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The atomic pair distribution function (PDF) as obtained from X-ray or neutron

total scattering experiments has proved to be powerful in obtaining valuable

structural information for many complex functional materials, be they

amorphous or crystalline. In the case of measurements made with X-rays and

for samples containing more than one kind of atom, the usefulness of the PDF is,

however, somewhat hampered because of the lack of an exact and simple

expression relating it to the structure of the materials. Only an approximate

relationship exits, which is still in use today. This is particularly detrimental given

the wide availability of X-ray sources and the increasing quality of PDFs

obtained with laboratory sources. In this paper, the exact and explicit expression

of the PDF as obtained from X-ray scattering is derived with respect to partial

functions. This expression allows exact and efficient calculation of the PDF from

any structure model without using approximate formulae.

1. Introduction
The atomic pair distribution function (PDF) as obtained from

X-ray or neutron total scattering experiments is playing an

increasing role in crystallography and condensed matter

physics. Combined with powerful computational methods, it

has proved to be of great value in determining the atomic

arrangement of many emerging complex functional materials

(Billinge & Kanatzidis, 2004; Juhás et al., 2006; Billinge &

Levin, 2007; Cliffe et al., 2010), knowledge of which is required

for further theoretical understanding of their properties. Its

usefulness comes from the fact that it contains information

from both Bragg and diffuse scattering, which makes it

sensitive to the intrinsic short-range and nanoscale structural

fluctuations in materials, be they crystalline or amorphous. A

detailed description of the PDF, related crystallographic

methods and experimental considerations can be found else-

where (Egami & Billinge, 2003).

The experimental PDF, gðrÞ, is defined as the truncated sine

Fourier transform of the reduced structure factor, sðQÞ,1

obtained from the normalized elastic differential scattering

cross section of the sample, i.e.

g rð Þ ¼ 2=�ð Þ
RQmax

0

s Qð Þ sin Qrð Þ dQ; ð1Þ

where Q is the magnitude of the scattering vector [Q =

(4�/�)sin�, where � is half the scattering angle and � is the

wavelength of the incident radiation] and Qmax is its maximum

experimentally reachable value.2 Extracting structural infor-

mation from the experimental PDF is a tricky mathematical

inverse problem. It generally requires the calculation of PDFs

from trial structure models (determined by ab initio calcula-

tions or molecular dynamics simulations or reverse Monte

Carlo methods or least-squares refinements etc.), which in turn

are compared with the experimental data in order to assess the

quality of the models. For samples containing different types

of atoms, i.e. in multi-component systems, the experimental

PDF is related not only to the density of atom pairs in the

material but also to the chemical complexity of the material

and the type of radiation used for the experiment. In the case

of neutron scattering, the PDF is just a weighted linear

combination of partial PDFs (Egami & Billinge, 2003). In the

case of X-rays, however, no such simple and exact relation can

be given. This comes from the fact that the Q dependence of

the atomic scattering factors differs from one kind of atom to

another. This shortcoming has been known for a long time and

was first partly overcome in 1936 by Warren, Krutter and

Morningstar (WKM; Warren et al., 1936) by using a mean form

factor with an effective number of electrons per atom. This

approximation is still in use today, more than 70 years later,

and is implemented in most popular PDF analysis software

(e.g. PDFFIT; Proffen & Billinge, 1999). However, it has three

major drawbacks: (i) it is not defined in a unique way, (ii) its

accuracy is unknown, and (iii) it can introduce significant

errors for materials combining both heavy and light elements
1 Reduced functions are related to conventional quantities as follows: s(Q) =
Q[S(Q)� 1] and g(r) = 4�r�0[G(r) – 1], with S(Q)! 1 and G(r)! 1 for large
Q and r, respectively. 2 Small-angle scattering signal is not included in s(Q) with this definition.
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(Korsunskiy & Neder, 2005). The use of this approximation

can thus be a serious limitation for obtaining subtle structural

details that are often responsible for the properties of func-

tional materials. The Q dependence of the atomic scattering

factors can be correctly handled by first calculating sðQÞ from

a structure model and using equation (1) to obtain gðrÞ. This

approach has the advantage of avoiding approximation but is

cumbersome and time consuming in practice and still does not

give an explicit and transparent expression for the experi-

mental PDF. All these reasons have somewhat hampered the

usefulness of the PDF as measured from X-ray scattering

experiments. This is particularly detrimental as X-ray sources

are widely available and experimental PDFs of increasing

quality can be obtained with laboratory sources. In this paper,

we address this issue by deriving the exact and explicit

expression of the experimental total PDF with respect to

partial PDFs, which allows exact and efficient calculation of

the PDF from any structure model.

