb(Sb).

Proposition 4. Let S be a set of ordered structured objects and Σ a valid
family of re-ordering functions. The equivalent order relationships based on this
family is symmetric:

∀(Sa, Sb) ∈ S 2, Sa '
Σ
Sb ⇔ Sb '

Σ
Sa.
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Proof. Let us consider a set of ordered structured objects S , Σ a valid family of
re-ordering functions and two ordered structured objects Sa = (Ŝa, orda) ∈ S
and Sb = (Ŝb, ordb) ∈ S such that Sa '

Σ
Sb We have by Definition 12:

∃σ ∈ ΣSa
s. t. σ(Sa) '

o
Sb.

As ΣSa
is a group (Definition 11), it exists a re-ordering function σ−1 ∈ ΣSa

such that σ−1(σ(Sa)) = Sa.
Let us denote by f the ordered isomorphism between σ(Sa) and Sb. By

Definition 11, since σ(Sa) '
o
Sb, the re-ordering function σ−1 ∈ ΣSa should be

equivalent to some re-ordering function (σ−1)′ in ΣSb
. In other words:

∃(σ−1)′ ∈ ΣSb
such that ∀v ∈ Vorda , σ−1(v) = (σ−1)′(f(v)).

We have thus by Lemma 1: σ−1(σ(Sa)) '
o

(σ−1)′(Sb). Therefore Sa '
o

(σ−1)′(Sb),

and by symmetry of the ordered isomorphism (σ−1)′(Sb) '
o
Sa. So by Defini-

tion 12, Sb '
Σ
Sa. Both cases being symmetric, the reverse implication is proved

in the same way.

Proposition 5. Let S a set of ordered structured objects and Σ a valid family
of re-ordering functions. The equivalent order relationship based on this family
is transitive:

∀(Sa, Sb, Sc) ∈ S 3,

(
Sa '

Σ
Sb and

Sb '
Σ
Sc

)
⇒ Sa '

Σ
Sc

Proof. Let us consider a set of ordered structured objects S , Σ a valid family of
re-ordering functions and three ordered structured objects Sa = (Ŝa, orda) ∈ S ,
Sb = (Ŝb, ordb) ∈ S and Sc = (Ŝc, ordc) ∈ S such that Sa '

Σ
Sb and Sb '

Σ
Sc.

Using Definition 12, it exists two re-ordering functions σa ∈ ΣSa and σ′b ∈
ΣSb

such that σa(Sa) '
o
Sb and σ′b(Sb) 'o Sc.

Let us denote the isomorphism between un-ordered structured objects Ŝb and

σ̂a(Sa) by fba. Since Sb and σ(Sa) are isomorph and since σ′b ∈ ΣSb
, it must

exists (by Definition 11) a re-ordering function σ′a ∈ Σσa(Sa) such that:

∀v ∈ Vordb , σ′b(v) = σ′a(fba(v)).

Then by Lemma 1, we have σ′b(Sb) 'o σ
′
a(σa(Sa)). Since the ordered isomor-

phism is an equivalence relationship (Proposition 1) and σ′b(Sb) 'o Sc, we have

σ′a(σa(Sa)) '
o
Sc.

Since ΣSa
is a group (Definition 11) and since σa ∈ ΣSa

and σ′a ∈ Σσa(Sa) =
ΣSa

(Proposition 2) we have: σ′a ◦ σa ∈ ΣSa
.

So by Definition 12, Sa '
Σ
Sc.
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Theorem 1. Let S be a set of ordered structured objects and Σ a valid family
of re-ordering functions. The equivalent order relationship based on this family
is an equivalence relationship.

Proof. The equivalent order relationship is reflexive (Proposition 3), symmetric
(Proposition 4) and transitive (Proposition 5).

2.4 Ordered graphs

We now apply the definition of ordered structured objects to labeled graphs, in
order to define ordered graphs.

Definition 13. Set of Ordered Graphs
An ordered graph S = (G = (V,E, µ, ν), ord) is an ordered structured object

with G(S) = G and a function ord which maps each vertex of Vord ⊂ V to an
ordered list of its neighbors:

ord

{
Vord → V ∗

v → v1 . . . vn

where V (v) = {v1, . . . , vn} denotes the neighborhood of v.
The set of ordered graph is denoted OG. The set of isomorphism defined

between two un-ordered graphs (Definition 6) is the usual set of isomorphism
between labeled graphs.

As the set of ordered graphs is a set of structured objects, we can define,
for ordered graphs, re-ordering functions (Definition 8). The definition of orders
and re-ordering functions depends on the application at end. Nevertheless, if
re-orderings fulfill the definition of a valid family of re-ordering functions (Def-
inition 11) we can define the equivalence relationship between ordered graphs
defined by Definition 12 (Theorem 1).

