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Abstract. Several ways of assigning probabilities to runs of timed au-
tomata (TA) have been proposed recently. When only the TA is given, a
relevant question is to design a probability distribution which represents
in the best possible way the runs of the TA. This question does not seem
to have been studied yet. We give an answer to it using a maximal entropy
approach. We introduce our variant of stochastic model, the stochastic
process over runs which permits to simulate random runs of any given
length with a linear number of atomic operations. We adapt the notion of
Shannon (continuous) entropy to such processes. Our main contribution
is an explicit formula defining a process Y ∗ which maximizes the entropy.
This formula is an adaptation of the so-called Shannon-Parry measure to
the timed automata setting. The process Y ∗ has the nice property to be
ergodic. As a consequence it has the asymptotic equipartition property
and thus the random sampling w.r.t. Y ∗ is quasi uniform.

1 Introduction

Timed automata (TA) were introduced in the early 90’s by Alur and Dill [4] and
then extensively studied, to model and verify the behaviours of real-time systems.
In this context of verification, several probability settings have been added to
TA (see references below). There are several reasons to add probabilities: this
permits (i) to reflect in a better way physical systems which behave randomly,
(ii) to reduce the size of the model by pruning the behaviors of null probability
[9], (iii) to resolve undeterminism when dealing with parallel composition [18,19].

In most of previous works on the subject (see e.g. [13,2,14,18]), probability
distributions on continuous and discrete transitions are given at the same time as
the timed settings. In these works, the choice of the probability functions is left
to the designer of the model. Whereas, she or he may want to provide only the
TA and ask the following question: what is the “best” choice of the probability
functions according to the TA given? Such a “best” choice must transform the
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TA into a random generator of runs the least biased as possible, i.e it should
generate the runs as uniformly as possible to cover with high probability the
maximum of behaviours of the modeled system. More precisely the probability
for a generated run to fall in a set should be proportional to the size (volume) of
this set (see [19] for a same requirement in the context of job-shop scheduling).
We formalize this question and propose an answer based on the notion of entropy
of TA introduced in [7].

The theory developed by Shannon [25] and his followers permits to solve
the analogous problem of quasi-uniform path generation in a finite graph. This
problem can be formulated as follows: given a finite graph G, how can one find
a stationary Markov-chain on G which allows one to generate the paths in the
most uniform manner? The answer is in two steps (see Chapter 1.8 of [22] and
also section 13.3 of [21]): (i) There exists a stationary Markov-chain on G with
maximal entropy, the so called Shannon-Parry Markov-chain; (ii) This stationary
Markov-chain allows to generate paths quasi uniformly.

In this article we lift this theory to the timed automata setting. We work
with timed region graphs which are to timed automata what finite directed
graphs are to finite state automata i.e. automata without labeling on edges
and without initial and final states. We define stochastic processes over runs of
timed region graphs (SPOR) and their (continuous) entropy. This generalization
of Markov-chains for TA has its own interest, it is up to our knowledge the first
one which provides a continuous probability distribution on starting states. Such
a SPOR permits to generate step by step random runs. As a main result we
describe a maximal entropy SPOR which is stationary and ergodic and which
generalizes the Shannon-Parry Markov-chain to TA (Theorem 4). Concepts of
maximal entropy, stationarity and ergodicity can be interesting by themselves,
here we use them as the key hypotheses to ensure a quasi uniform sampling
(Theorem 5). More precisely the result we prove is a variant of the so called
Shannon-McMillan-Breiman theorem also known as asymptotic equipartition
property (AEP).

Potential applications. There are two kind of probabilistic model checking:
(i) the almost sure model checking aiming to decide if a model satisfies a for-
mula with probability one (e.g. [16,3]); (ii) the quantitative (probabilistic) model
checking (e.g. [14,18]) aiming to compare the probability of a formula to be sat-
isfied with some given threshold or to estimate directly this probability.

A first expected application of our results would be a “proportional” model
checking. The inputs of the problem are: a timed region graph G, a formula
ϕ, a threshold θ ∈ [0, 1]. The question is whether the proportion of runs of G
which satisfy ϕ is greater than θ or not. A recipe to address this problem would
be as follows: (i) take as a probabilistic model M the timed region graph G
together with the maximum entropy SPOR Y ∗ defined in our main theorem;
(ii) run a quantitative (probabilistic) model checking algorithm on the inputs
M, ϕ, θ (the output of the algorithm is yes or no whether M satisfies ϕ with a
probability greater than θ or not) (iii) use the same output for the proportional
model checking problem.
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A random simulation with a linear number of operations wrt. the length of
the run can be achieved with our probabilistic setting. It would be interesting to
incorporate the simulation of our maximal entropy process in a statistical model
checking algorithms. Indeed random simulation is at the heart of such kind of
quantitative model checking (see [18] and reference therein).

The concepts handled in this article such as stationary stochastic processes
and their entropy, AEP, etc. come from information and coding theory (see [17]).
Our work can be a basis for the probabilistic counterpart of the timed channel
coding theory we have proposed in [5]. Another application in the same flavour
would be a compression method of timed words accepted by a given deterministic
TA.

Related work. As mentioned above, this work generalizes the Shannon-Parry
theory to the TA setting. Up to our knowledge this is the first time that a
maximal entropy approach is used in the context of quantitative analysis of
real-time systems.

Our models of stochastic real-time system can be related to numerous previ-
ous works. Almost-sure model checking for probabilistic real-time systems based
on generalized semi Markov processes GSMPs was presented in [3] at the same
time as the timed automata theory and by the same authors. This work was
followed by [2,13] which address the problem of quantitative model checking for
GSMPs under restricted hypotheses. The GSMPs have several differences with
TA; roughly they behave as follows: in each location, clocks decrease until a clock
is null, at this moment an action corresponding to this clock is fired, the other
clocks are either reset, unchanged or purely canceled. Our probability setting is
more inspired by [9,16,18] where probability densities are added directly on the
TA. Here we add the new feature of an initial probability density function on
states.

In [18], a probability distribution on the runs of a network of priced timed
automaton is implicitly defined by a race between the components, each of them
having its own probability. This allows a simulation of random runs in a non
deterministic structure without state space explosion. There is no reason that the
probability obtained approximates uniformness and thus it is quite incomparable
to our objective.

Our techniques are based on the pioneering articles [7,8] on entropy of regular
timed languages. In the latter article and in [5], an interpretation of the entropy
of a timed language as information measure of the language was given.

Paper structure In section 2 we recall the theory of maximal entropy Markov-
chain on finite graph. The aim of the rest of the paper is to lift results of this
section to the timed setting. In section 3 we introduce stochastic processes over
runs (SPOR) of a timed region graph is the timed analogous of Markov-chains
on a finite graphs. We also gives definition of entropies of these dense objects
inspired by [25] for the processes and by [7] for the timed region graph. In
the main section (section 4), after giving the technical assumptions, we state the
two main theorems: the existence of the maximal entropy SPOR which is ergodic
and the resulted asymptotic equipartition properties. In section 5 we treat two
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examples. We briefly discuss the computability issues and the perspectives in
the conclusion (section 7).
Extended version The present paper is an extended version of the conference
paper [10].

2 Maximal entropy Markov-chain on a graph

2.1 Markov-chain on a graph

A graph is defined by a finite set of states Q and a set of transitions ∆. Any
transition δ ∈ ∆ has a starting state δ− ∈ Q and an ending state δ+ ∈ Q (there
can be several transitions between the same two states).

A path δ1 · · · δn ∈ ∆∗ is a word of consecutive transitions (δi+1
− = δi

+,
i = 1, . . . , n− 1). We denote by Pathn(G) the set of paths of length n.

A Markov-chain on a graph G is given by

– initial state probabilities p0(q) for q ∈ Q such that
∑
q∈Q p0(q) = 1;

– conditional probabilities on transitions p(δ|δ−) such that for all q ∈ Q,∑
δ|δ−=q p(δ|q) = 1 (and such that p(δ|q) = 0 if q 6= δ−).

The following chain rule (1) defines a probability distribution pn on Pathn i.e.∑
π∈Pathn pn(π) = 1

pn(δ1 · · · δn) = p0(δ1
−)p(δ1|δ1−) . . . p(δn|δn−). (1)

We also denote by pn the induced probability measure on Pathn i.e. for A ⊆
Pathn, pn(A) =

∑
π∈A pn(A).

The conditional probabilities and the initial probabilities are respectively
represented by a Q×Q stochastic matrix P and a row vector p0 such that:

Pi,j =
∑

δ|δ−=i,δ+=j

p(δ|i).

The stochastic process associated to a Markov-chain is stationary iff p0P = p0.
Moreover if P is irreducible (i.e. for all i, j ∈ Q, there exists k ∈ N such that
P ki,j > 0) then the Markov-chain satisfies the ergodic property defines as follows:

Ergodicity. Given a set of infinite path R ⊆ ∆ω and i, j ∈ N, we denote by
Ri+ji ⊆ ∆j+1 the set of finite path δi · · · δi+j that can occur between indices i and
i+ j in an infinite path (δk)k∈N of R. Let p be a stationary Markoc chain then
the sequence pn(Rn−1

0 ) decreases and converges to a value called the probability
of R and denoted by p∞(R) = limn→∞ pn(Rn−1

0 ). The set R is shift invariant if
for every i, n ∈ N: Ri+ni = Rn0 . The Markov-chain satisfies the ergodic property
whenever it is stationary and every shift invariant set has probability 0 or 1.
Definition of ergodicity for general probability measures can be found in [15].
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2.2 Entropies

There are different notions of entropies. Their mutual connexion and their mean-
ings are discussed in the rest of this section. Here we only summarize the def-
initions and propositions we lift to the timed setting. We refer the reader to
[22,21,17] for more explanations about notions of Markov-chain, entropies, al-
most equipartition properties...