2. Formulation of the problem

Let us first formulate precisely the problem for the X-ray

scattering case by introducing relevant quantities. In samples

containing more than one kind of atom, sðQÞ can be related to

partial functions, each defined with respect to a given pair of

atoms. The most usual form of decomposition is that devised

by Faber and Ziman (FZ; Faber & Ziman, 1965):

s Qð Þ ¼
P
�;�

��� Qð Þ s�� Qð Þ; ð2Þ

with

s�� Qð Þ ¼
R1
0

g�� rð Þ sin Qrð Þ dr ð3Þ

and

��� Qð Þ ¼ c�c� f� Qð Þ f �� Qð Þ= h f Qð Þi
�� ��2; ð4Þ

where s��, g�� and ��� are the FZ partial structure function,

partial PDF and weighting factor, respectively, for a given pair

of atoms of type � and �, and c� (c�) and f� ( f�) are the atomic

concentration and scattering factor for atomic species � (�).

The sum in equation (2) is over all kinds of pairs in the sample.

The partial functions s�� and g�� are very useful as they

depend only on the structure of the material and are inde-

pendent of the experimental technique. In particular, the

partial PDF is of prime importance as it gives the deviation of

the local atomic density, ���ðrÞ, of the atoms of type � at a

distance r from the atoms of type � with respect to the average

atomic density in the sample, �0, i.e.

g�� rð Þ ¼ 4�r ��� rð Þ=c�c� � �0

� �
: ð5Þ

It has thus a direct physical meaning and can be calculated

from any structure model. In practical applications, partial

PDFs are combined together to form the total PDF, which in

turn is compared (or refined) against the experimental PDF.

From equation (4) it is obvious that ���ðQÞ depends on Q. For

this reason, there is no simple way of combining g�� in order to

obtain g. In particular, an exact weighted linear combination

of partial functions, analogous to that of equation (2) for sðQÞ,

is strictly impossible. Within the WKM approximation, the

scattering factors are approximated by f�ðQÞ ¼ Zeff
� feðQÞ,

where Zeff
� is an effective number of electrons for species � and

feðQÞ is an average scattering factor per electron for the

sample (Egami & Billinge, 2003). This in turn is equivalent to

having constant FZ weights defined as

�eff
�� ¼ c�c�Zeff

� Zeff
� =hZ

eff
i

2; ð6Þ

which allows g to be approximated as a weighted linear

combination of partial PDFs, i.e.

g rð Þ ffi
P
�;�

�eff
�� g�� rð Þ: ð7Þ

In most studies, the effective number of electrons is taken to

be equal to the atomic number, but other arbitrary choices can

be made. As stated in the Introduction, approximating ���ðQÞ
by the constant effective value given in equation (6) can be a

very poor choice for samples containing both heavy and light

elements since the Q dependence of f ðQÞ is quite different for

light and heavy atoms. It is worth noting that, in the case of

neutron scattering experiments, the atomic scattering factors

in equation (4) are replaced by the coherent bound neutron

scattering lengths, which do not depend on Q, so that the FZ

weights ��� are constant values and the form of equation (7)

becomes exact.

3. Derivation of the exact expression

Let us now derive the exact and explicit expression relating g

to the structure-related partial PDFs, g��. Introducing equa-

tion (2) into equation (1) we get

g rð Þ ¼
P
�;�

ð2=�Þ
RQmax

0

��� Qð Þ s�� Qð Þ sin Qrð Þ dQ: ð8Þ

This is the sine Fourier transform of a product. Applying the

convolution theorem, and implicitly considering ��� and s�� as

even and odd functions, respectively, we obtain

g rð Þ ¼
P
�;�

ð1=�Þ
RQmax

0

��� Qð Þ cos Qrð Þ dQ

� ð2=�Þ
R1
0

s�� Qð Þ sin Qrð Þ dQ; ð9Þ

where � denotes the convolution product. Recognizing the

partial PDF, g��, on the right side of the convolution product

in equation (9) we obtain

g rð Þ ¼
P
�;�

��� rð Þ � g�� rð Þ; ð10Þ

with

��� rð Þ ¼ ð1=�Þ
RQmax

0

��� Qð Þ cos Qrð Þ dQ; ð11Þ

which is equivalent to expressions proposed in earlier work

(Waser & Schomaker, 1953; Warren, 1969).
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Now, let us expand the FZ weighting functions, ���ðQÞ, into