Let us now define a stereo vertex, which encodes a stereocenter when ordered
graphs represents molecules.

Definition 14. Stereo vertices
LetΣ be a valid family of re-ordering functions onOG. LetG = (V,E, µ, ν, ord)

be an ordered graph. A vertex v ∈ Vord ⊂ V of degree n is called a stereo vertex
iff:

∀(i, j) ∈ {1, . . . , n}2 with i 6= j,@f ∈ IsomEqOrd(G, τi,j(G)) with f(v) = v.

where τi,j is a re-ordering function equals to the identity on all vertices except
v for which it permutes the vertices of index i and j in ord(v).

In other words, a vertex is a stereo vertex if any permutation of its neighbors
produces an ordered graph with a non-equivalent order.
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2.5 Ordered graphs and re-ordering functions encoding of a
molecule

We now restrict our attention on molecular graphs (Definition 1) and let us
define from them molecular ordered graphs.

The molecular ordered graph of a molecule is defined by first defining its
molecular graph (Definition 1) G = (V,E, µ, ν) which encodes relationships be-
tween atoms together with the type of atom and bond respectively associated
to each vertex and each edge.

Definition 15. Molecular ordered graph
A molecular ordered graph is a couple S = (G, ord) where G corresponds to

a molecular graph. The function ord is defined on a set Vord defined as:

Vord = VPAC ∪ VDB

where VPAC and VDB denote respectively the set of potential asymmetric car-
bons (Definition 2) and the set of carbons of degree 3 connected by a double
bound (Definition 3).

The function ord is defined as follows for each vertex v ∈ Vord:

– If v ∈ VPAC :
We set randomly one of its neighbor v1 at the first position. The three
other neighbors of v are ordered such that if we look at v from v1, the
three remaining neighbors are ordered clockwise (Section 1). One of the
three orders (defined up to circular permutations) fulfilling this condition is
chosen randomly (Figure 3(a)).

– If v ∈ VDB :
Let us consider w = n=(v) and the two neighborhoods V (v) = {w, a, b} and
V (w) = {v, c, d}. The order on the neighborhood of v is set as ord(v) = w, a, b
and the order on w’s neighborhood is set as ord(w) = v, c, d, whereby a, b, c, d
are traversed clockwise when turning around the double bond for a given
plane embedding (Figure 3(b)).

We denotes OM the set of ordered molecular graphs.

Definition 16. Set of molecular re-ordering functions
We define for each molecular ordered graph S, a set of re-ordering function

ΣM
S . ΣM

S contains all the re-ordering functions σ such that:

– For each v in VPAC σ(v) is an even permutation:

∀v ∈ VPAC , ε(σ(v)) = 1.

– For each v in VDB , σ(v) and σ(n=(v)) have the same parity:

∀v ∈ VDB , ε(σ(v)) = ε(σ(w)) with w = n=(v).

where ε denotes the signature of a permutation.
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ord(v)=v1,v2,v3,v4

ordσ(v)=v1,v4,v2,v3

ordσ'(v)=v4,v1,v3,v2

...

v

v1

v2

v3

v4

(a) Element of VPAC

b

a d

c

wv
ord(v)=w,a,b; ord(w)=v,c,d
ordσ(v)=w,b,a; ordσ(w)=v,d,c
ordσ'(v)=a,b,w; ordσ'(w)=v,c,d

(b) Two elements of VDB

Fig. 3. Example of elements of VPAC and of VDB with their ordered list (top) and the
ordered lists obtained using two permutations σ ∈ ΣM

S and σ′ ∈ ΣM
S

Proposition 6. For any molecular graph S, ΣM
S is a group for the composition.

Proof. We have to show that ΣM
S admits an identity element, is closed under

composition and admits for each re-ordering function an inverse element.

1. ΣM
S admits an identity element IdS .

Let us consider the re-ordering function IdS such that:

∀v ∈ Vord, IdS(v) = Id|V (v)|

where Idn is the identity permutation on Πn.
Since the identity is an even permutation we have:{

∀v ∈ VPAC ε(IdS(v)) = 1
∀v ∈ VDB ε(IdS(v)) = ε(IdS(n=(v)) = 1

Thus by definition of ΣM
S , IdS ∈ ΣM

S .

2. ∀(σ, σ′) ∈
(
ΣM
S

)2
, σ ◦ σ′ ∈ ΣM

S .
Let σ and σ′ denote two re-ordering functions of ΣM

S .
– If v ∈ VPAC :

Since ε is a morphism between Π[ord(v)| and ({−1, 1},×) we have:

∀v ∈ VPAC , ε(σ(v) ◦ σ′(v)) = ε(σ(v))ε(σ′(v)) = 1.1 = 1

– If v ∈ VDB :
Let us consider w = n=(v). Since σ(v) and σ(w) on one hand and σ′(v)
and σ′(w) on the other hand have a same signature, we have:

∀v ∈ VDB , ε(σ(v) ◦ σ′(v)) = ε(σ(v))ε(σ′(v))
= ε(σ(w))ε(σ′(w))
= ε(σ(w) ◦ σ′(w))

Permutations σ(v) ◦ σ′(v) and σ(w) ◦ σ′(w) have thus a same parity.
Thus by definition of ΣM

S , σ ◦ σ′ ∈ ΣM
S .