Proposition-definition 1 Given a finite graph G, the following limit exists
and defined the entropy of G:

h(G) = lim
n→∞

1

n
log2(|Pathn(G)|).

Proposition-definition 2 Let p be a stationary Markov-chain on a finite graph
G, then

− 1

n

∑
π∈Pathn(G)

pn(π) log2 pn(π)→n→∞ −
∑
q∈Q

p0(q)
∑
δ∈∆

p(δ|q) log2 p(δ|q).

This limit is called the entropy (rate) of the markov chain, denoted by h(p).

2.3 The Shannon-McMillan-Breiman theorem

This classical theorem also known as asymptotic equipartition property (AEP)
states that for Markov-chain satisfying the ergodic property almost every paths
of a length n (for n large enough) have approximately the same probability which
is roughly 2−nh(p) where h(p) is the entropy of the Markov-chain considered.

Theorem 1 (AEP for Markov chain). If p is a Markov-chain satisfying the
ergodic property then

p∞[{δ1δ2 · · · | −(1/n) log2 pn(δ1 · · · δn)→n→+∞ h(p)}] = 1

This theorem applied to a chain p∗ such that h(p∗) = h(G) means that long
paths have a high probability to have a quasi uniform probability:

p∗n(δ1 · · · δn) ≈ 2−nh(p∗) ≈ 1/|Pathn(G)| (H(p∗) = h(g)).

2.4 The Shannon-Parry Markov-chain

In fact there exists a unique Markov-chain p∗ such that h(p∗) = h(G), the
Shannon-Parry Markov-chain [25,23]:

Theorem 2 (Shannon-Parry). If G is strongly connected then

– every stationary Markov-chain p on G satisfies h(p) ≤ h(G);
– there exists a unique stationary Markov-chain p∗ such that h(p∗) = h(G);
– p∗ is ergodic.
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To define the Markov-chain p∗ we need to remind the classical Perron-Frobenius
theorem (see for instance [22]).

The spectral radius of a matrix is the maximal modulus of its eigenvalues.

Theorem 3 (Perron-Frobenius). If M is the adjacency matrix of a strongly
connected graph G (i.e. M has positive entries and is irreducible) then

– The spectral radius ρ of M is a simple eigenvalue of M ;
– there exists a right (resp. left) positive eigenvector v (resp. w) of M for the

eigenvalue ρ;
– any non-negative right (resp. left) eigenvector of M is collinear to v (resp.
w).

Proposition 1. The entropy of G and the spectral radius ρ of its adjacency
matrix are linked by the following equality h(G) = log2(ρ).

Given a strongly connected graph G, let ρ, v, w be given by the Perron-Frobenius
theorem above. Eigenvectors v and w are chosen such that 〈v, w〉 =

∑
q∈Q vqwq =

1 (eigenvectors are defined up to a scalar constant). The Shannon-Parry Markov-
chain p∗ on G is given by: for every q ∈ Q, δ ∈ ∆,

p∗0(q) = vqwq; p∗(δ|δ−) =
vδ+

ρvδ−
. (2)

The corresponding transition probability matrix is defined by: for every i, j ∈ Q,
Pi,j = Mi,jvj/ρvi.

3 Stochastic processes on timed region graphs

3.1 Timed graphs and their runs

In this section we define a timed region graph which is the underlying structure
of a timed automaton [4]. For technical reasons we consider only timed region
graphs with bounded clocks. We will justify this assumption in section 4.1.

Timed region graphs. Let X be a finite set of variables called clocks. Clocks
have non-negative values bounded by a constant M . A rectangular constraint
has the form x ∼ c where ∼∈ {≤, <,=, >,≥}, x ∈ X, c ∈ N. A diagonal
constraint has the form x−y ∼ c where x, y ∈ X. A guard is a finite conjunction
of rectangular constraints. A zone is a set of clock vectors x ∈ [0,M ]X satisfying
a finite conjunction of rectangular and diagonal constraints. A region is a zone
which is minimal for inclusion (e.g. the set of points (x1, x2, x3, x4) which satisfy
the constraints 0 = x2 < x3 − 4 = x4 − 3 < x1 − 2 < 1). Regions of [0, 1]2 are
depicted in Fig. 3.1.

As we work by analogy with finite graphs, we introduce timed region graphs
which are roughly timed automata without labels on transitions and without
initial and final states. Moreover we consider a state space decomposed in regions.
Such a decomposition in regions are quite standard for timed automata and does
not affect their behaviours (see e.g. [14,7]).

A timed region graph is a tuple (X,Q, S, ∆) such that

6



– X is a finite set of clocks.
– Q is a finite set of locations.
– S is the set of states which are couples of a location and a clock vector

(S ⊆ Q × [0,M ]X). It admits a region decomposition S = ∪q∈Q{q} × rq
where for each q ∈ Q, rq is a region.

– ∆ is a finite set of transitions. Any transition δ ∈ ∆ goes from a starting
location δ− ∈ Q to an ending location δ+ ∈ Q; it has a set r(δ) of clocks to
reset when firing δ and a fleshy guard g(δ) to satisfy to fire it. Moreover, the
set of clock vectors that satisfy g(δ) is projected on the region rδ+ when the
clocks in r(δ) are resets.

Runs of the timed region graph. A timed transition is an element (t, δ)
of A =def [0,M ] × ∆. The time delay t represents the time before firing the
transition δ.

Given a state s = (q,x) ∈ S (i.e x ∈ rq) and a timed transition α = (t, δ) ∈ A
the successor of s by α is denoted by s . α and defined as follows. Let x′ be the
clock vector obtained from x + (t, . . . , t) by resetting clocks in r(δ) (x′i = 0 if
i ∈ r(δ), x′i = xi + t otherwise). If δ− = q and x + (t, . . . , t) satisfies the guard
g(δ) then x′ ∈ rδ+ and s . α = (δ+,x′) else s . α = ⊥. Here and in the rest of
the paper ⊥ represents every undefined state.

We extend the successor action . to words of timed transitions by induction:
s . ε = s and s . (αα′) = (s . α) .α′ for all s ∈ S, α ∈ A, α′ ∈ A∗.

A run of the timed region graph G is a word s0α0 · · · snαn ∈ (S×A)n+1 such
that si+1 = si . αi 6= ⊥ for all i ∈ {0, . . . , n − 1} and sn . αn 6= ⊥; its reduced
version is [s0, α0 . . . αn] ∈ S × An+1 (for all i > 0 the state si is determined by
its preceding states and timed transition and thus is a redundant information).
In the following we will use without distinction extended and reduced version of
runs. We denote by Rn the set of runs of length n (n ≥ 1).

p q

δ1, 0 < x < 1, {y}

δ2, 0 < y < 1, {x}

δ3, 0 < x < 1, {y}

δ4, 0 < y < 1, {x}

0

1

1

y

x

rq

rp

Fig. 1. The running example. Right: Gex1; left: Its state space (in gray).

Example 1. Let Gex1 be the timed region graph depicted on Fig. 3.1 with rp and
rq the region described by the constraints 0 = y < x < 1 and 0 = x < y < 1
respectively. Successor action is defined by [p, (x, 0)] . (t, δ1) = [p, (x+ t, 0)] and
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[p, (x, 0)] . (t, δ2) = [q, (0, t)] if x + t < 1; [q, (0, y)] . (t, δ3) = [p, (t, 0)] and
[q, (0, y)] . (t, δ4) = [q, (0, y + t)] if y + t < 1. An example of run of Gex1 is
(p, (0.5, 0))(0.4, δ1)(p, (0.9, 0))(0.8, δ2)(q, (0, 0.8))(0.1, δ3)(p, (0.1, 0)).

Integrating over states and runs; volume of runs. It is well known (see
[4]) that a region is uniquely described by the integer parts of clocks and by an
order on their fractional parts, e.g. in the region rex given by the constraints
0 = x2 < x3 − 4 = x4 − 3 < x1 − 2 < 1, the integer parts are bx1c = 2, bx2c =
0, bx3c = 4, bx4c = 3 and fractional parts are ordered as follows 0 = {x2} <
{x3} = {x4} < {x1} < 1. We denote by γ1 < γ2 < · · · < γd the fractional
parts different from 0 of clocks of a region rq (d is called the dimension of the
region). In our example the dimension of rex is 2 and (γ1, γ2) = (x3− 4, x1− 2).
We denote by Γq the simplex Γq = {γ ∈ Rd | 0 < γ1 < γ2 < · · · < γd < 1}.
The mapping φr : x 7→ γ is a natural bijection from the d dimensional region
r ⊂ R|X| to Γq ⊂ Rd. In the example the pre-image of a vector (γ1, γ2) is
(γ2 + 2, 0, γ1 + 4, γ1 + 3).

Example 2 (Continuing example 1). The region rp = {(x, y) | 0 = y < x < 1} is
1-dimensional, φrp(x, y) = x and φ−1

rp (γ) = (γ, 0).