Fourier series in the range �Qmax <Q<Qmax. We obtain

��� Qð Þ ¼ a�� 0ð Þ þ 2
Pþ1
k¼1

a�� rkð Þ cos Qrkð Þ; ð12Þ

with

rk ¼
�

Qmax

k and a�� rkð Þ ¼
1

Qmax

ZQmax

0

��� Qð Þ cos Qrkð Þ dQ:

ð13Þ

Here, we implicitly considered ��� as a periodic function of

period 2Qmax. Substituting equation (12) into equation (11)

and integrating with respect to Q, we obtain

��� rð Þ ¼
sin Qmaxrð Þ

�r
a�� 0ð Þ þ

Xþ1
k¼1

a�� rkð Þ

�
sin Qmax r� rkð Þ
� �
� r� rkð Þ

þ
sin Qmax rþ rkð Þ
� �
� r� rkð Þ

�
: ð14Þ

Now, substituting equation (14) into equation (10) and using

the translation invariance property of the convolution

product, i.e. f ðr� rkÞ � gðrÞ ¼ f ðrÞ � gðr� rkÞ, we obtain

g rð Þ ¼
sin Qmaxrð Þ

�r
�
X
�;�

n
a�� 0ð Þg�� rð Þ

þ
Xþ1
k¼1

a�� rkð Þ g�� r� rkð Þ þ g�� rþ rkð Þ
� �o

: ð15Þ

This is the exact expression of gðrÞ, containing the effect of the

variation of ���ðQÞ with Q. The left member of the convolu-

tion product is the cardinal sine function as a result of the

truncation of the Fourier transform in equation (1). Such a

function produces the well known termination ripples on the

PDF, manifested as both peak broadening and oscillating

wings. It only depends on the Qmax value whatever the type of

radiation used and does not contain any structural informa-

tion. It is usually omitted for the sake of clarity in the

expressions of the PDF, as was done in equation (7). In doing

so for equation (15), we obtain

g rð Þ ¼
P
�;�

n
a�� 0ð Þ g�� rð Þ

þ
Pþ1
k¼1

a�� rkð Þ g�� r� rkð Þ þ g�� rþ rkð Þ
� �o

: ð15aÞ

This expression can also be rewritten in a more convenient

form for comparison with the usual approximate WKM

expression or the exact expression of neutron experiments.

Introducing a modified partial function, gX
��, defined as

gX
�� rð Þ ¼ g�� rð Þ þ

Pþ1
k¼1

w�� rkð Þ g�� r� rkð Þ þ g�� rþ rkð Þ
� �

; ð16Þ

with

w�� rkð Þ ¼ a�� rkð Þ=a�� 0ð Þ; ð17Þ

we obtain

g rð Þ ¼
P
�;�

a�� 0ð Þ gX
�� rð Þ: ð18Þ

The PDF is now expressed as a simple linear combination of

modified partial functions. Equations (16)–(18) are equivalent

to equation (15a).

4. Discussion

Several comments can be made from this point. The form of

equation (18) resembles the WKM expression in equation (7)

but the involved quantities have different meanings. The

linear combination in equation (18) involves the modified

partial PDF, gX
��, which depends on the scattering factors

through w��ðrkÞ, instead of the true partial functions, g��. In

addition, the weights used in this combination are exactly and

uniquely defined as the mean values of the FZ factors over the

½0;Qmax� interval, i.e.

a�� 0ð Þ ¼
1

Qmax

ZQmax

0

��� Qð Þ dQ: ð19Þ

Given the definition of ���ðQÞ in equation (4), it can be readily

verified that the weights a��ðrkÞ satisfy

P
�;�

a�� 0ð Þ ¼ 1 and
P
�;�

a�� rk> 0ð Þ ¼ 0: ð20Þ

Also, according to the mean value theorem, there exists Q0

such that ���ðQ0Þ ¼ a��ð0Þ. This allows us to define the

numbers Zeff
�=� ¼ f�=�ðQ0Þ for the calculation of a��ð0Þ, which

makes the viewpoint of the effective number of electrons used

in the WKM approximation compatible to some extent with

our equation (18).

Let us now focus on the expression for gX
�� in equation (16).

This function is related to the true partial function g�� by very

simple mathematical operations, in particular involving no

integral operators, which has important consequences in

practical applications. It can be seen as a simple modification

of the true g��ðrÞ by superposing its weighted and symme-

trically shifted ‘ghosts’, with weights w��ðrkÞ and shifts �rk.