3. ∀σ ∈ ΣM
S , ∃σ−1 ∈ ΣM

S such that σ ◦ σ−1 = IdS , where IdS is the identity
element of ΣM

S .
Let us consider σ−1 such that:

∀v ∈ Vord, σ−1(v) = (σ(v))−1.

We have by Definition 10, σ ◦ σ−1 = IdS .
We have to prove that, for each σ ∈ ΣM

S , σ−1 ∈ ΣM
S .
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– If v ∈ VPAC :

ε(σ−1(v)) = ε(σ(v)−1) = ε(σ(v)) = 1

Thus σ−1(v) is even.
– If v ∈ VDB :

Let us consider w = n=(v). Since σ(v) and σ(w) have a same parity and:{
ε(σ−1(v)) = ε(σ(v))
ε(σ−1(w)) = ε(σ(w)),

σ−1(v) and σ−1(w) have also a same parity.

Thus by definition of ΣM
S , σ−1 ∈ ΣM

S .

As the composition of functions is associative and ΣM
S admits an identity

element for the composition, is closed under composition, and admits for each
re-ordering function an inverse element we can conclude that ΣM

S is a group for
the composition.

Proposition 7. For any two molecular ordered graphs S and S′ whose asso-
ciated un-order graphs are isomorphic by a function f , and for any re-ordering
function σ ∈ ΣM

S , we have σ ◦ f−1 ∈ ΣM
S′ :

∀f ∈ Isom(Ŝ, Ŝ′),
∀σ ∈ ΣM

S

)
σ′ = σ ◦ f−1 ∈ ΣM

S′ .

Proof. Let us consider two molecular ordered graphs S and S′ whose associated
un-order graphs G and G′ are isomorphic by a function f . We denote by f−1

the isomorphism between G′ and G and define the re-ordering function σ′ as
σ ◦ f−1.

Let us prove that σ′ ∈ ΣM
S′ .

– If v′ ∈ V ′PAC :
We have by definition of σ′, σ′(v′) = σ(v) with v = f−1(v′).
As v′ ∈ V ′PAC we have , µ(v′) = ’C’ and |V (v′)| = 4. Since f−1 is an
isormorphism between G′ and G we have:{

µ(v) = µ(f−1(v′)) = µ(v′) = ’C’
|V (v)| = |V (f−1(v′))| = |V (v′)| = 4

Thus by definition of VPAC , v ∈ VPAC . Moreover, since σ′(v′) = σ(v), σ(v)
has the same even parity than σ′(v′).

– If v′ ∈ V ′DB :
Given w′ = n=(v′), we have by definition of σ′:{

σ′(v′) = σ(v) with v = f−1(v′)
σ′(w′) = σ(w) with w = f−1(w′)
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As v′ and w′ ∈ V ′DB we have µ(v′) = µ(w′) = ’C’ and |V (v′)| = |V (w′)| = 3.
Since f−1 is an isormorphism between G′ and G we have:

µ(v) = µ(f−1(v′)) = µ(v′) = ’C’ and
µ(w) = µ(f−1(w′)) = µ(w′) = ’C’

|V (v)| = |V (f−1(v′))| = |V (v′)| = 3 and
|V (w)| = |V (f−1(w′))| = |V (w′)| = 3

As v′ ∈ V ′DB , it exists an edge e′(v′, w′) connecting v′ and w′ with a label
ν(e′) = 2. Such an edge is preserved by the isomorphism f−1 between G′

and G and it thus exists an edge e(v, w) in G between v = f−1(v′) and
w = f−1(w′) with ν(e) = 2.
We have thus by definition of VDB , {v, w} ⊂ VDB and since σ ∈ ΣM

S we
have by definition of ΣM

S :

ε(σ(v)) = ε(σ(w))

Therefore, by definition of σ′:

ε(σ′(v′)) = ε(σ(v)) = ε(σ(w)) = ε(σ′(w′))

Permutations σ′(v′) and σ′(w′) have thus the same parity.

Thus σ′ = σ ◦ f−1 ∈ ΣM
G′ .

Theorem 2. The set of molecular re-ordering functions ΣM = {ΣM
S , S ∈

OM} is a valid family of re-ordering functions. Therefore the equivalent order
relationship based on this family is an equivalence relationship.