Now, we introduce simplified notation for sums of integrals over states, transi-
tions and runs. We define the integral of an integrable3 function f : S→ R (over
states): ∫

S
f(s)ds =

∑
q∈Q

∫
Γq

f(q, φ−1
rq (γ))dγ.

where
∫
.dγ is the usual integral (w.r.t. the Lebesgue measure). We define the

integral of an integrable function f : A→ R (over timed transitions):∫
A
f(α)dα =

∑
δ∈∆

∫
[0,M ]

f(t, δ)dt

and the integral of an integrable function f : Rn → R (over runs) with the
convention that f [s,α] = 0 if s . α = ⊥:∫

Rn
f [s,α]d[s,α] =

∫
S

∫
A
. . .

∫
A
f [s,α]dα1 . . . dαnds

To summarize, we take finite sums over finite discrete sets Q, ∆ and take
integrals over dense sets Γq, [0,M ]. More precisely, all the integrals we define
have their corresponding measures4 which are products of counting measures on
discrete sets Σ, Q and Lebesgue measure over subsets of Rm for some m ≥ 0

3 A function f : S→ R is integrable if for each q ∈ Q the function γ 7→ f(q, φ−1
rq (γ))

is Lebesgue integrable. A function f : A → R is integrable if for each δ ∈ ∆ the
function t 7→ f(t, δ) is Lebesgue integrable.

4 We refer the reader to [15] for an introduction to measure and probability theory.
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(e.g. Γq, [0,M ]). We denote by B(S) (resp. B(A)) the set of measurable subsets
of S (resp. A).

The volume of the set of n-length runs is defined by:

Vol(Rn) =

∫
Rn

1d[s,α] =

∫
S

∫
An

1s.α 6=⊥dαds

Remark 1. The use of reduced version of runs is crucial when dealing with in-
tegrals (and densities in the following). Indeed the following integral on the
extended version of runs is always null since variables are linked (si+1 = si . αi
for i = 0..n− 2):

∫
A
∫
S . . .

∫
A
∫
S 1s0α0···sn−1αn−1∈Rnds0dα0 . . . dsn−1dαn−1 = 0.

3.2 SPOR on timed region graphs

Let (Ω,F , P ) be a probability space. A stochastic process over runs (SPOR) of a
timed region graph G is a sequence of random variables (Yn)n∈N = (Sn, An)n∈N
such that:

C.1) For all n ∈ N, Sn : (Ω,F , P )→ (S,B(S)) and An : (Ω,F , P )→ (A,B(A)).
C.2) The initial state S0 has a probability density function (PDF) p0 : S→ R+

i.e. for every S ∈ B(S), P (S0 ∈ S) =
∫
s∈S p0(s)ds (in particular P (S0 ∈

S) =
∫
s∈S p0(s)ds = 1).

C.3) Probability on every timed transition only depends on the current state:
for every n ∈ N, A ∈ B(A), for almost every5 s ∈ S, y0 · · · yn ∈ (S× A)n,

P (An ∈ A|Sn = s, Yn = yn, . . . , Y0 = y0) = P (An ∈ A|Sn = s),

moreover this probability is given by a conditional PDF p(.|s) : A → R+

such that P (An ∈ A|Sn = s) =
∫
α∈A p(α|s)dα and p(α|s) = 0 if s . α = ⊥

(in particular P (An ∈ A|Sn = s) =
∫
α∈A p(α|s)dα = 1).

C.4) States are updated deterministically knowing the previous state and tran-
sition: Sn+1 = Sn . An.

The Markovian properties C.3) and C.4) permits to define probability density
functions for portion of runs Yi · · ·Yi+n−1 knowing the value of Si : for α ∈ An
and s0 ∈ S we defined pn(α|s0) by the following chain rule

pn(α|s0) = p(α0|s0)p(α1|s1) . . . p(αn−1|sn−1). (3)

where for each j = 1..n−1 the state updates are defined by sj = sj−1 .αj−1;
then pn(.|s) is satisfies

P ((Si, Ai) · · · (Si+n−1, Ai+n−1) ∈ R|Si = s) =

∫
An
pn(α|s)1[s,α]∈Rdα.

5 A property prop (like “f is positive”, “well defined”...) on a set B holds almost
everywhere when the set where it is false has measure (volume) 0:

∫
B
1b 6�propdb = 0.
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The PDF for Y0 · · ·Yn−1 is pn(s,α) =def p0(s)pn(α|s) i.e

P (Y0 · · ·Yn−1 ∈ R) =

∫
Rn

pn[s,α]1[s,α]∈Rd[s,α].

The SPOR (Yn)n∈N is called stationary whenever for all i, n ∈ N, Yi · · ·Yi+n−1

has the same PDF as Y0 · · ·Yn−1 which is pn.

Probability measure on infinite runs and ergodicity. Given a measurable
sets of runs R ∈ B[(S × A)n+1] with n ≥ 0, one can extend it into a set of bi-
infinite runs R∞ ⊆ (S×A)Z as follows: R∞ = {(yi)i∈Z ∈ (S×A)Z|y0 · · · yn ∈ R}.

Let σ be the shift map on bi-infinite runs i.e. σ((yi)i∈Z) = (y′i)i∈Z with
y′i = yi−1.

A probability measure on µ is called shift invariant if µ(σ(A)) = µ(A) for
every µ-measurable set of bi-infinite runs A.

Let Y be a stationary SPOR then by a classical extension theorem due to
Kolmogorov one can define a shift invariant measure PY of bi-infinite runs such
that PY (R∞) = P (Y0 · · ·Yn ∈ R).

We characterize in (4) below, the probability PY (A) of a shift invariant set
A (i.e. σ(A) = A) in terms of probability on its finite factors. For every shift
invariant set of bi-infinite runs A and n ∈ N we denote by An the set of finite
factor of runs of A of length n: An = {y0 · · · yn|(yi)i∈Z ∈ A}. The set A is PY
measurable iff An ∈ B[(S × A)n+1] for every n and in that case the following
holds

PY (A) = lim
n→+∞

P (Y0 · · ·Yn ∈ An). (4)

A stochastic process Y is ergodic whenever it is stationary and every shift-
invariant measurable set A has probability PY (A) equal to 0 or 1. Definition of
ergodicity for general probability measures can be found in [15].

In the following EY (.) denote the expectation w.r.t. PY (for a stationary
SPOR Y ):

EY (f) =

∫
y∈(S×A)Z

f(y)dPY (y). (5)

When f depends only on a finite number of coordinates then EY (f) is conve-
niently describe with the PDFs pn. Two examples that appears in Proposition-
definition 4 below are:

EY (log pn[S0, A0 · · ·An]) =

∫
Rn

pn[s,α] log2 pn[s,α]d[s,α] (6)

EY (log p(A0|S0)) =

∫
S
p0(s)

∫
A
p(α|s) log2 p(α|s)dαds (7)

Simulation according to a SPOR. Given a SPOR Y , a run (s0,α) ∈ Rn can
be chosen randomly w.r.t. Y with a linear number of the following operations:
random pick according to p0 or p(.|s) and computing of a successor. Indeed it
suffices to pick s0 according to p0 and for i = 0..n − 1 to pick αi according to
p(.|si) and to make the update si+1 = si . αi.

10



3.3 Entropy

In this sub-section, we define entropy for timed region graphs and SPOR. The
first one is inspired by [7] and the second one by [25].

Entropy of a timed region graph

Proposition-definition 3 Given a timed region graph G, the following limit
exists and defined the entropy of G:

H(G) = lim
n→∞

1

n
log2(Vol(Rn)).

WhenH(G) > −∞, the timed region graph is thick, the volume behaves w.r.t.
n like an exponent: Vol(Rn) ≈ 2nH. When H(G) = −∞, the timed region graph
is thin, the volume decays faster than any exponent: ∀ρ > 0, Vol(Rn) << ρn.

Entropy of a SPOR

Proposition-definition 4 If Y is a stationary SPOR, then

EY (− log pn[S0, A0 · · ·An])/n→n→∞ EY (− log p(A0|S0))

which can be re-written as

− 1

n

∫
Rn

pn[s,α] log2 pn[s,α]d[s,α]→n→∞ −
∫
S
p0(s)

∫
A
p(α|s) log2 p(α|s)dαds.

This limit is called the entropy of Y , denoted by H(Y ).

Proof.

EY (− log pn[S0, A0 · · ·An])/n = E[− log p0(S0)

n∏
i=0

p(Ai|Si)]/n

= EY (− log p0(S0))/n−
n∑
i=0

E[log p(Ai|Si)]/n

= EY (− log p0(S0))/n− EY (log p(A0|S0)) by stationarity

This quantity tends to EY (− log p(A0|S0)) when n tends to +∞. ut

Proposition 2. Let G be a timed region graph and Y be a stationary SPOR on
G. Then the entropy of Y is upper bounded by that of G: H(Y ) ≤ H(G).

Proof. The proof follows from the following fact: for all n ∈ N,

−
∫
Rn

pn[s,α] log2 pn[s,α]d[s,α] ≤ log2(Vol(Rn)) (8)

11



We need some definitions and properties concerning Kullback-Leibler diver-
gence before proving this fact.

The Kullback-Leibler-divergence6 (KL-divergence) from a PDF pn to another
p′n is

D(pn||p′n) =

∫
Rn

pn[s,α] log2

pn[s,α]

p′n[s,α]
d[s,α].

The KL-divergence is always positive with equality to 0 if and only if pn and p′n
are equal almost everywhere (see e.g. [17] chapter 8). It permits to measure how
far a probability distribution is from another.