According to equation (17) the weights w��ðrkÞ are the

normalized [i.e. w��ð0Þ ¼ 1] Fourier coefficients of the FZ

weighting factors. Following the general shape of the latter (cf.

below), it is expected that w��ðrkÞ decreases rather rapidly

with rk so that, although the sum in equation (16) [or in

equation (15)] extends to infinity, only a few terms should be

sufficient to calculate gX
�� to a very good accuracy. Conse-

quently, the degree of approximation can be easily chosen by

truncating the series expansion at an appropriate order k. In

addition, the calculation of the PDF from a structure model is

performed in practice at discrete values with constant r step, so

if the step is chosen to be equal to (or a fraction of) the

Nyquist interval (Shannon, 1949; Farrow et al., 2011), �=Qmax,

then no interpolation is needed for the computation of shifted

ghost functions. All these points make the computation of gX
��,

and thus g, very simple and fast. We can also note that in the

case where ���ðQÞ is constant over the Q range, one has
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w��ðrkÞ ¼ 0, so that gX
�� ¼ g�� and a��ð0Þ ¼ ���ð0Þ, i.e. we

obtain the well known expression for the neutron case.

We now illustrate the efficiency of our expression in

calculating the PDF for the case of the LaB6 compound. This is

a widely used material in diffraction experiments with a well

known and simple structure that contains both heavy and light

elements. For this purpose, the LaB6 PDF was synthesized

using three different expressions: (i) equation (1), i.e. the exact

Fourier sine transform of sðQÞ, (ii) equation (15), i.e. our

expression with various k values, and (iii) equation (7), i.e. the

WKM approximation with Zeff ¼ Z. In all cases we started

from the same LaB6 partial functions calculated using

PDFFIT and the structural parameters given by Eliseev et al.

(1986). The computation of equation (1) required the prior

calculation of the partial structure factors using equation (3),

which in turn were combined using equation (2) to obtain the

total structure factor. In order to integrate over a limited

range in equation (3), a small dampening of the partial PDF

peaks (Qdamp parameter set to 0.02 in

PDFFIT) was added. This corresponds to

experimental Q-resolution effects and makes

the partial functions reach their asymptotic

value of zero at finite R value (500 Å in the

present case). The FZ coefficients were

computed using the scattering factors given

by Waasmaier & Kirfel (1995) and were

Fourier transformed in order to obtain the

relevant a��ð0Þ and w��ðrkÞ coefficients. The

Qmax effect was assessed by choosing two

different values in the calculations: a rela-

tively short one, Qmax ¼ 17 Å�1, typical for

X-ray laboratory instruments and a larger

one, Qmax ¼ 40 Å�1, common with synchro-

tron sources. Finally, for the calculation using

equation (7), the convolution by the cardinal

sine function resulting from the truncation of the Fourier

transform was also performed.

The FZ coefficients are plotted in Fig. 1. The a��ð0Þ, w��ðrkÞ

and �eff
�� coefficients calculated for the two values of Qmax are

gathered in Tables 1 and 2. The synthetic LaB6 PDFs calcu-

lated using equations (1), (15) and (7) for the two values of

Qmax are plotted in Figs. 2 and 3. We can observe in Fig. 1 the

large departure of the FZ coefficients from their values

calculated at Q ¼ 0, in particular the dramatic decrease of

�B–B and increase of �La–La with increasing Q. This clearly

illustrates the prominent effect of heavy elements at large Q

and the fact that taking Zeff ¼ Z [i.e. �eff
�� ¼ ���ð0Þ] for both La

and B atoms in the WKM approximation is not a pertinent

choice. This latter point is confirmed in Figs. 2 and 3, where it

appears that the WKM approximation leads to very poor

results and significant errors with respect to the exact calcu-

lation. With our expression, on the contrary, the accuracy is

very good even at relatively small k. In the case where
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Figure 1
Variation as a function of Q of the LaB6 Faber–Ziman coefficients: (black
solid line) La–La atom pairs, (red dashed line) La–B pairs and (green
short-dashed line) B–B atom pairs.

Table 1
Calculated values of the a��ð0Þ, w��ðrk¼1...8Þ and �eff

�� (with Zeff ¼ Z) LaB6 coefficients for
Qmax ¼ 17 Å�1.