Proof. The set of molecular re-ordering functions ΣM is a valid family of re-
ordering functions by Proposition 6 and 7. Thus by Theorem 1, the equivalent
order relationship based on this family is an equivalence relationship.

Remark 1. Let S = (G, ord) with G = (V,E, µ, ν) denote a molecular ordered
graph. We have, by construction of re ordering functions, the following property:

If we select for each vertex v ∈ Vord a neighbor nv, we can always find a
re-ordering function σ of ΣM

S such that the ordered list of each vertex v of Vord
in σ(S) starts by its selected neighbor nv.

Given our encoding of the relative positioning of atoms by orders defined
in this section, we encode the spatial configuration of atoms within the neigh-
borhood of each of its vertex. Our equivalence relationship between molecular
ordered graphs allows to check if two molecules have a same spatial configuration.

Stereocenters are defined as stereo vertices (Definition 14). Indeed, a vertex
is a stereo vertex if any permutation of its neighbors produces an ordered graph
with a non-equivalent order, called a different stereoisomer within the chemistry
framework.
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3 Equivalence order relationship between ordered tree

Let us now restrict our attention to acyclic graphs in order to obtain an efficient
way to determine if two molecular graphs have equivalent orders.

Given a rooted tree, the father of each node v is denoted by pv. The tree itself
is denoted by T̂ = (r,G) where r denotes the root of the tree and G = (V,E, µ, ν)
the acyclic graph associated to T̂ .

Definition 17. Ordered rooted tree
An ordered rooted tree T = (T̂ , ord) with T̂ = (r,G) is an ordered structured

object. Its associated acyclic labeled graph is G = (V,E, µ, ν). The function ord
maps each internal vertex to an ordered list of its children:

ord

{
Vord → V ∗

v 7→ v1 . . . vn

where {v1, . . . , vn} denotes the children of v.
We denote by OT the set of ordered trees.

Note that the function ord is defined on all internal vertices of the tree we
have thus:

∀T = (T̂ , ord) ∈ OT , with

(
T̂ = (r,G),
G = (V,E, µ, ν)

)
Vord = V − Leaf(T )

where Leaf(T ) denotes the set of leaves of T .
Moreover, the order relationship of each vertex of an ordered rooted tree is

defined on all its children, i.e. all its neighbors but its parent. We have thus:

∀T = (T̂ , ord) ∈ OT , with T̂ = (r,G)

{
|ord(r)| = |V (v)|

∀v ∈ Vord, v 6= r |ord(v)| = |V (v)| − 1

An isomorphism between rooted trees may be considered as an isomorphism
between graphs which maps the roots of both trees one on the other. Hence the
set of ismorphisms Isom(T̂ , T̂ ′) between two rooted tree may be considered as a
subset of the isomorphisms between the associated acyclic graphs: Isom(Ĝ, Ĝ′)
(Definition 6).

Given these isomorphisms we define for OT ordered isomorphisms between
ordered rooted trees (Definition 7). Such isomorphisms preserve both the struc-
ture of both trees and their orderings. The order defined on each vertex of the
trees belonging to OT depends of the considered application. The valid family
of re-ordering functions Σ (Definition 11), which may be defined on OT also
depends of this application. Given both orders and a valid family of re-ordering
functions we can build an equivalence relationship (Definition 12 and Theorem 1)
between ordered trees encoding the fact that up to re-orderings two rooted trees
are structurally similar and have a same order.

Following [10], we associate to each ordered rooted tree T , an unique depth-
first string encoding DFSE(T ). This string is based on the sequence of node
and edge labels obtained by traversing the tree in a depth-first order and uses
respectively $ and # to represent backtracks and the end of the string encoding.
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Definition 18. Depth-First String Encoding
The depth first string encoding of an ordered rooted tree T = (T̂ , ord) de-

noted by DFSE(T ) is defined as the sequence of node and edge labels encoun-
tered when traversing T using a depth-first method based on the order defined
by function ord. Each backtrack during this traversal is encoded by the symbol
′$′ while the end of the string is encoded by the symbol ′#′.

Remark 2. As shown by [10](Lemma 2.2), two isomorphic ordered trees have
the same depth-first string encoding and conversely.

T1 '
o
T2 ⇔ DFSE(T1) = DFSE(T2)

Definition 19. Depth-first canonical string and Depth-first canonical
form of a tree

Let us consider an ordered tree T and a valid family of re-ordering functions
Σ:

– The depth-first canonical string DFCSΣ(T ) of T is the minimal depth-first
string encoding among all possible ordered trees σ(T ) obtained by applying
σ ∈ ΣT ∈ Σ on T :

DFCSΣ(T ) = min
σ∈ΣT

DFSE(σ(T ))

– The depth-first canonical form DFCFΣ(T ) of T according to Σ is the ordered
tree σ(T ) whose depth-first string encoding is minimal (and thus equals to
DFCSΣ(T )):

DFSE(DFCFΣ(T )) = DFCSΣ(T )

The depth-first canonical form is unique up to ordered isomorphism (Re-
mark 2).