Now we can prove (8). The KL-divergence from an arbitrary distribution pn
to the uniform distribution [s,α] 7→ 1/Vol(Rn) is log2(Vol(Rn)) − h(pn) ≥ 0
with equality if and only if pn is uniform almost everywhere. ut

The main contribution of this article is a construction of an ergodic SPOR Y ∗ for
which the equality H(Y ∗) = H(G) holds i.e. a timed analogue of the Shannon-
Parry Markov Chain recalled in section 2.

4 Maximal entropy SPOR and quasi uniform sampling

In this section G is a timed region graph satisfying the technical condition below
(section 4.1). We present an ergodic SPOR Y ∗ for which the upper bound on
entropy is reached H(Y ∗) = H(G) (Theorem 4).

4.1 Technical assumptions

In this section we explain and justify several technical assumptions on the timed
region graph G we make in the following.
Bounded delays. If the delays were not bounded the sets of runs Rn would
have infinite volumes and thus a quasi uniform random generation cannot be
achieved.
Fleshy transitions. We consider timed region graphs whose transitions are
fleshy [7]: there is no constraints of the form x = c in their guards. Non fleshy
transitions yield a null volume and are thus useless. Delete them reduces the size
of the timed region graph considered and ensures that every path has a positive
volume (see [7,12] for more justifications and details).
Strong connectivity of the set of locations. We will consider only timed
region graph which are strongly connected i.e. locations are pairwise reachable.
This condition (usual in the discrete case we generalize) is not restrictive since
the set of locations can be decomposed in strongly connected components and
then a maximal entropy SPOR can be designed for each components.
Thickness. In the maximal entropy approach we adopt, we need that the en-
tropy is finite H(G) > −∞. This is why we restrict our attention to thick timed

6 this notion has a lot of names such as relative entropy, Kullback-Leibler distance,
KLIC...
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region graph. The dichotomy between thin and thick timed region graphs was
characterized precisely in [12] where it appears that thin timed region graph are
degenerate. The key characterization of thickness is the existence of a forgetful
cycle [12]. When the locations are strongly connected, existence of such a for-
getful cycle ensures that the state space S is strongly connect i.e. for all s, s′ ∈ S
there exists α ∈ A∗ such that s .α = s′.
Weak progress cycle condition. In [7] the following assumption (known as
the progress cycle condition) was made: for some positive integer constant D, on
each path of D consecutive transitions, all the clocks are reset at least once.

Here we use a weaker condition: for a positive integer constant D, a timed
region graph satisfies the D weak progress condition (D-WPC) if on each path of
D consecutive transitions at most one clock is not reset during the entire path.

The timed region graph on Fig. 3.1 does not satisfy the progress cycle con-
dition (e.g. x is not reset along δ1) but satisfies the 1-WPC.

4.2 Main theorems

Here we give the two main theorems of the paper. There proofs are given in
section 6.

Theorem 4. There exists a positive real ρ and two functions v, w : S 7→ R
positive almost everywhere such that the following equations define the PDF of
an ergodic SPOR Y ∗ with maximal entropy: H(Y ∗) = H(G).

p∗0(s) = w(s)v(s); p∗(α|s) =
v(s . α)

ρv(s)
. (9)

Objects ρ, v, w are spectral attributes of an operator Ψ defined in the next sec-
tion.

An ergodic SPOR satisfies an asymptotic equipartition property (AEP) (see
[17] for classical AEP and [1] which deals with the case of non necessarily Marko-
vian stochastic processes with density). Here we give our own AEP. It strongly
relies on the pointwise ergodic theorem (see [15]) and on the Markovian property
satisfied by every SPOR (conditions C.3 and C.4).

Theorem 5 (AEP for SPOR). If Y is an ergodic SPOR then

PY [{s0α0s1α1 · · · | −(1/n) log2 pn[s0, α0 · · ·αn]→n→+∞ H(Y )}] = 1

This theorem applied to the maximal entropy SPOR Y ∗ means that long runs
have a high probability to have a quasi uniform density:

p∗n[s0, α0 · · ·αn] ≈ 2−nH(Y ∗) ≈ 1/Vol(Rn) (since H(Y ∗) = H(G)).

4.3 The operator Ψ .

The maximal entropy SPOR is a lifting to the timed setting of the Shannon-
Parry Markov-chain of a finite strongly connected graph. The definition of this
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chain is based on the Perron-Frobenius theory applied to the adjacency matrix
M of the graph. This theory ensures that there exists both a positive eigenvector
v of M for the spectral radius7 ρ (i.e. Mv = ρv) and a positive eigenvector w
of the transposed matrix M> for ρ (i.e. M>w = ρw). The initial probability
distribution on the states Q of the Markov-chain is given by pi = viwi for
i ∈ Q and the transition probability matrix P is given by Pij = vjMij/(ρvi)
for i, j ∈ Q. The timed analogue of M is the operator Ψ introduced in [7]. To
define ρ,v and w, we will use the theory of positive linear operators (see e.g. [20])
instead of the Perron-Frobenius theory used in the discrete case.

The operator Ψ of a timed region graph is defined by:

∀f ∈ L2(S), ∀s ∈ S, Ψf(s) =

∫
A
f(s . α)dα (with f(⊥) = 0), (10)

where L2(S) is the Hilbert space of square integrable functions from S to R with
the scalar product 〈f, g〉 =

∫
S f(s)g(s)ds and associated norm ||f ||2 =

√
〈f, f〉.

Proposition 3. The operator Ψ defined in (10) is a positive continuous linear
operator on L2(S).

Proof. We describe first a change of coordinates (γ, t) 7→ (γ′, σ) which roughly
permits to write the integral of a function evaluated on s . α by an integral
of a function over states s′. This change of coordinate will be needed to pass
from equation (12) to equation (13) below. For a real y we denote by {y} its
fractional part. Let δ ∈ ∆, d the dimension of rδ− and d′ the dimension of
rδ+ . Let t, γ, γ′ such that (δ−, γ) . (t, δ) = (δ+, γ′). Modulo a permutation of
coordinate that only depends on δ we have ({γ1 + t}, . . . {γd + t}, {t}) = (γ′, σ)
for some σ ∈ [0, 1]d+1−d′ . Indeed, the coordinate {t} corresponds to clocks null
in δ− and not null in δ+ if such a clock exists (it is a coordinate of σ otherwise); a
coordinate γi of γ corresponding to a non resetting clock yields a new coordinate
{γi + t} of γ′; a coordinate γi of γ corresponding to a resetting clock yields a
coordinate {γi + t} of σ.

The change of coordinates (γ, t) 7→ (γ′, σ) from the set G(δ) =def {(γ, t) ∈
Γδ− × [0,M ] | (δ−, γ) . (t, δ) 6= ⊥} to its image denoted by G′(δ) is linear with
a Jacobian equals to 1.

Now we prove the following inequality for every f ∈ L2(S)∫
S

∫
A
f(s . α)2dαds ≤ |∆|

∫
s′
f(s′)2ds′ = |∆|.||f ||2 (11)

By definition:∫
S

∫
A
f(s . α)2dαds =

∑
δ∈∆

∫
(γ,t)∈G(δ)

f((δ−, γ) . (t, δ))2dγdt (12)

7 Recall from linear algebra (resp. spectral theory) that the spectrum of a matrix (resp.
of an operator) Ψ is the set {λ ∈ C s.t. Ψ−λId is not invertible.}. The spectral radius
ρ of Ψ is the radius of the smallest disc centered in 0 which contains all the spectrum.
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which after the change of coordinates (γ, t) 7→ (γ′, σ) yields:∫
S

∫
A
f(s . α)2dαds =

∑
δ∈∆

∫
(γ′,σ)∈G′(δ)

f(δ+, γ′)2dγ′dσ (13)

If we denote by gδ(γ
′) = Vol({σ | (γ′, σ) ∈ G′(δ)}) we can simplify the last

integral: ∫
S

∫
A
f(s . α)2dαds =

∑
δ∈∆

∫
γ′∈Γδ+

f(δ+, γ′)2gδ(γ
′)dγ′

The coordinates of σ belong to [0, 1] and thus for every γ′ ∈ Γδ+ , the set {σ |
(γ′, σ) ∈ G′(δ)} is included in a hypercube of side 1. We deduce that gδ(γ

′) ≤ 1
for every γ′ ∈ Γδ+ and obtain the expected inequality (11):∫

S

∫
A
f(s . α)2dαds ≤ |∆|.

∑
q′∈Q

∫
γ′∈Γq′

f(q′, γ′)2dγ′ = |∆|.||f ||2

Now we can prove that Ψ acts on L2(S). We have

[Ψ(f)(s)]2 =

(∫
A
f(s . α)dα

)2

≤ Vol(A)

∫
A
f(s . α)2dα

by virtue of the Cauchy-Schwartz inequality on L2(A) applied to the constant
function 1 and the function α 7→ f(s . α) (this latter function is defined and
integrable for almost every s by Fubini’s theorem and inequality (11)).