�–� a��ð0Þ �
eff
�� w��ðr1Þ w��ðr2Þ w��ðr3Þ w��ðr4Þ w��ðr5Þ w��ðr6Þ w��ðr7Þ w��ðr8Þ

La–La 0.5824 0.4292 �0.0495 �0.0111 �0.0347 �0.0162 �0.0131 �0.0043 �0.0035 0.0001
La–B 0.3595 0.4518 0.0534 0.0087 0.0364 0.0156 0.0128 0.0034 0.0028 �0.0006
B–B 0.0584 0.1189 0.1649 0.0620 0.1216 0.0703 0.0523 0.0264 0.0184 0.0071

Table 2
Calculated values of the a��ð0Þ and w��ðrk¼1...9Þ LaB6 coefficients for Qmax ¼ 40 Å�1.

�–� a��ð0Þ w��ðr1Þ w��ðr2Þ w��ðr3Þ w��ðr4Þ w��ðr5Þ w��ðr6Þ w��ðr7Þ w��ðr8Þ w��ðr9Þ

La–La 0.6907 �0.1240 0.0059 �0.0051 0.0000 �0.0113 �0.0095 �0.0117 �0.0080 �0.0082
La–B 0.2726 0.2498 �0.0238 0.0093 �0.0023 0.0193 0.0153 0.0188 0.0129 0.0130
B–B 0.0372 0.4719 0.0775 0.0272 0.0303 0.0681 0.0783 0.0788 0.0672 0.0578

Figure 2
Synthesized LaB6 PDFs calculated with Qmax ¼ 17 Å�1 using equation
(1) (black solid line), equation (7) (red dashed line), equation (15) with
k = 0 (green short-dashed line) and equation (15) with k = 5 (purple filled
circles).



Qmax ¼ 17 Å, differences are already hardly noticeable except

in the baseline for k ¼ 0 (i.e. gX
�� ¼ g��), and are completely

negligible for k ¼ 5. In the case where Qmax ¼ 40 Å�1, we

obtain a reasonable approximation with k ¼ 1 and an

expansion up to the 12th term is necessary to achieve a perfect

match. The optimum values for k thus depend on the

experimental conditions (in particular on Qmax) and the

chemical composition of the sample but remain low and

reasonable from a computational point of view. Most of the

computation time in equation (16) corresponds to partial

function evaluation and only a small overhead is needed to

add shifted ‘ghost’ functions. However, although consistent

with the decreasing trend of w��ðrkÞ with k, the optimum value

of k does not seem directly related to a threshold value of

w��ðrkÞ. This makes its exact prediction not easy in practice.

However, as stated above, changing k does not require new

function evaluation, which should make the software imple-

mentation easily tunable. Consequently, the question of

predicting the optimal k is not essential. One can imagine

starting with some default k value and increasing it to reach

convergence on the total PDF.

5. Conclusion

Extracting fine structural information from the experimental

PDF generally requires the precise calculation of a simulated

PDF from a structure model. For multi-component systems,

this is usually achieved by first computing partial PDFs (which

only depend on the structure) from the model and then

combining them to construct the total PDF. Thus far, the only

exact formula for constructing the PDF was for neutron

scattering experiments, for which the PDF is a weighted (by

the Faber–Ziman factors) linear combination of partial func-

tions. In the case of X-ray experiments, only an approximate

definition has existed since the pioneering work of Warren and

coworkers in 1936. In the present paper, we have derived the

exact and explicit form of the experimental PDF with respect

to partial PDFs, which allows exact and efficient calculation of

the PDF from any structure model. It is shown that the PDF

can still be obtained by combining partial functions but in a

more complicated way than for the neutron case. It can be

expressed as a weighted linear combination of modified partial

functions. The weights are exactly and uniquely defined as the

mean values of the Faber–Ziman factors over the ½0;Qmax�

interval. The modified partial functions are obtained by

superposing on the true partial PDFs their weighted and

symmetrically shifted ‘ghosts’. Although the superposition of

the shifted ‘ghosts’ must theoretically be expanded to infinity,

it is shown that only a few terms are necessary for achieving a

perfect approximation, which makes our expression practical

and efficient. Finally, it is worth noting that this explicit defi-

nition could also be useful for obtaining explicit and exact

expressions of quantities involving integral operation on the

PDF over a given r range, such as for example the calculation

of coordination numbers. We hope that this work will consti-

tute a solid basis to extract subtle structural features from

X-ray total scattering PDF analysis and will contribute to the

further development of the PDF method.
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Figure 3
Synthesized LaB6 PDFs calculated with Qmax ¼ 40 Å using equation (1)
(black solid line), equation (7) (red dashed line), equation (15) with k = 1
(green short-dashed line) and equation (15) with k = 12 (purple filled
circles).
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