Proposition 8. Two ordered rooted trees Ta = (T̂a, orda) and Tb = (T̂b, ordb)
have equivalent orders according to a valid family of re-ordering functions Σ iff
their depth-first canonical string according to Σ are equals:

Ta '
Σ
Tb ⇔ DFCSΣ(Ta) = DFCSΣ(Tb)

Proof. Let us first prove that DFCSΣ(Ta) = DFCSΣ(Tb) ⇒ Ta '
Σ
Tb and then

the reverse implication.

1. We suppose that DFCSΣ(Ta) = DFCSΣ(Tb).
Let us denote σa ∈ ΣTa

the re-ordering function such that σa(Ta) = DFCFΣ(Ta)
and σ′b ∈ ΣTb

the one such that σ′b(Tb) = DFCFΣ(Tb).
By definition DFCSΣ(Ta) = DFSE(σa(Ta)) and DFCSΣ(Tb) = DFSE(σ′b(Tb)).
Since DFCSΣ(Ta) = DFCSΣ(Tb) we have DFSE(σa(Ta)) = DFSE(σ′b(Tb)),
and thus σa(Ta) '

o
σ′b(Tb) (Remark 2).
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As ΣTa is a group (Definition 11), it exists a re-ordering function σ−1a ∈ ΣTa

such that σ−1a (σa(Ta)) = Ta.
Let us denote by f the ordered isomorphism between σa(Ta) and σ′b(Tb).
By Definition 11, since σa(Ta) '

o
σ′b(Tb), the re-ordering function σ−1a ∈ ΣTa

should be equivalent to some re-ordering function σ−1b in ΣTb
. In other words:

∃σ−1b ∈ ΣTb
such that ∀v ∈ Va, σ−1a (v) = σ−1b (f(v)).

We have thus by Lemma 1: σ−1a (σa(Ta)) '
o
σ−1b (σ′b(Tb)). Therefore Ta '

o

σ−1b (σ′b(Tb)). As ΣTb
is a group, σ−1b ◦ σ′b ∈ ΣTb

, so Ta '
Σ
Tb.

2. We suppose that Ta '
Σ
Tb.

We denote σ′b ∈ ΣTb
, the re-ordering function such that σ′b(Tb) = DFCFΣ(Tb).

As Ta '
Σ
Tb, ∃σ ∈ ΣTa such that σ(Ta) '

o
Tb. Let us denote by f the ordered

isomorphism between Tb and σ(Ta).
By Definition 11, since Tb '

o
σ(Ta), the re-ordering function σ′b ∈ ΣTb

should

be equivalent to some re-ordering function σ′a in ΣTa
. In other words:

∃σ′a ∈ ΣTa such that ∀v ∈ Vb, σ′b(v) = σ′a(f(v)).

We have thus by Lemma 1: σ′a(σ(Ta)) '
o
σ′b(Tb). Therefore

DFSE(σ′a(σ(Ta))) = DFSE(σ′b(Tb)) = DFCSΣ(Tb)

Since ΣTa is a group, we have σ′a ◦ σ ∈ ΣTa . Therefore:

DFCSΣ(Tb) = DFSE(σ′a(σ(Ta))) ≥ DFCSΣ(Ta).

Both cases being symmetric the reverse inequality is shown by considering
σ′a ∈ ΣTa

such that σ′a(Ta) = DFCFΣ(Ta). Therefore:

DFCSΣ(Ta) = DFCSΣ(Tb).

By 1 and 2 we have proven that

Ta '
Σ
Tb ⇔ DFCSΣ(Ta) = DFCSΣ(Tb).

Let Σ be a valid family of re-ordering functions. An ordered tree T can
have two vertices connected to a same parent and whose associated subtrees are
equivalent according to Σ. Any path from a leaf of T passing through one of
these two vertices is equivalent to another path passing through the other vertex.
From a more global point of view, a permutation exchanging these two subtrees
on the depth-first canonical form of T would lead to an isomorphic ordered tree.
We thus consider that these two vertices are equivalent.
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Definition 20. Equivalent ordered sub-tree
Let us consider an ordered rooted tree T and a valid family of re-ordering

functions Σ.

– Two child of a same parent whose associated rooted sub-trees are equivalent
according to Σ are said to be equivalent:

vi ∼ vj ⇔ ∃(v, σ) ∈ V×ΣT s.t.

{
pvi = pvj = v and
(σ(v))(i) = j and DFCFΣ(σ(T )) '

o
DFCFΣ(T )

(2)
– The representative of each class is defined as the vertex with the minimal

index within the ordered list of children of its parent:

∀i ∈ {1, . . . , n} rep(vi) = min{j | vj ∼ vi}. (3)

The representative of a class is properly defined since two equivalent nodes
must have a same parent.