We will conclude the proof by bounding for all f ∈ L2(S) the operator norm

||Ψ(f)||2 = (
∫
S Ψ(f)(s)2ds)

1
2 by |∆|Vol(A)

1
2 ||f ||2:

||Ψ(f)||2 =

∫
S
Ψ(f)(s)2ds =

∫
S

(∫
A
f(s . α)dα

)2

ds

≤ Vol(A)

∫
S

∫
A
f(s . α)2dαds

≤ |∆|Vol(A)||f ||2

The last inequality comes from inequality (11). ut

The adjoint operator Ψ∗ (acting also on L2(S)) is the analogue of M>. It is
formally defined by the equation:

∀f, g ∈ L2(S), 〈Ψf, g〉 = 〈f, Ψ∗g〉. (14)

When elevated to a power n greater than D the constant occurring in the weak
progress cycle condition, the operator Ψ and Ψ∗ are easier to describe and behave
very similarly to matrices as we will see now.
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4.4 Kernels and matrix notation.

An operator Ψ is said to be an Hilbert-Schmidt integral operator (HSIO) if there
exists a function k ∈ L2(S× S) (called the kernel) such that

∀f ∈ L2(S), ∀s ∈ S, Ψf(s) =

∫
s′∈S

k(s, s′)f(s′)ds′.

With HSIOs, analogy with matrices is strengthen and easier to use e.g. when Ψ
has a kernel k then Ψ∗ has the kernel: k∗(s, s′) = k(s′, s) (it is a direct analogue
of matrix transposition). Moreover HSIOs have the good property to be compact.
The compactness of ΨD was the key technical point used in [7] to prove a theorem
similar to our Theorem 6 below. Here the following proposition implies that ΨD

and (Ψ∗)D are Hilbert-Schmidt integral operator.

Proposition 4. For every n ≥ D there exists a function kn ∈ L2(S × S) such
that: Ψn(f)(s) =

∫
S kn(s, s′)f(s′)ds′ and Ψ∗n(f)(s) =

∫
S kn(s′, s)f(s′)ds′.

This proposition is a straightforward corollary of the following more precise
lemma 1 used also in the proof of irreducibility of Ψ and Ψ∗ (Proposition 6). To
state this lemma we recall from [12] the definition of the reachability relation
and adopt a matrix notation. For q, q′ ∈ Q, we denote by Reach(n, q, q′) the set
of couple (γ, γ′) such that (q′, γ′) is reachable in n step from (q, γ); formally:
Reach(n, q, q′) = {(γ, γ′) ∈ Γp × Γq | ∃α ∈ An, (q, γ) .α = (q′, γ′)}.

It is convenient to adopt the following matrix notation: each function f of
L2(S) is represented by a row vector f of functions fq ∈ L2(Γq). The operator Ψ
is represented as a Q×Q matrix [Ψ ] for which each element [Ψ ]q,q′ is an operator
from L2(Γq′) to L2(Γq). Action of [Ψ ] on f is given by the following formula:

∀i ∈ Q, ([Ψ ]f)i =
∑
j∈Q

[Ψ ]ijfj .

With this matrix notation the matrix for Ψ∗ is simply defined by: for all i, j ∈
Q, [Ψ∗]ij = ([Ψ ]ji)

∗.
Now we can state the technical lemma describing the kernels of the operators

[Ψn]ij for n ≥ D.

Lemma 1. For every i, j ∈ Q, and n ≥ D, the operator [Ψn]ij : L2(Γi) →
L2(Γj) has a kernel kij ∈ L2(Γr×Γr′) positive almost everywhere in Reach(n, i, j)
continuous and piecewise polynomial. Such functions kij are computable.

Proof. We first introduce a notation for the successor of a vector γ by a delay
vector t ∈ [0,M ]n. Let π = δ1 · · · δn be a path from a location q to a location
q′, γ ∈ Γq, t ∈ [0,M ]n and α = (t1, δ1) . . . (tn, δn). If there exists γ′ such that
(q, γ) .α = (q′, γ′) then we define γ .π t = γ′ else we define γ .π t = ⊥

We denote by Pπ(γ) the polytope of delay vector t that can be read from γ
along π i.e. Pπ(γ) = {t | γ .π t 6= ⊥}. We denote by Reach(π) = {(γ, γ .π t) |
γ .π t 6= ⊥}. We also define an operator Ψπ as follows.

Ψπf(γ) =

∫
Pπ(γ)

f(γ .π t)dt. (15)
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Then Ψn can be decomposed into a sum of operators Ψπ as follows:

[Ψn]ijf(γ) =
∑

π|π goes from i to j and |π| = n

Ψπf(γ).

Now it suffices to prove that if π is a path leading from i to j and with
|π| = n ≥ D then Ψπ has a kernel kπ which is piecewise polynomial and non-
zero in Reach(π).

The idea of the proof is to operate a change of coordinate which transforms
several time delays of t into the vector γ′. Let d′be the dimension of the ending
region rj . In rj , there are d′ clocks non zero which fractional parts are pairwise
different and which corresponds to coordinates of γ′. We sort them as follows
y1 < · · · < yd

′
. By the D weak progress condition, only one clock is not reset

during π, this must be the oldest and thus the greatest: yd
′
. If yd

′
was not reset

along π its value is of the form yd
′

= x +
∑n
i=1 ti where x is a clock possibly

null of the starting region rp (in this case we pose id′ = 1), otherwise it is of the

form yd
′

=
∑n
i=id′

ti where id′ − 1 ∈ {1, . . . n− 1} is the index of the transition

where yd
′

was reset for the last time. Similarly for the other clocks we define
i1 > i2 > · · · > id where for each l ∈ {1, . . . , d′ − 1}, il − 1 is the index of the
transition where yl was reset for the last time. We have thus yl =

∑n
i=il

ti.

We denote by I the set of indices {i1, . . . , id′} and Ī = {1, . . . , n} \ I. The
function which maps tI = (ti1 , . . . , tid′ ) to (y1, . . . , yd′) is a linear change of
coordinates which preserves the volume. More precisely we have (y1, . . . , yd′)

> =
M(ti1 , . . . , tid′ )

> + b where M is an upper triangular matrix with only 1 on the
diagonal and where b is of the form (0, . . . , 0, x)> or (0, . . . , 0, 0)> depending
whether there is a non reset clock or not.

We write vectors t ∈ Rn as t = (tĪ , tI)I to say that tĪ regroups the coordinate
of t whose indices are in Ī and tI regroup the coordinate of t whose indices are
in I. The function which maps t = (tĪ , tI)I to (tĪ , γ

′)I is a change of coordinate
whose jacobian is 1 (γ′ is obtained from (y1, . . . , yd′) by a translation by the
constant vector (by1c, . . . , byd′c) followed by a permutation of coordinates).

Now let us consider the domains of integration before and after the change
of coordinates. The old domain of integration is Pπ(γ) = {t | γ .π t 6= ⊥},
this domain is a polytope. We denote by P the new domain of integration i.e.
(tĪ , γ

′)I ∈ P iff (tĪ , tI)I ∈ Pπ(γ).
When we fix (γ, γ′) ∈ Reach(π) we denote by Pπ(γ, γ′) the set of vectors tĪ

such that (tĪ , γ
′)I ∈ P . This corresponds intuitively to the set of timed vectors

which leads from γ to γ′. Applying the change of coordinate in (15) we get

Ψπf(γ) =

∫
Γj

∫
Pπ(γ,γ′)

1tĪ∈Pπ(γ,γ′)dtĪf(γ′)dγ′

We obtain the expected form of Ψπ by defining the kernel as

kπ(γ, γ′) = Vol[Pπ(γ, γ′)].

It remains to prove that this kernel is piecewise polynomial and non null when
(γ, γ′) ∈ Reach(π). We have (γ, γ′) ∈ Reach(π) if and only if the set Pπ(γ, γ′)
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is non empty. In this case Pπ(γ, γ′) is moreover an open polytope (a polytope
involving strict inequalities) as a section of the open polytope Pπ(γ), its volume
is thus positive and so is kπ(γ, γ′).

The polytope Pπ(γ, γ′) can be defined by a conjunction of inequalities of the

following form:
∑
i∈Ī aiti+

∑dim(ri)
i=1 biγi+

∑dim(rj)
i=1 ciγ

′
i > e with ai, bi, ci, e ∈ N.

The volume of such a polytope (when integrating the ti) can be shown to be
piecewise polynomial and continuous in γi and γ′j . ut

4.5 Spectral radius and entropy

As in the discrete case, the entropy is equal to the logarithm of the spectral
radius (Theorem 6 below). This was the main theorem of [7]. We must prove
this theorem in our setting since the functional space of [7] was different from
ours and assumptions on the model were somewhat more restrictive.

The following proposition ensure some regularity for eigenfunctions which
permits to adapt the results of [7] to our settings.

Proposition 5. For each eigenvalue λ 6= 0, each solution f of the eigenfunction
equation Ψf = λf (resp Ψ∗f = λf) is continuous and bounded8.

Proof. Let f be a solution of the eigenfunction equation Ψf = λf . Lemma 1
implies that ΨD is a kernel operator with a kernel kD piecewise polynomial (and
thus bounded on S2). The function f satisfies for almost every s:

ΨDf(s) = λDf(s) =

∫
kD(s, s′)f(s′)ds′.

Thus f is bounded almost everywhere by λ−D sup(kD)
∫
|f(s′)|ds′.

We have describe precisely the form of kD in the proof of Lemma 1: for every
i, j ∈ Q the kernel kij of [ΨD]ij is a sum of kernel of the form (see the proof of
Lemma 1):

kπ(γ, γ′) = Vol[Pπ(γ, γ′)].

The function γ 7→
∫
kπ(γ, γ′)f(γ′)dγ′ is continuous since the domain of inte-

gration (γ′ | (γ, γ′) ∈ Reach(π)) depends continuously on γ and the integrand is
continuous w.r.t γ and bounded almost everywhere. By summing over all path
π, we obtain that f : s 7→ λ−D

∫
kD(s, s′)f(s′)ds′ is continuous and bounded. A

similar proof can be written for Ψ∗ since it has the kernel k∗D(s′, s) = kD(s, s′).
ut

Theorem 6 (adapted from [7] to L2(S)). The spectral radius ρ is a positive
eigenvalue (i.e. ρ > 0 and ∃v ∈ L2(S) s.t. Ψv = ρv) and H(G) = log2(ρ).

8 To be more formal, f as an element of L2 is a class of functions pairwise equal almost
everywhere, it admits a unique representative which is continuous and bounded.
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Proof. We adapt to the functional space L2(S) the proof of the main theorem of
[7].
Proof of H(G) ≤ log2 ρ: The so called Gelfand formula gives

ρ = lim
n→∞

||Ψn||2
1
n .

As Vn = Ψn(1) we have

||Vn||2 = ||Ψn1||2 ≤ ||Ψn||2||1||2

and thus

lim sup
n→∞

log(||Vn||2)

n
≤ log2 ρ.

Recall that

H(G) = lim sup
n→∞

log(Vol(Rn))

n

and that

Vol(Rn) =

∫
S
Vn(s)ds = ||Vn||1.

Thus

H(G) = lim sup
n→∞

log(||Vn||1)

n
.

It remains to prove that

lim sup
n→∞

log(||Vn||1)

n
≤ lim sup

n→∞

log(||Vn||2)

n
.

This come from the Cauchy-Schwartz inequality:

||Vn||1 ≤ ||Vn||2||1||2 ≤ ||Vn||2
√
Vol(S).

Proof of ρ is a positive eigenvalue for Ψ and Ψ∗:
By the preceding part of the proof and using the hypothesis H > −∞ we

have ρ ≥ 2H > 0. A necessary condition for a positive spectral radius to be an
eigenvalue is the compactness of some power An of the operator A where A = Ψ
or Ψ∗. This is ensured by proposition 4 as HSIOs are compacts operator. Thus
there exists v such that Ψv = ρv and w such that Ψ∗w = ρw.
Proof of log2 ρ = H(G):

Proposition 5 ensures that the eigenfunction v define above is continuous and
bounded (everywhere). Let C be an upper bound for v i.e a positive constant
such that ∀s ∈ S, |v(s)| < C. We have that

∀s ∈ S, n ∈ N, ρn|v(s)| = |Ψnv(s)| ≤ Ψn|v|(s) ≤ CΨn1(s) = CVn(s). (16)

where the first inequality is a variant of the so called triangular inequality, it can
be proven as follows: let v+ and v− be the positive and the negative part of v
then

|Ψnv(s)| = |Ψnv+(s)−Ψnv−(s)| ≤ |Ψnv+(s)|+|Ψnv−(s)| = Ψnv+(s)+Ψnv−(s) = Ψn|v|(s).
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Now we integrate (16) wrt. s and obtain 0 < ρn||v||1 ≤ C||Vn||1 = CVol(Rn).
Taking lim infn→∞

1
n log(.) in this latter inequality we obtain:

log2 ρ ≤ lim inf
n→∞

1

n
log(Vol(Rn)) ≤ lim sup

n→∞

1

n
log(Vol(Rn)) = H(G) ≤ log2 ρ

(17)
where the last inequality comes from the previous part of the proof. Thus all
inequalities of (17) are equalities and we conclude that log2 ρ = H(G). ut

4.6 A Perron-Frobenius like theorem for timed region graph

The following theorem defines v, w used in the definition of the maximal entropy
SPOR (9).

Theorem 7. There exists a unique eigenfunction (up to a scalar constant) v of
Ψ (resp. w of Ψ∗) for the eigenvalue ρ which is positive almost everywhere. Any
non-negative eigenfunction of Ψ (resp. Ψ∗) is collinear to v (resp. w).

Eigenfunctions v and w are chosen such that 〈w, v〉 = 1.

Expressing ρ, v, w as solution of integral equations with kernels. It is
worth mentioning that for any n ≥ D, the objects ρ, v (resp. w) are solutions of
the eigenvalue problem

∫
S kn(s, s′)v(s′)ds′ = ρnv(s) with v non negative (resp.∫

S kn(s′, s)w(s′)ds′ = ρnw(s) with w non negative); unicity of v (resp. w) up to a
scalar constant is ensured by Theorem 7. The matrix notation, where we denote
by kn,q,q′ the kernel of [Ψn]qq′ , gives a system of integral equations for v and ρ:∑

q′∈Q

∫
Γq′

kn,q,q′(γ, γ
′)vq′(γ

′)dγ′ = ρnvq(γ), for q ∈ Q (18)

and another system for w and ρ:∑
q∈Q

∫
Γq

kn,q,q′(γ, γ
′)wq(γ)dγ = ρnwq′(γ), for q′ ∈ Q. (19)

Further computability issues for ρ, v and w are discussed in the conclusion.

Proof of theorem 7. The proof of Theorem 7 is based on theorem 11.1 condi-
tion e) of [20] (recalled in Theorem 8 below) which is a generalization of Perron-
Frobenius Theorem to positive linear operators. The main hypothesis to prove
is the irreducibility of Ψ whose analogue in the discrete case is the irreducibility
of the adjacency matrix M . Recall from section 2 that M is irreducible if for all
states i, j there exists n ≥ 1 such that Mn

ij > 0 (this is equivalent to the strong
connectivity of the graph).

The operator Ψ is said to be irreducible if the following condition holds: if
Ψf ≤ af for some a > 0 and a non-negative non-null f ∈ L2 implies that f is
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quasi-interior which means that 〈f, g〉 > 0 for every non-negative and non null
g ∈ L2(S).

The irreducibility of Ψ and Ψ∗ is essentially due to the strong connectivity
of the state space S which is traduced by the positivity of kernels between every
two locations q, q′. More precisely we will use lemma 1 above and lemma 2 just
below which traduces the thickness of the timed region graph (see section 4.1
and [12]).

Lemma 2. There exists an n ≥ D such that Reach(n, q, q′) = Γq × Γq′ .

Proof. This lemma is a direct consequence of results of [12]. The following as-
sertions and definitions (slightly adapted to our notation) can be found in [12].
A path π from q to q′ is called forgetful if Reach(π) = Γr × Γr′ where Reach(π)
is the reachability relation restrained to π defined in the proof of lemma 1. Ev-
ery path which contains a forgetful cycle is forgetful. If G is thick it contains a
forgetful cycle f (with |f | > 0). Let l ∈ Q̃ such that f leads from l to l and π, π′

such that π leads from q to l and π′ leads from l to q′. Such paths exist by strong
connectivity of the set of location. Let m ≥ D, the path πfDπ′ is forgetful and
leads from q to q′ and thus Reach(D|f |+ |π|+ |π′|, q, q′) = Γq × Γq′ ut

Now we can state the irreducibility of Ψ and Ψ∗

Proposition 6. Ψ and Ψ∗ are irreducible.

Proof. Let f ∈ L2 non-negative non-null and a > 0 such that Ψf ≤ af . Let
g ∈ L2(S) be non negative and non null; we show that 〈f, g〉 > 0. There are
i, j ∈ Q such that gi, fj are non negative and non null. By lemma 1 and 2 there
exists an n such that [Ψn]ij has a kernel kij positive almost everywhere and thus
[Ψn]ijfj(s) =

∫
s′
kij(s, s

′)f(s′)ds′ > 0 for almost every s. We are done since

an〈f, g〉 ≥ 〈Ψnf, g〉 ≥ 〈[Ψn]ijfj , gi〉 > 0.

This also prove the irreducibility of Ψ∗ since k∗ij = kji. ut

The conclusion of theorem 6 furnishes the hypotheses of theorem 11.1 con-
dition e) of [20] (Theorem 8 below). We defined the cone K to be the subset of
L2(S) of non-negative functions. It satisfies Ψ(K) ⊆ K, it is minihedral ([20]6.1
example d)) and is reproducing i.e. all functions of f ∈ L2(S) can be written as
f = f+ − f− with f−, f+ ∈ K. The conclusion of this latter theorem achieve
the proof of our theorem.

Theorem 8 ([20], theorem 11.1 condition e)). Suppose that ΨK ⊆ K, Ψ
has a normalized eigenfunction v ∈ K with corresponding eigenvalue ρ, K is
reproducing and minihedral, the operator Ψ is irreducible and the operator Ψ∗

has an eigenfunction w in K∗ which correspond to the eigenvalue ρ. Then the
eigenvalue is simple and there is no other normalized eigenfunction different
from ρ in K.
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5 Examples

5.1 Running example completed

Consider again the timed region graph depicted in Fig. 3.1. The matrix notation
of (10) is:

[Ψ ]

(
fr1

fr2

)
=

(
γ 7→

∫ 1

γ
fr1(γ′)dγ′ +

∫ 1

0
fr2(γ′)dγ′

γ 7→
∫ 1

0
fr1(γ′)dγ′ +

∫ 1

γ
fr2(γ′)dγ′

)
We can deduce that operators Ψ and Ψ∗ are HSIO with matrices of kernels:

k =

(
10<γ≤γ′<1 10<γ′<1

10<γ′<1 10<γ≤γ′<1

)
; k∗ =

(
10<γ′≤γ<1 10<γ′<1

10<γ′<1 10<γ′≤γ<1

)
.