3.1 Ordered trees and re-ordering functions encoding of an acyclic
molecule

To define a molecular ordered tree T = (T̂ , ordT ), from an acyclic molecular
ordered graph G = (Ĝ, ordG), we have to define a root and for each vertex
an order on its children. By definition, the function ordT of T is defined on
(Definition 17):

V Tord = V − Leaf(T )

where Leaf(T ) denotes the set of leaves of T .
On the other end, the set of vertices of an ordered molecular graph G =

(Ĝ, ordG) on which the function ordG is defined (Definition 15) is equal to:

VMord = VPAC ∪ VDB

Since a molecular ordered graph does not provide an order for all vertices, while
all vertices of an ordered tree but its leaves are ordered, the definition of an
order on a molecular tree imposes to fix a priori the order on the child of some
vertices if this order is not provided by the molecular ordered graph.

Definition 21. Molecular ordered tree
A molecular ordered tree T = (T̂ , ordT ) with T̂ = (r,GT ) is defined from a

molecular ordered graphG = (Ĝ, ordG) with Ĝ = (V,E, µ, ν) by settingGT = Ĝ,
r ∈ V and by defining ordT from ordG as follows:

Given the root r, let us consider a re-ordering function of ΣM
G such that

(Remark 1):

∀v ∈ VMord − {r}, ordσ(G)(v) = pv.v1 . . . .vn
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If V 6= {r}, the function ordT on r is set equals to:

ordT (r) =

{
ordσ(G)(r) if r ∈ VMord
random(child(r)) otherwise

where random(child(r)) denotes a random ordering of the child of r (child(r)).
For all other vertices:

– If v ∈ V Tord − VMord − {r}

ordT (v) = random(child(v))

– If v ∈ V Tord ∩ VMord − {r}
We have ordσ(G)(v) = pv.v1. . . . .vn where v1 . . . .vn corresponds to an order-
ing of child(v). We set thus ordT (v) as:

ordT (v) = v1 . . . .vn

Definition 22. Set of molecular re-ordering functions for tree
The set of re-ordering functions ΣM

T is defined by :

– If v ∈ V Tord − VMord,
Permutation σ(v) can be any permutation.
Therefore the order on those vertex have no influence, it only allows us to
determine the depth-first string encoding and the depth-first canonical string
of a molecular ordered tree.

– If v ∈ VPAC ,
σ(v) is an even permutation:

ε(σ(v)) = 1

– If v ∈ VDB ,
Permutations σ(v) and σ(n=(v)) have a same parity :

ε(σ(v)) = ε(σ(w)) with w = n=(v)

Given a unique code associated to an ordered rooted tree, the chirality of
a vertex may be efficiently tested if one can transpose Definition 14 to ordered
rooted trees:

Proposition 9. Let T = (T̂ , ordT ) with T̂ = (r,G) be an ordered rooted tree
encoding an acyclic molecule, and ΣM

T the set of molecular re-ordering functions
for T . r is a stereo vertex if:

∀(i, j) ∈ {1, . . . , |V (r)|}2 with i 6= j, T 6'
Σ
τi,j(T )

where τi,j is a re-ordering function equals to the identity on any vertex but
r where it permutes children of index i and j in the ordered list of r.
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Proof. Using acyclic molecular graphs, an equivalent ordered isomorphism be-
tween ordered rooted trees corresponds to an equivalent ordered isomorphism
between ordered graphs with an additional constraint on the mapping of both
roots. If we can find an isomorphism between T and τi,j(T ) such an isomorphism
f satisfies f(r) = r and also corresponds to an isomorphism between ordered
graphs. Conditions of Definition 14 are thus violated and r is not a stereo vertex.
The reverse implication may be demonstrated using the same type of reasoning.

4 From a global to a local characterization of stereo
information

Proposition 9 allows us to determine if a vertex induces a stereo property for
a molecule. Such a proposition concerning the whole molecule induces a global
characterization of stereo information. However, such a proposition does not
allow to characterize the minimal subgraph of a molecule which induces the
stereo property of a vertex. Using acyclic graphs, such a minimal subgraph cor-
responds to the smallest ordered sub-tree, rooted on a stereo vertex v which
allows to characterize v using Proposition 9.

4.1 Minimal stereo subtree of an asymmetric carbon

Let v be a stereo vertex representing an asymmetric carbon (v ∈ VPAC). We
denote its neighbors v1, . . . , v4. We consider the ordered tree T rooted on v and
described in Section 3 and the family of re-ordering functions for molecular tree
ΣM
T . We note T1, . . . , T4 the subtrees of T rooted on the children of v. For any

i ∈ {1, 2, 3, 4} we denote T ji the subtree of Ti composed of all nodes with a
depth lower than j. According to Proposition 9, the stereo information of v may
be characterized from its subtrees T ji iff all pairs of subtrees are not equivalent.

Indeed, in such a case no transposition of two subtrees T ji and T j
′

k can induce
a rooted tree with equivalent order. Therefore for each i ∈ {1, 2, 3, 4}, we define

the minimal subtree associated to vi as T
j∗(i)
i with:

j∗(i) = min{j | ∀k ∈ {1, . . . , 4} − {i}, T ji 6'
Σ
T jk}.

For example in Figure 4, the root of T1 is a Chloro atom while the root of each
other Ti is an oxygen atom, thus the subtree T 1

1 reduced to the Chloro atom
has a sufficient depth to be distinguished from all other subtrees T ki , i 6= 1 and
we have j∗(1) = 1. The minimal stereo subtree of v is the subtree of T rooted

on v, where v has for children T
j∗(1)
1 , . . . , T

j∗(4)
4 . The asymmetric carbon is then

represented by the depth-first canonical string of this tree according to ΣM
T .

To find j∗(i), we increase j for each T ji until T ji 6'
Σ
T jk for each k ∈ {1, . . . , 4},

k 6= i. At each iteration we compute DFCSΣM (T ji ) for each i ∈ {1, . . . , 4}. There-

fore the calculus of the minimal stereo subtree of v is performed inO((max
i
|T j

∗(i)
i |)2)

which is bounded by O(|V |2).
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Fig. 4. Left: An asymmetric carbon •
⊙

with its minimal stereo subtree (surrounded by
a dotted line). Right: minimal subtrees rooted on its children.

4.2 Minimal stereo subtree of double bond

Let va be one carbon of a double bond, va ∈ VDB . We denote n=(va) = vb and
e = (va, vb) the double bond between them. Let us denote by v1a and v2a the
two remaining neighbors of va. Considering the ordered tree T rooted on va, va
is a stereo vertex only if the subtrees rooted on the children of va do not have
equivalent orders (Proposition 9). This implies that the two subtrees rooted on
v1a and v2a do not have equivalent orders. This last necessary condition is however
not sufficient. Indeed if the subtrees rooted on the remaining neighbors v1b and v2b
of vb have equivalent orders, then one can apply a re-ordering function σ ∈ ΣM

T

on T which simultaneously permutes the subtrees rooted on v1a and v2a and the
subtrees rooted on v1b and v2b (by definition of VDB and ΣM ). The resulting
rooted tree σ(T ) has an equivalent order to T (Definition 12) but also to τ(T ),
where τ permutes only vertices v1a and v2a in the ordered list of children of va.
In such a case, va is not a stereo vertex(Proposition 9). Therefore, if vb is not a
stereo vertex, va is also not a stereo vertex and conversely.

Hence va and vb are stereo vertices, only if the two following conditions are
satisfied:

– subtrees rooted on v1a and v2a do not have equivalent orders and
– subtrees rooted on v1b and v2b also do not have equivalent orders.

In order to encode this constraint, we define as in Section 4.1 the minimal
subtrees rooted on v1a (T 1

a ) and v2a (T 2
a ) with non-equivalent orders together with

the minimal subtrees rooted on v1b (T 1
b ) and v2b (T 2

b ) with non-equivalent orders.
We denote by Ta and Tb the two ordered rooted trees rooted on va and vb. The
subtrees of these two roots being respectively (T 1

a , T
2
a ) and (T 1

b , T
2
b ).

The tree encoding the chirality of the double bond is then defined as an or-
dered rooted tree, whose root corresponds to a virtual vertex (not corresponding
to any atom) connected to the two subtrees Ta and Tb. As in Section 4.1, the
computation of the minimal stereo subtree is bounded by O(|V |2). Figure 5a
represents a double bond between two carbon atoms with its minimal stereo
subtree (Figure 5b).
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Fig. 5. A double bond (a), its minimal stereo subtree (b) and its contraction (c).

4.3 Graph Contraction

Using results in Section 4.1 and 4.2, each stereo vertex may be associated to a
minimal stereo subtree and a depth-first canonical string according to ΣM repre-
senting it (Section 3). However, properties of a molecule are both determined by
its set of minimal stereo subtrees and by relationships between these trees and
the remaining part of the molecule. In order to obtain a local characterization
of such relationships, we propose to contract the minimal stereo subtree of each
stereo vertices.

Let us consider a stereo vertex s and its minimal stereo subtree T = (T̂ , ordT ),
with T̂ = (r,GT ),GT = (VT , ET , µ, ν) associated to a depth-first canonical string
according to ΣM , we denote this string cs = DFCSΣM (T ). We define for this
tree a set of connection vertices:

Vcon = {v ∈ Leaf(T ) | d(v) > 1}

and a set of edges to contract:

KT = ET − Econ with Econ = {(v, pv) ∈ Vcon × VT }.