Eigenfunctions and spectral radius v, w, ρ are solutions of the eigenvalue equa-
tions [Ψ ]v = ρv and [Ψ∗]w = ρw which written in the form of (18) and (19) (for
n = 1) yield

ρvr1(γ) =

∫ 1

γ

vr1(γ′)dγ′ +

∫ 1

0

vr2(γ′)dγ′;

ρvr2(γ) =

∫ 1

0

vr1(γ′)dγ′ +

∫ 1

γ

vr2(γ′)dγ′;

ρwr1(γ) =

∫ γ

0

wr1(γ′)dγ′ +

∫ 1

0

wr2(γ′)dγ′;

ρwr2(γ) =

∫ 1

0

wr1(γ′)dγ′ +

∫ γ

0

wr2(γ′)dγ′.

We differentiate one time the equations and obtain:

ρv′ri(γ) = −vri(γ); ρw′ri(γ) = wri(γ) (i ∈ {1, 2}).

Thus the functions are of the form vri(γ) = vri(0)e−γ/ρ, wri(γ) = wri(0)eγ/ρ.

Remark that ρvr1(0) =
∫ 1

0
vr1(γ′)dγ′+

∫ 1

0
vr2(γ′)dγ′ = ρvr2(0) and thus vr1 = vr2

(we can divide by ρ > 0 since we can prove that H > −∞ using theory of [12]).
Similarly wr1(1) = wr2(1) and thus wr1 = wr2 . The constant ρ satisfies the

condition vr1(0) = 2
∫ 1

0
vr1(γ′)dγ′/ρ = 2vr1(1) = 2vr1(0)e−1/ρ. Thus we obtain:

ρ = 1
ln(2) ;

(
vr1(γ)
vr2(γ)

)
= C

(
2−γ

2−γ

)
;

(
wr1(γ)
wr2(γ)

)
= C ′

(
2γ

2γ

)
with C and C ′ two

positive constants.
Finally the maximal entropy SPOR for Gex1 is given by:

p∗0(p, (γ, 0)) = p∗0(q, (0, γ)) =
1

2
for γ ∈ (0, 1);

p∗(t, δ1|p, (γ, 0)) = p∗(t, δ4|q, (0, γ)) =
2−t

ρ
for γ ∈ (0, 1), t ∈ [0, 1− γ);

p∗(t, δ2|p, (γ, 0)) = p∗(t, δ3|q, (0, γ)) =
2γ−t

ρ
for γ ∈ (0, 1), t ∈ (0, 1).
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5.2 Our favorite example

The timed region graph depicted on Fig. 5.2 with rp = {(x, y) | 0 = y < x < 1}
and rq = {(x, y) | 0 = x < y < 1} is the underlying structure of a timed
automaton introduced by Asarin and Degorre in [7]. With these author we have
illustrated the concept of thickness [12] and of generating function [6] on it. This
example is closely related to the class of alternating permutations as we have
shown in [11].

p q

a, 0 < x < 1, {x}

b, 0 < y < 1, {y}

Fig. 2. A timed graph whose operator is self adjoint: Gex2

The operators Ψ and Ψ∗ are equal, indeed they are HSIO with the same
matrices of kernels9:

k = k∗ =

(
0 10<γ′<1−γ<1

10<γ′<1−γ<1 0

)
The maximal entropy SPOR is given by the following PDFs:

p∗0(p, (γ, 0)) = p∗0(q, (0, γ)) = cos2
(π

2
γ
)

for γ ∈ (0, 1);

p∗(t, a|p, (γ, 0)) = p∗(t, b|q, (0, γ)) =
π

2

cos(π2 t)

cos(π2 γ)
1t<1−γ for γ ∈ (0, 1), t ∈ [0, 1−γ);

6 Proof of main theorems (section 4.2)

We give the proof of theorem 4 in several steps

6.1 Proof of Y is a SPOR

The function v and w are defined up to a scaling constant in Theorem 7 and
are chosen such that

∫
S p
∗
0(s) = 〈v, w〉 = 1. The function v is positive almost

everywhere and v(s . α) = 0 when s . α = ⊥ thus p(α|s) is defined for almost

every s ∈ S, α ∈ A and equals 0 when s . α = ⊥. Finally we have
∫
A
v(s.α)
ρv(s) dα =

Ψv(s)
ρv(s) = 1 since v is an eigenfunction for ρ. ut

9 Such a self adjoint operator (i.e. Ψ = Ψ∗) in a Hilbert space has nice properties.
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6.2 Proof of Y ∗ is stationary

First we remark that a SPOR is stationary whenever the probability on states
remains the same:

Proposition 7. a SPOR is stationary if and only if S1 has the PDF p0 and
thus the same law as S0.

Proof. The only if part is straightforward. For the other part let Y be a SPOR
such that S1 has the PDF p0. We show by recurrence that Sn has the PDF p0

(n ≥ 1). For this, let us suppose that Sn has the PDF p0 for some n ≥ 1. We
show that Sn+1 has the same law has S1 and thus has the PDF p0. For every
measurable set of states S ∈ B(S),

P (Sn+1 ∈ S) =

∫
S

∫
A
p0(s)p(α|s)P (Sn . An ∈ S|Sn = s,An = α)dαds

=

∫
S

∫
A
p0(s)p(α|s)1s.α∈Sdαds

= P (S1 ∈ S)

We have shown that for all i ≥ n, Si has the PDF p0. Now we remind from
(3) that the PDF of Yi · · ·Yi+n−1 knowing that Si = s is pn(α|s). We conclude
that Yi · · ·Yi+n−1 has the expected PDF pn(s,α) = p0(s)pn(α|s).

ut

We applied this proposition to show that Y ∗ is stationary

Proof. For every measurable set of states S ∈ B(S),

P (S1 ∈ S) = P (S0 . A0 ∈ S)

=

∫
S

∫
A
p0(s)p(α|s)1s.α∈Sdαds

=

∫
S

∫
A
v(s)w(s)

v(s . α)

ρv(s)
1s.α∈Sdαds

=

∫
S

w(s)

∫
A
v(s . α)1s.α∈Sdαds/ρ

= 〈w, Ψ(v1S)〉/ρ
= 〈Ψ∗w, v1S〉/ρ By definition of Ψ∗ see (14)

= 〈w, v1S〉 since w is an eigenfunction of Ψ∗ for ρ

=

∫
S

p0(s)1s∈Sds

= P (S0 ∈ S).

ut
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6.3 Proof of H(Y ∗) = H(G)

H(Y ∗) = −
∫
S
p0(s)

∫
A
p(α|s) log2 p(α|s)dαds

= −
∫
S
v(s)w(s)

∫
A

v(s . α)

ρv(s)
log2

v(s . α)

ρv(s)
dαds

= −1

ρ

∫
S
w(s)

∫
A
v(s . α)[log2 v(s . α)− log2(ρv(s))]dαds

= −1

ρ
〈w, Ψ(v log2 v)〉+

1

ρ
〈w log2 v, Ψv〉+

log2 ρ

ρ
〈w, Ψv〉

= −1

ρ
〈Ψ∗w, v log2 v〉+ 〈w log2 v, v〉+ log2(ρ)〈w, v〉 since v is an eigenfunction of Ψ for ρ

= −〈w, v log2 v〉+ 〈w log2 v, v〉+ log2(ρ) since 〈w, v〉 = 1 and w is an eigenfunction of Ψ∗ for ρ

= log2(ρ) = H(G).

6.4 Ergodicity of Y ∗

We first introduce a “stochastic” operator ϕ which is the continuous analogue
of a stochastic matrix. We then prove an ergodic property on ϕ (proposition 10)
which permits to prove the ergodicity of Y ∗.

Operator ϕ and its conjugate ϕ∗. Let L2(v2ds) be the space of function f
such that fv ∈ L2(S). The dual space of L2(v2ds) is isomorphic to L2(ds/v2).
The norm on L2(v2ds) is ||f ||L2(v2ds) = ||fv||2.

Let ϕ : L2(v2ds) → L2(v2ds) be the linear operator defined by ϕ(f) =
Ψ(vf)/v. One can see that ϕ∗(f) = vΨ∗(f/v).

We have construct this operator by analogy with the transition probabil-
ity matrix of the Shannon Parry Markov-chain:Pi,j = Mi,jvj/ρvi with M the
adjacency matrix of the graph is the analogue of Ψ (see section 2).

The operators ϕk (k ≥ 0) are associated with the conditional PDFs pk(α|s) =
pk(α)/p0(s) defined in (3):

ϕk(f)(s) =

∫
α∈Ak

pk(α|s)f(s .α)dα. (20)

The analogy between the operator ϕ and the matrix of a finite Markov-chain
can also be applied to the eigenfunctions. The eigenfunctions for the spectral
radius of ϕ (which is 1) are the constant functions while the eigenfunctions
for the adjoint (analogous with the transposed matrix) are all collinear to the
stationary PDF on states p∗0. First we have an existence lemma

Lemma 3. ϕ(1) = 1, ϕ∗(p∗0) = p∗0.

Then we have uniqueness given in the following proposition. This is an ap-
plication of Theorem 8 we have already use to prove Theorem 7.
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Proposition 8. The spectral radius of ϕ is 1. It is a simple eigenvalue of ϕ for
which 1 is an eigenfunction (ϕ(1) = 1). Every positive eigenfunction of ϕ are
constant (i.e. collinear to 1). p∗0 is an eigenfunction of ϕ∗ for the spectral radius
1 which is a simple eigenvalue (ϕ∗(p∗0) = p∗0). Every positive eigenfunction of ϕ∗

are collinear to p∗0.

Proposition 9. Some power ϕp (p ∈ N) has a spectral gap, i.e. the spectral
radius of ϕp is a simple eigenvalue (here all the eigenfunctions for the spectral
radius 1 are constant) and the rest of the spectrum of ϕp belongs to the disc
Cλ = {z||z| ≤ λ} for some λ strictly lower than the spectral radius.

Proof. ϕ is a compact operator with spectral radius 1. A well known results in
spectral theory asserts that there is only a countable number of point in the
spectrum of a compact operator and that all nonzero points of the spectrum are
isolated and are eigenvalues.

We can apply the theorem at the beginning of section 3.4 of [24]. This theorem
states that there exists p ∈ N such that every eigenvalue ω of modulus 1 satisfies
ωp = 1 and thus ϕp has only one eigenvalue of modulus 1 which is its spectral
radius. The other eigenvalue ωp of ϕp are such that ωp < β for some β < 1 since
there is no accumulation point other than 0.

Proposition 8 just above guarantees that the constant function 1 is the single
eigenfunction for ϕ and thus for ϕp, this eigenfunction is positive and therefore
ϕp has a spectral gap β. ut

With such a spectral gap, iterates of ϕ on a function f converge in direction
toward the positive eigenfunction 1 of ϕ (i.e. converge to a constant) provided f
is not orthogonal to the eigenfunction p∗0 of ϕ∗:

Lemma 4. For all f ∈ L2(v2ds) such that EY (f) =
∫
S f(s)p∗0(s)ds 6= 0 the

following holds
||ϕpk(f)− EY (f)||L2(v2ds) →k→+∞ 0.

Proof. This is ensured by Theorem 15.4 of [20] whose hypothesis is the existence
of a gap for ϕp (Proposition 9). ut

Proposition 10. Let f ∈ L2(v2ds) such that EY (f) 6= 0 and gn(s) = 1
n

∑n
k=1 ϕ

k(f)(s)−
EY (f) then

||gn||L2(v2ds) →n→+∞ 0.

Proof. We have

||gn||L2(v2ds) ≤
p∑
i=1

1

n

n−1∑
k=0

||ϕpk+i(f)(s)− EY (f)||L2(v2ds).

Now it suffices to remark that for all i ∈ {1, . . . , p} the sequence ||ϕpk+i(f) −
EY (f)||L2(v2ds) →k→+∞ converges to 0 and thus so does its Cesaro mean. This

convergence follows from Lemma 4 applied to ϕi since ϕpk+i(f) = ϕpk(ϕif) and
EY (ϕi(f)) = EY (f) > 0. ut
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The following lemma roughly states that, asymptotically Y ∗ is independent
from its past which is a sufficient condition for ergodicity.

Lemma 5. Let R be a measurable subset of (S× A)m+1 (m ∈ N) then

1

n

n∑
k=1

P (Y ∗0 · · ·Y ∗m ∈ R and Y ∗m+k · · ·Y ∗2m+k ∈ R)→n→∞ P (Y ∗0 · · ·Y ∗m ∈ R)2.

Proof. For all k ∈ N we have:

P (Y ∗0 · · ·Y ∗m ∈ R and Y ∗m+k · · ·Y ∗2m+k ∈ R) =

∫
R

pm[s,α]P (Y ∗m+k · · ·Y ∗2m+k ∈ R|Sm = s.α)d[s,α].

We use stationarity and characterization of ϕk (20) and obtain:

P (Y ∗m+k · · ·Y ∗2m+k ∈ R|Sm = s) = P (Y ∗k · · ·Y ∗k+m ∈ R|S0 = s) = ϕk(f)(s)

with f(s) = P (Y ∗0 · · ·Y ∗m ∈ R|S0 = s). We have also that

P (Y ∗0 · · ·Y ∗m ∈ R)2 =

∫
R

pm[s,α]P (Y ∗0 · · ·Y ∗m ∈ R)d[s,α].

We will use the proposition 10 with

gn(s) =
1

n

n∑
k=1

ϕk(f)(s)− P (Y ∗0 · · ·Y ∗m ∈ R) =
1

n

n∑
k=1

ϕk(f)(s)− EY (f).

We can end the proof with the following inequalities:∣∣∣∣∣ 1n
n∑
k=1

P (Y ∗0 · · ·Y ∗m ∈ R and Y ∗m+k · · ·Y ∗2m+k ∈ R)− P (Y ∗0 · · ·Y ∗m ∈ R)2

∣∣∣∣∣
≤
∫
S

∫
Aω

pm[s,α]|gn(s .α)|dαds

≤
∫
S
ϕm(|gn|)p(s)ds =

∫
S
ϕm(|gn|)v(s)w(s)ds

≤ ||w||∞
∫
S
ϕm(|gn|)v(s)ds (since w is bounded by Proposition 5)

≤ ||w||∞||ϕm(|gn|)v||2
√
Vol(S) (by Cauchy Schwartz inequality)

= ||w||∞||ϕm(|gn|)||L2(v2ds)

√
Vol(S)

≤ ||w||∞||ϕm||L2(v2ds)||gn||L2(v2ds)

√
Vol(S)→n→+∞ 0 (by Proposition 10).

ut

Now we can achieve the proof that Y ∗ is ergodic.
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Proof. Consider a shift invariant set A. We will show that P (A) ∈ {0, 1}. We
suppose that PY (A) < 1 and show that PY (A) ≤ PY (A)2. These inequalities
imply that PY (A) = 0.

Using (4), for every ε, there exists an m ∈ N such that P (Y ∗0 · · ·Y ∗m ∈
Am+1) ∈ [P (A), P (A) + ε]. By set inclusion we have:

P (A) ≤ P (Y ∗0 · · ·Y ∗m ∈ Am+1 and Y ∗m+k · · ·Y ∗2m+k ∈ Am+1)

Taking the Cesaro average (i.e. summing over k and dividing by n) we obtain:

P (A) ≤ 1

n

n∑
k=1

P (Y ∗0 · · ·Y ∗m ∈ Am+1 and Y ∗m+k · · ·Y ∗2m+k ∈ Am+1).

Taking the limit and using lemma 5 we obtain:

P (A) ≤ P (Y ∗0 · · ·Y ∗m ∈ Am+1)2 ≤ (P (A) + ε)2.

When ε tends to 0, we obtain the required inequality. ut

This last paragraph has achieved the proof of Theorem 4.

6.5 Proof of the asymptotic equipartition property (Theorem 5)

The pointwise ergodic theorem states that with probability 1 an infinite runs r
satisfies 1

n

∑n−1
k=0 f(σk(r))→n→+∞ EY (f) where σ is the shift map i.e. σ(y0y1 · · · ) =

y1y2 · · · and f is such that EY (|f |) < +∞.
Here we define f by f(s0α0s1α1 · · · ) = − log p(α0|s0) and thus

1

n

n−1∑
k=0

f(σk(r)) = − 1

n

n−1∑
k=0

log2 p(αk|sk) = − 1

n
[log2 pn[s0, α0 · · ·αn−1]−log2 p0(s0)].

On the other side EY (f) = EY (− log p(A0|S0)) = −
∫
S p0(s)

∫
A p(α|s) log p(α|s)dαds

which is equal to H(Y ) by definition.
It remains to show that EY (|f |) < +∞. Indeed EY (|f |) = EY (f)+2EY (f−) =

H(Y ) + 2EY (f−) where f− = (|f | − f)/2 is the negative part of f and

EY (f−) ≤ max
R+

(x 7→ −x log2 x)Vol(A) < +∞.

ut

7 Conclusion and perspectives

In this article, we have proved the existence of an ergodic stochastic process
over runs of a timed region graph G with maximal entropy, provided G has finite
entropy (H > −∞) and satisfies the D weak progress condition.

The next question is to know how simulation can be achieved in practice.
Symbolic computation of ρ and v have been proposed in [7] for subclasses of
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deterministic TA. In the same article, an iterative procedure is also given to
estimate the entropy H = log2(ρ). We think that approximations of ρ, v and w
using an iterative procedure on Ψ and Ψ∗ would give a SPOR with entropy as
close to the maximum as we want. A challenging task for us is to determine an
upper bound on the convergence rate of such an iterative procedure.

Connection with information theory is clear if we consider as in [5], a timed
regular language as a source of timed words. A SPOR is in this approach a
stochastic source of timed words. It would be very interesting to lift compression
methods (see [22,17]) from untimed to timed setting.
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Perrin. Toward a timed theory of channel coding. In FORMATS’12, LNCS 7595.

6. Eugene Asarin, Nicolas Basset, Aldric Degorre, and Dominique Perrin. Generating
functions of timed languages. In MFCS, LNCS 7464, pages 124–135, 2012.

7. Eugene Asarin and Aldric Degorre. Volume and entropy of regular timed languages:
Analytic approach. In FORMATS’09, LNCS 5813, pages 13–27, 2009.

8. Eugene Asarin and Aldric Degorre. Volume and entropy of regular timed languages:
Discretization approach. In CONCUR’09, LNCS 5710, pages 69–83, 2009.

9. Christel Baier, Nathalie Bertrand, Patricia Bouyer, Thomas Brihaye, and Mar-
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