The contraction of KT creates a new graph Gs = (Vs, Es), with a contracted
node ns labeled by cs and Vs = V −(VT−Vcon)∪{ns};Es = E−KT (Figure 5c).

Each edge of Econ connects an element l of Vcon to ns in Gs. The label of
e = (ns, l) has to encode the position of l in the minimal stereo subtree. We thus
consider the path connecting r to l in the minimal stereo subtree:

CP (l) = v1, .., vn with v1 = r and vn = l.

Let us denote ij the index of vj in the ordered list of children of pvj . The
sequence i2 . . . in defines a unique path in the stereo subtree associated to ns.
Such a sequence may thus be considered as a proper label of edge e. However as
mentioned in Section 3, some paths may pass through equivalent subtrees and
should thus be considered as equivalent. In order to encode such an equivalence
relationship we define the label of e as:

ν(e) =

n⊙
i=2

rep(vi)

where rep is defined by Equation 3, Definition 20 and
⊙

denotes the concate-
nation operator.
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4.4 StereoTreelet

For each stereo vertex s we have a graph Gs. The stereotreelets of Gs are defined
as all subtrees of Gs whose size is lower than 6 and which include ns. Since each
neighbors v of ns corresponds to a leaf of the minimal stereo tree of s, the edge
(v, ns) is already encoded within the code cs of ns. Consequently, we impose
that each neighbor v of ns in a stereotreelet must have at least another neighbor
(different of ns). This constraint induces the set of stereotreelets represented in
Fig. 6. The set of stereotreelet T (G) of G is defined as the union of stereotreelets
of each Gs.

When all stereotreelets of G have been enumerated, we compute its spectrum
s(G) which corresponds to a vector representing the treelet distribution. Each
component of this vector is equal to the frequency of a given stereotreelet t:
s(G) = (ft(G))t∈T (G) with ft(G) = |(t ⊆ G)|. The kernel between two graphs G
and G′ is defined as a sum of kernels between the different number of treelets
common to both graphs:

k(G,G′) =
∑

t∈T (G)∩T (G′)

K(ft(G), ft(G
′)).

5 Experiments

We have tested our method on a dataset of acyclic chiral molecules [11] related
to a regression problem. This dataset is composed of 90 molecules together with
their optical rotations. In practice, we only select 35 molecules, since almost all
molecules have only one stereocenter, and for 55 molecules this stereocenter is
unique in the dataset. Such molecules correspond to a property represented only
once in the dataset which can thus not be accurately predicted. The property
to predict, the optical rotation, is connected with chirality and has a standard
deviation of 38.25 for the 35 selected molecules.

For our experiment we use a leave-one-out cross-validation on the dataset
to predict the optical rotation of each molecule. The predicted rotations are
computed by using both kernel ridge regression and the weighted mean of known
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Table 1. Optical rotation prediction for the acyclic chiral dataset.

Method
Kernel Ridge Weighted Average Gram’s matrix

Average Error RMSE Average Error RMSE computations (s)

Random Kernel 31.7 39.5 32.0 39.3 0.03

KMean [12] 31.0 38.7 32.3 39.6 153.84

Treelet Kernel [1] 26.0 33.9 28.9 37.4 0.49

Stereotreelet Kernel 21.0 25.6 11.6 16.3 0.13

values using the similarity measure provided by the kernel

ŷ =

∑
i

k(Gi, G)× yi∑
i

k(Gi, G)

We present in Table 1 the average errors, Root Mean Squared Errors (RMSE)
and computation times of the Gram matrix for our method and the ones of [12,
1] which do not take into account stereo information. Results obtained by using
a random Gram matrix are also shown.

Weighted mean provides much better results for our kernel since on this
dataset each molecule has a non null similarity with a reduced number of molecules
(less than 10). Such a reduced number of data do not allow kernel ridge regression
to perform reliable prediction. Other methods provide similar results than those
obtained using a random Gram matrix. These results are also comparable with
the variance of the dataset. Such a result means that the similarity measures
provided by alternative kernels are not correlated with the property to predict.
This last point may be explained by the fact that optical rotation is connected
to stero information which is not encoded by these kernels.

6 Conclusion

In this report we proposed a new model which allows to encode the relative
positioning of vertices within a graph. Such a model is quite flexible since it
does not require any coordinate information and may be defined on only some
vertices of a graph. We also introduced the notion of minimal stereo subtree
which, in the acyclic case, corresponds to the minimal subgraphs which allows
to explain the stereo property of a vertex.

We applied this model to encode the stereo information of molecules and
vertices. Based on the minimal stereo subtree of each vertex we defined a graph
kernel between stereoisomers. Our experiments show promising results and our
future work will consist to create larger datasets and to extend our method to
graphs including cycles.
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